首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
李苹  余晔  赵素平  董龙翔  闫敏 《高原气象》2019,38(6):1344-1353
利用2015-2017年环保部发布的近地面臭氧(O_3)和其他3种污染物[粒径小于2. 5μm的颗粒物(PM_(2.5))、一氧化碳(CO)、二氧化氮(NO_2)]小时浓度数据和美国国家气候资料中心收集的气象要素监测数据,分析了中国近地面O_3污染状况,并用逐步回归方法分析了影响O_3重污染区域夏季近地面O_3浓度的因素。结果表明,2015-2017年我国O_3日最大8 h滑动平均浓度(O_3MDA8)年平均值分别为83.02±16. 79,87. 05±14. 32和94. 70±13. 89μg·m~(-3)。O_3MDA8浓度逐年增长(增长率14. 07%),其中冬季增长最快(增长率范围14. 67%~34. 32%),夏季增长最慢(增长率范围2. 32%~14. 16%)。京津冀、长三角、山东半岛、川渝和中原地区近地面O_3污染较重,影响这5个区域近地面O_3浓度的主要因素为温度、相对湿度和PM_(2.5),除此之外京津冀和川渝地区的近地面O_3浓度受NO_2影响明显,中原地区的近地面O_3浓度受CO影响明显。  相似文献   

2.
城市交通废气与低层大气臭氧形成和分布的数值模拟   总被引:5,自引:1,他引:5  
建立了一个三维的边界层光化学模式,气象过程的模拟舍弃了静力近似的假定,模式由细网格、高分辨率并取湍流能量(E-ε)闭合的气象模式,提供较为细致的气流场和湍流场。文章中以汽车尾气和植物排放为光化学反应前体物的源,模拟了不同季节南京市的光化学过程以及臭氧随时间和空间的分布。结果表明,夏季南京市的地面臭氧浓度远远高于冬季,臭氧分布有所不同。并且在不少地方出现较高的O3浓度值,超过国家二级标准,气流对污染物浓度分布的影响在较高的高度上显得尤其明显。  相似文献   

3.
利用乌鲁木齐市晴天CFL-03型风廓线雷达观测资料,分析了边界层日变化特征。得出结论如下:边界层结构季节变化明显。冬、春季300~600m以下风速较小,小于3m/s,且愈近地面风速愈小;以上风速大、风向恒定,基本为东南大风。夏季和秋季风速比冬季和春季小,流场特征较复杂,水平风速和风向变化较活跃,存在明显的风切变。折射率结构常数春、秋和冬季比夏季分别小1个、3个和1~3个量级;夏季最大,集中在10~(-16)~10~(-13) m~(-2/3)之间。春、夏和秋季晴天湍流动能耗散率量级分别在10~(-6)~10~(-2) m~2·s~(-3)、10~(-4)~10~(-3) m~2·s~(-3)、10~(-6)~10~(-3) m~2·s~(-3)之间;白天比夜间约大1个量级。晴天折射率结构常数和湍流动能耗散率日变化特征与风场日变化特征有较好地对应关系,即湍流发展旺盛的区域与风速较大的区域相一致。风廓线雷达资料反演的湍流动能耗散率对春季和夏季边界层结构日变化演变特征的监测较好。夏季夜间稳定边界层约400~500m,残余层可达到约1800m,对流边界层可发展到约2500m,混合层约2200m,夹卷层约300~400m。  相似文献   

4.
江苏臭氧污染特征及其与气象因子的关系   总被引:3,自引:0,他引:3  
本文利用2013—2017年江苏70个环境监测站资料和13个国家气象观测站常规观测资料,研究江苏臭氧污染特征及其与气象因子的关系。结果表明:江苏臭氧质量浓度和超标率逐年增长,其空间分布特征由东部沿海城市大于西部内陆城市逐渐转为东西部城市差异不明显,南部城市超标率总体高于北部;4—9月臭氧质量浓度处于较高水平,夏季超标占一半以上;日变化呈"单峰单谷"型,15时(北京时间)前后超标率最大,O_(3-8 h)较O_(3-1 h)峰值推后3—4 h;O_3对空气质量不达标的贡献率呈逐年上升趋势;臭氧质量浓度与颗粒物和前体物NO_x日变化呈反相关,且存在"周末效应"。江苏地区臭氧质量浓度总体与气温正相关,相对湿度负相关,气温高于25℃、相对湿度30%~50%区间、风速低于4 m·s~(-1)以下易出现高浓度臭氧;苏南的城市主要在东南风向对应较高的值,而苏北城市多在西南风向对应的较高臭氧质量浓度值。  相似文献   

