首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marek Jarosi&#x  ski 《Tectonophysics》2005,410(1-4):189-216
The direction of present-day maximum horizontal compression (= SHmax = tectonic stress) was interpreted for 62 wells in Poland, using the method of borehole breakout analysis of 4-arm and 6-arm dipmeter logs. The study area covers complex tectonic junction of the Carpathian orogen and its foreland, which comprises the East European Craton (EEC) divided by the Teisseyre–Tornquist zone (TTZ) from the Palaeozoic platform of western Poland. For this area, frequent deviation of the SHmax direction from NW–SE characteristic for the Atlantic ridge push has been interpreted in terms of the ALCAPA tectonic push. In the Upper Silesian segment of the Polish Outer Carpathians (POC), NNE–SSW-oriented SHmax in the accretionary wedge differs significantly from NNW–SSE SHmax in the autochthonous basement. The above discrepancy points to uncoupled type of the suture in this segment of the POC. In this scenario the ALCAPA push involves the nappes and is compensated in the top of the basement, which is expressed by systematic SHmax rotations. In the accretionary wedge of the eastern Małopolska segment, SHmax follows the trend perpendicular to the strike of nappes. It is in general agreement with NNE–SSW-oriented SHmax in the autochthonous basement that also parallels the ALCAPA push direction. Similarity in stress orientation between these structural levels implies coupled suture zone in this segment of the POC. Further to the north, ALCAPA push is transmitted into the foreland plate where it causes N–S orientation of SHmax, as determined for sedimentary cover of the EEC. Within the Baltic portion of the EEC, further SHmax rotation towards the intermediate NNW–SSE position suggests balance between the ALCAPA push and the ridge push components. Within the TTZ, common SHmax rotations from N–S to NW–SE indicate structurally controlled accommodation of the ALCAPA push. In the Palaeozoic platform of western Poland, Mesozoic complex of the Fore-Sudetic Monocline reveals NNE–SSW-directed SHmax that differs from NW–SE-oriented SHmax in the Variscan accretionary wedge. Here, mechanical decoupling along Zechstein evaporates is likely.

Presented set of breakout data from Poland shows that recent compressive reactivation of the Carpathians exerts strong impact on the stress field of the foreland plate at a distance of 700 km from the suture. Due to this effect, the Fore-Carpathian stress domain within the North European stress province can be discriminated.  相似文献   


2.
张岳桥  施炜  廖昌珍  胡博 《地质学报》2006,80(5):639-647
基于对鄂尔多斯盆地西南缘构造带、中央断裂、东缘边界带和东北部地区的断裂几何特征、运动学及其活动期次的野外观察和测量,并根据断层面上滑动矢量的叠加关系和区域构造演化历史,确定了鄂尔多斯盆地周边地带晚中生代构造主应力方向、应力体制及其转换序列,提出了4阶段构造演化模式和引张-挤压交替转换过程。早中侏罗世,盆地处于引张应力环境,引张方向为N-S至NNE-SSW向。中侏罗世晚期至晚侏罗世,构造应力场转换为挤压体制,盆地周缘遭受近W-E、NW-SE、NE-SW等多向挤压应力作用。早白垩世,盆地构造应力场转换为引张应力体制,引张应力方向为近W-E、NW-SE和NE-SW向。早白垩世晚期至晚白垩世,盆地应力体制再次发生转换,从前期的引张应力体制转换为NW-SE向挤压应力体制。晚中生代构造应力体制转换和应力场方向变化不仅记录了不同板块之间汇聚产生的远程效应,同时记录了盆地深部构造-热活动事件,并对盆地原型进行了一定的改造。  相似文献   

3.
全球应力场与构造分析   总被引:16,自引:1,他引:16  
介绍了近年来全球构造应力研究方面的一些新进展并以“世界应力图”提供的资料为背景 ,结合一些最新的研究成果 ,阐述了全球构造应力场的分布特征及其与板块构造运动之间的联系。研究结果表明 :(1)全球存在大尺度的统一性构造应力场 ;(2 )全球大多数板块内部地区为挤压应力作用 ,其应力结构多为逆断型、走滑型或逆走滑型 ;(3)大陆板块内部的扩张区大多位于高海拔异常地区 ,其应力结构为正断型或正走滑型 ,如青藏高原、东非裂谷和贝加尔裂谷等 ;(4)全球大部分地区的地壳上部构造应力作用方向较为均一 ,存在区域统一应力场 ;(5 )全球大部分地区的最大水平主应力方向与板块绝对运动 (角速度 )迹线保持较好的一致性 ,反映出构造应力与板块运动的关系密切 ;(6 )板块汇聚、洋脊扩张可能是产生岩石圈上部构造应力的主要力源。  相似文献   

4.
In Italy, the horizontal stress directions are well constrained in many regions, but the tectonic regime is not well known because the stress magnitudes are unknown. Our intention is to improve the knowledge of crustal stress in Italy, both at shallow depth and in low seismicity areas. Therefore, we inferred the tectonic regime from the comparison between the depth of breakout occurrence and the physical properties of the rocks in 20 boreholes. The critical value of the maximum horizontal stress, for which the effective tangential stress at the borehole wall overcomes the rock strength to form breakouts, could be computed from rock strength and density. Comparing the theoretical stress distributions for different tectonic regimes with the depth distribution of breakout occurrence, it is possible to infer the tectonic regime that fits best to the breakout depth distribution. We investigated boreholes up to 6 km deep located in different tectonic environments over the Italian peninsula: the Po Plain, the Apenninic chain, the Adriatic foredeep and the Tyrrhenian Quaternary volcanic region. These wells are characterised by breakout data of good quality (A, B and C, according to World Stress Map quality ranking system). The results are in general agreement with the style of faulting derived from earthquake focal mechanisms and other stress indicators. Our results show a predominance of a normal faulting (NF) regime in the inner Apennines and both normal faulting and strike–slip faulting (SS) style in the surrounding regions, possibly also associated with changes in the tectonic regime with depth.  相似文献   