5.
基于总臭氧测绘光谱计TOMS和太阳向后紫外线散射仪SBUV结合得到的30年(1979-2008年)全球月平均臭氧总量资料,首先分析了近30年青藏高原(下称高原)上空臭氧总量的下降趋势,然后讨论了高原动力抬升作用对臭氧总量的影响,最后探讨了高原臭氧总量亏损与高原对流层顶高度的联系。结果表明,高原臭氧总量及其下降趋势均存在着明显的季节差异,与同纬度非高原区相比,高原地区各月的臭氧总量均偏低,特别是在3-9月臭氧亏损严重;近30年高原地区臭氧总量在各季节均呈现出下降趋势,除了秋季外,其下降幅度均超过同纬度其他地区;春、夏季高原动力抬升有利于对流层低浓度的臭氧含量向平流层输送,从而导致高原臭氧总量的减少。近30年春、夏季高原臭氧总量亏损与夏季高原第二对流层顶高度的抬升存在着密切关系。  相似文献   

6.
利用青藏高原东北部城市西宁2015—2017年O_3质量浓度和各气象要素数据(紫外辐射、最高气温等),分析近地面O_3变化特征及其影响因素,结果表明:该地区臭氧平均质量浓度呈现单峰型日变化规律。每年6—8月O_3质量浓度最大,12月至翌年2月最小。依据环境空气质量指数AQI统计分析,6—8月污染天气O_3占首要污染物总天数的72%。O_3与NO_2、CO呈极显著负相关,臭氧日最大1 h平均质量浓度与紫外辐射、日最高气温呈极显著正相关,与日平均气压、日最高气压、日最低气压呈极显著负相关,与日平均相对湿度相关性不显著。不同季节不同高度风速大小和风向频率对O_3质量浓度影响不同,500 h Pa盛行风向以WNW为主时有利于扩散。2017年青海省大部地区O_3月平均质量浓度总体呈先增加后减小变化趋势。纬度越低,海拔越高的地区,O_3质量浓度升高越早。降水量的差异对O_3质量浓度影响较小。  相似文献   

7.
冬季乌鲁木齐市低层大气O3垂直分布观测的个例分析   总被引:1,自引:1,他引:0  
为了揭示乌鲁木齐冬季边界层O_3垂直分布特征,利用系留气艇于2008年1月11-13日在乌鲁木齐市区进行了边界层O_3观测试验。利用本次观测试验的数据并结合相关气象资料,对观测期间边界层O_3的垂直分布特征及其影响因子进行了分析。结果表明:白天近地面500~800 m高度以下O_3浓度较低,该高度以上存在O_3高浓度分布区,夜间整个观测高度范围内O_3浓度均较低;O_3浓度分布与太阳辐射、温度层结、风、相对湿度等因子密切相关,O_3高浓度分布区出现在逆温层底以上,且O_3浓度与相对湿度呈显著的反相关分布;近地面的NO_x对O_3浓度有着重要影响。由此表明乌鲁木齐冬季低层大气O_3的分布在各种因素的影响下具有明显的时空变化。  相似文献   

8.
通过分析2010—2018年天津气象塔风、温度资料,对近年来天津城市边界层粗糙度、大气稳定度和逆温特征进行研究。结果表明:随着城市发展,气象塔周边各方向粗糙度和零平面位移明显增高,气象塔周边建筑物对80 m高度以下风场的影响较为明显。受湍流强度日变化影响,各季节中气象塔高层和低层风速日变化特征差异明显。通过温差-风速法计算大气稳定度发现稳定类层结多出现在秋冬季的夜间,稳定层结条件下逆温情况多发,其逆温强度、逆温层厚度和贴地逆温比例也明显高于不稳定和中性层结。天津城市热岛强度的时间分布表现出夜间强于白天,秋冬季强于春夏季的特征。城市热岛强度与大气稳定度时间分布具有一定相关性。  相似文献   

9.
北京地区一次典型大雾天气过程的边界层特征分析   总被引:13,自引:2,他引:11       下载免费PDF全文
利用中国科学院大气物理研究所325 m铁塔15层风、温、湿梯度观测资料和3层超声资料,对2002年12月1~4日发生在北京地区的持续大雾天气过程进行近地面层大气边界层特征分析。结果表明,近地面大气边界层较大的相对湿度(70%)、较小的风速(3.0 m.s-1)和风速垂直切变(0.02 s-1)、稳定的层结结构以及较低的气温是北京持续大雾天气形成的主要原因。冷空气的侵入使得边界层相对湿度迅速减小,风速和风速垂直切变增大,破坏近地面大气边界层的结构,导致大雾的消散。分析还发现,大雾的维持与消散主要受风场等动力因素的影响,热力层结是大雾维持和消散的必要条件。冷空气的侵入自上而下影响平均风场,而对湍流风场的影响则是自下而上的。尺度分析结果表明,大雾期间,近地面边界层内中尺度动量通量和感热通量都大于湍流尺度的,中尺度动量通量与平均风速基本呈反相关;冷空气的侵入使得湍流通量显著加强,是导致大雾天气消失的主要原因。  相似文献   

10.
北京地区气象环境数值模拟试验   总被引:30,自引:0,他引:30       下载免费PDF全文
用区域边界层模式RBLM模拟北京地区气象环境特征.数值模拟结果表明(1)北京地区的气象环境很复杂,其主要特点是受昼夜循环的山谷风气流、城市热岛环流以及大尺度系统共同影响.(2)北京市区冬季地面风的日变化较小,主要是偏北气流,城市上游方向在市区的北边,而春夏季地面风的日变化比较明显,市区的进出口气流方向变化很大.(3)北京市城市热岛强度在夏季较强,城市热岛环流明显,城市中心近地面气温比郊区近地面气温高5~6℃左右.(4)数值模拟结果能较好地反映北京地区流场的日变化,与实际观测结果吻合较好.  相似文献   

11.
Surface ozone data from 25 Europeanlow-altitude sites and mountain sites located between79°N and 28°N were studied. The analysiscovered the time period March 1989–February 1993.Average summer and winter O3 concentrations inthe boundary layer over the continent gave rise togradients that were strongest in the north-west tosouth-east direction and west-east direction, respectively. WintertimeO3 ranged from 19 to 27 ppbover the continent, compared to about 32 ppb at thewestern border, while for summer the continentalO3 values ranged between 39 and 56 ppb and theoceanic mixing ratios were around 37 ppb. In the lowerfree troposphere average wintertime O3 mixingratios were around 38 ppb, with only an 8 ppbdifference between 28°N and 79°N. For summerthe average O3 levels decreased from about 55 ppbover Central Europe to 32 ppb at 79°N. Inaddition, O3 and Ox(= O3 + NO2)in polluted and clean air were compared. Theamplitudes of the seasonal ozone variations increasedin the north-west to south-east direction, while thetime of the annual maximum was shifted from spring (atthe northerly sites) to late summer (at sites inAustria and Hungary), which reflected the contributionof photochemical ozone production in the lower partsof the troposphere.  相似文献   

12.
Continuous measurements of ozone and its precursors including NO, NO2, and CO at an urban site (32°03′N, 118°44′E) in Nanjing, China during the period from January 2000 to February 2003 are presented. The effects of local meteorological conditions and distant transports associated with seasonal changed Asian monsoons on the temporal variations of O3 and its precursors are studied by statistical, backward trajectory, and episode analyses. The diurnal variation in O3 shows high concentrations during daytime and low concentrations during late night and early morning, while the precursors show high concentrations during night and early morning and low concentrations during daytime. The diurnal variations in air pollutants are closely related to those in local meteorological conditions. Both temperature and wind speed have significant positive correlations with O3 and significant negative correlations with the precursors. Relative humidity has a significant negative correlation with O3 and significant positive correlations with the precursors. The seasonal variation in O3 shows low concentrations in late autumn and winter and high concentrations in late spring and early summer, while the precursors show high concentrations in late autumn and winter and low concentrations in summer. Local mobile and stationary sources make a great contribution to the precursors, but distant transports also play a very important role in the seasonal variations of the air pollutants. The distant transport associated with the southeastern maritime monsoon contributes substantially to the O3 because the originally clean maritime air mass is polluted when passing over the highly industrialized and urbanized areas in the Yangtze River Delta. The high frequency of this type of air mass in summer causes the fact that a common seasonal characteristic of surface O3 in East Asia, summer minimum, is not observed at this site. The distant transports associated with the northern continental monsoons that dominate in autumn and winter are related to the high concentrations of the precursors in these two seasons. This study can contribute to a better understanding of the O3 pollution in vast inland of China affected by meteorological conditions and the rapid urbanization and industrialization.  相似文献   

13.
利用臭氧探空资料,分析了西太平洋地区香港(Hong Kong)、那霸(Naha)和札幌(Sapporo)三个站点2000~2010年期间大气边界层内臭氧(O3)的季节分布和年变化趋势。结果表明,三个站点O3的季节分布存在明显的差异。其中,那霸和香港大气边界层内O3季节平均呈双峰值分布,其峰值分别出现在春季和秋季;而札幌站为单峰分布,峰值出现在春季。造成季节分布差异的主要原因包括人为污染源和自然因素如气象条件。另外,三个站点大气边界层内O3均呈上升趋势。其中札幌、那霸上升最快,分别达0.80 ppb a-1和0.77 ppb a-1。(ppb表示10-9,下同)香港的年际增长较不明显,但秋季增长却非常明显,高达1.21 ppb a-1。结合GOME (Global Ozone Monitoring Experiment) 和SCIAMACHY (Scanning Imaging Absorption Spectro Meter for Atmospheric Chartography)卫星反演的NO2数据发现,过去10年中国京津唐和东北地区的对流层内NO2柱总量增加极为迅速。这些O3前体物通过远距离输送是导致札幌、那霸O3浓度增加的主要原因之一。珠江三角洲人为污染源的增加及偏北气流的影响,是导致香港地区秋季O3增加的主要原因。  相似文献   

14.
利用2010—2012年对流层臭氧(O3)及其多种前体物的卫星遥感资料和全球水汽再分析资料,研究东亚区域O3及其前体物的时空分布,以及在中国东部(分为南、北两部分)相关性的季节变化。结果表明:东亚区域NO2与CO的对流层柱含量均表现为冬季高、夏季低的时空变化形式。O3对流层柱含量夏季达到峰值,冬季为谷值。中国东部的北部与南部地区O3与NO2均在夏秋季呈正相关,冬春季呈负相关。夏季大部分地区NOx的光化学循环反应对O3生成有积极的促进作用,冬季大部分地区O3的光化学循环生成受到抑制。O3与CO在北部地区夏秋季和南部地区夏季正相关性最大,无论是在北部还是南部地区,O3与CO的相关性在轻污染情况下最大,而在重污染和背景情况下较小,表明重污染气团向下风方的输送更有利于O3的光化学生成。O3与水汽在北部和南部地区的多数时间均呈较显著的正相关性,而在南部地区夏季和北部地区冬季具有较大的负相关性,反映出不同的环流形式、气团来源及伴随的天气条件变化对O3分布的影响。  相似文献   

15.
We present mobile vehicle lidar observations in Tianjin, China during the spring, summer, and winter of 2016. Mobile observations were carried out along the city border road of Tianjin to obtain the vertical distribution characteristics of PM2.5. Hygroscopic growth was not considered since relative humidity was less than 60% during the observation experiments. PM2.5 profile was obtained with the linear regression equation between the particle extinction coefficient and PM2.5 mass concentration. In spring, the vertical distribution of PM2.5 exhibited a hierarchical structure. In addition to a layer of particles that gathered near the ground, a portion of particles floated at 0.6–2.5-km height. In summer and winter, the fine particles basically gathered below 1 km near the ground. In spring and summer, the concentration of fine particles in the south was higher than that in the north because of the influence of south wind. In winter, the distribution of fine particles was opposite to that measured during spring and summer. High concentrations of PM2.5 were observed in the rural areas of North Tianjin with a maximum of 350 μg m–3 on 13 December 2016. It is shown that industrial and ship emissions in spring and summer and coal combustion in winter were the major sources of fine particles that polluted Tianjin. The results provide insights into the mechanisms of haze formation and the effects of meteorological conditions during haze–fog pollution episodes in the Tianjin area.  相似文献   

16.
利用2017~2018年阿克达拉逐时臭氧浓度监测数据和同期气象观测资料,分析了阿克达拉近地面臭氧浓度的日変化和年季变化特征,并分析了臭氧浓度与气象条件之间的关系。结果表明:臭氧浓度日变化呈现单峰型,下午16点前后达到最高值,最高值分别为42.86 ppb和38.37 ppb;2017和2018年阿克达拉臭氧最高月分别出现在3月和2月,月平均臭氧浓度为49.37 ppb和37.94 ppb,最低月出现在12月,浓度为18.36 ppb和18.90 ppb;2017~2018年阿克达拉近地面臭氧浓度的季节变化规律为:春季>夏季>冬季>秋季;阿克达拉的主导风向是NW和E,夏季主导风向为NW,冬季则以偏东风为主;夏季受西北气流影响,阿克达拉西北方向的污染源对当地近地面臭氧浓度影响较大。  相似文献   

17.
Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NOx transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O3 at the surface.The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NOx loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.  相似文献   

18.
根据全球气溶胶气候模式GEM-AQ/EC的1995~2004年模拟,分析了青藏高原大气黑碳气溶胶的来源、传输及沉降季节特征。研究表明:青藏高原黑碳气溶胶主要来自自由对流层和大气边界层的输送。相对于自由对流层的黑碳输送,紧邻青藏高原的南亚、东亚以及东南亚大气边界层的输送更有效,它形成了青藏高原由北向南、自西往东黑碳气溶胶浓度和沉降明显递增的基本分布形态。横跨欧亚大陆自由对流层的黑碳气溶胶由西向东向青藏高原的输送全年不变,夏季输送路径最北但强度最弱,冬季路径最南而强度最强。大气边界层黑碳气溶胶的输送受控于亚洲季风环流变化,来自南亚的黑碳气溶胶在春季越过孟加拉湾传输进入高原东南部,夏季则可翻越喜马拉雅山抵达青藏高原南部腹地;同时我国中部排放的黑碳气溶胶也在东亚夏季风向北扩展中驱动它从东向西往青藏高原东北部传输。从秋季到冬季,随着夏季风撤退,南亚黑碳源区向青藏高原传输衰退,东亚冬季风的反气旋性环流的南侧及西南侧的偏东风携带秋季我国东南部源区和冬季东南亚源区黑碳气溶胶向青藏高原东南部传输。受青藏高原明显的暖湿季和干冷季气候影响,干湿沉降分别主导了青藏高原冬季和夏季黑碳沉降,夏季青藏高原黑碳气溶胶沉降总量大多超过8~10 kg·km-2,在高原东北部的最高值超过40 kg·km-2。冬季青藏高原黑碳气溶胶沉降量最低,大部地区黑碳沉降低于5 kg·km-2。青藏高原黑碳沉降的冬夏季节相差约为2~8倍。  相似文献   

19.
北京地区日最大边界层高度的气候统计特征   总被引:1,自引:0,他引:1  
使用北京气象站探空观测数据和地面气温观测数据,以干绝热曲线法估算1984~2013年逐日最大边界层高度,同时计算对应的边界层平均风速和通风量。统计分析这3个边界层参量的平均特征,并利用2001~2012年的空气污染指数(API),探讨大气污染与边界层参量的关系。结果表明:(1)日最大边界层高度的30年月均值以春季和夏初(3~6月)最高,约1600 m;夏季和秋初(7~10月)次之,约1300 m;冬季(11月、12月和1月)最低,约1000~1200 m。(2)夏季,日最大边界层高度不同数值的频率大致为对称分布,峰值处于1000~1600 m范围;秋、冬季,频率分布系统性地向低值一方偏斜,600~800 m的出现频率大大增加;春季边界层高度的变化极大。(3)各季边界层平均风速以夏季为最小。(4)一年中春季通风量最大,秋季次之,冬季较低,夏季最小。(5)秋、冬季,北京中度和重污染个例(API200)集中分布于弱风、低边界层和小通风量条件,反映污染物局地累积的作用;春季污染个例半数以上以高风速、高通风量为特征,反映沙尘类外部输入性污染的作用。  相似文献   

20.
Surface O3 concentration and its precursors have been observed at Longfengshan station,Heilongjiang Province for a period of one year from August 13,1994 to July 30,1995. Relationship between surface O3 and the meteorological conditions during this period is analyzed in this study.Observation results show that diurnal variation of surface O3 follows a pattern of double-peaks with amplitude of 27-28 ppb under fine days in summer and autumn.Although the diurnal variation is small(14 ppb),it is still detectable when it is overcast.Diurnal variation of O3 is irregular under rainy days.Surface O3 concentration rises when wind speed starts to increase at 0800 BT(Beijing Time)from 0 to 6 m s-1in autumn,winter and summer.Relative high surface O3 concentration is noticed frequently when S,SSW,SW and WSW wind are encountered at the station during all seasons.At 0800 BT and 1400 BT the surface O3 concentration increases with the increase of global radiation accordingly during fine days in winter,spring and autumn.During fine days average peak of O3 concentration in summer is 20 ppb higher than that in winter while the average peak of global radiation in summer is almost twice as high as that in winter.The average surface O3 concentration under fine days in autumn at Longfengshan station is 14 ppb lower in comparison to the observation results from Lin'an station where Lin'an is at about the same longitude and lower latitude,with same environment,which is mainly caused by the difference of global radiation due to different latitudes in these two areas(difference of average peak global radiation about 100 W m-2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号