5.
晚中生代—新生代构造体制转换与鄂尔多斯盆地改造   总被引:13,自引:15,他引:13       下载免费PDF全文
鄂尔多斯盆地是叠加在华北古生代克拉通台地之上的中生代大型陆内盆地。晚中生代—新生代是鄂尔多斯盆地重要的改造阶段,区域构造体制经历了重大转换,在盆地周缘形成不同方向和不同样式的构造带。其中发生在中、晚侏罗世时期的燕山运动主幕,对鄂尔多斯盆地的定型和发展具有划时代意义,这期构造变动导致鄂尔多斯盆地周缘挤压逆冲构造带的形成。早白垩世时期,对区域构造应力体制转换的响应,鄂尔多斯盆地处于弱引张构造环境,引张构造变形主要集中在盆地西南缘地带,六盘山古地堑发育。新生代时期,构造变形主要发生在鄂尔多斯盆地周缘,形成一系列地堑盆地。晚中新世或上新世以来的新构造运动时期,受到青藏高原快速隆升和向东构造挤出作用的影响,鄂尔多斯盆地西南缘六盘山褶皱带快速崛起,而在盆地的其他周边地带则发生引张变形和地块差异性升降。最后,笔者论述了不同构造应力体制下盆地的改造作用,讨论了鄂尔多斯盆地研究中的一些基础地质构造问题。  相似文献   

6.
A synthesis is given in this paper on late Mesozoic deformation pattern in the zones around the Ordos Basin based on lithostratigraphic and structural analyses. A relative chronology of the late Mesozoic tectonic stress evolution was established from the field analyses of fault kinematics and constrained by stratigraphic contact relationships. The results show alternation of tectonic compressional and extensional regimes. The Ordos Basin and its surroundings were in weak N-S to NNE-SSW extension during the Early to Middle Jurassic, which reactivated E-W-trending basement fractures. The tectonic regime changed to a multi-directional compressional one during the Late Jurassic, which resulted in crustal shortening deformation along the marginal zones of the Ordos Basin. Then it changed to an extensional one during the Early Cretaceous, which rifted the western, northwestern and southeastern margins of the Ordos Basin. A NW-SE compression occurred during the Late Cretaceous and caused the termination of sedimentation and uplift of the Ordos Basin. This phased evolution of the late Mesozoic tectonic stress regimes and associated deformation pattern around the Ordos Basin best records the changes in regional geodynamic settings in East Asia, from the Early to Middle Jurassic post-orogenic extension following the Triassic collision between the North and South China Blocks, to the Late Jurassic multi-directional compressions produced by synchronous convergence of the three plates (the Siberian Plate to the north, Paleo-Pacific Plate to the east and Lhasa Block to the west) towards the East Asian continent. Early Cretaceous extension might be the response to collapse and lithospheric thinning of the North China Craton.  相似文献   

7.
We present the results of a thrust fault reactivation study that has been carried out using analogue (sandbox) and numerical modelling techniques. The basement of the Pannonian basin is built up of Cretaceous nappe piles. Reactivation of these compressional structures and connected weakness zones is one of the prime agents governing Miocene formation and Quaternary deformation of the basin system. However, reactivation on thrust fault planes (average dip of ca. 30°) in normal or transtensional stress regimes is a problematic process in terms of rock mechanics. The aim of the investigation was to analyse how the different stress regimes (extension or strike-slip), and the geometrical as well as the mechanical parameters (dip and strike of the faults, frictional coefficients) effect the reactivation potential of pre-existing faults.

Results of analogue modelling predict that thrust fault reactivation under pure extension is possible for fault dip angle larger than 45° with normal friction value (sand on sand) of the fault plane. By making the fault plane weaker, reactivation is possible down to 35° dip angle. These values are confirmed by the results of numerical modelling. Reactivation in transtensional manner can occur in a broad range of fault dip angle (from 35° to 20°) and strike angle (from 30° to 5° with respect to the direction of compression) when keeping the maximum horizontal stress magnitude approximately three times bigger than the vertical or the minimum horizontal stress values.

Our research focussed on two selected study areas in the Pannonian basin system: the Danube basin and the Derecske trough in its western and eastern part, respectively. Their Miocene tectonic evolution and their fault reactivation pattern show considerable differences. The dominance of pure extension in the Danube basin vs. strike-slip faulting (transtension) in the Derecske trough is interpreted as a consequence of their different geodynamic position in the evolving Pannonian basin system. In addition, orientation of the pre-existing thrust fault systems with respect to the Early to Middle Miocene paleostress fields had a major influence on reactivation kinematics.

As part of the collapsing east Alpine orogen, the area of the Danube basin was characterised by elevated topography and increased crustal thickness during the onset of rifting in the Pannonian basin. Consequently, an excess of gravitational potential energy resulted in extension (σv > σH) during Early Miocene basin formation. By the time topography and related crustal thickness variation relaxed (Middle Miocene), the stress field had rotated and the minimum horizontal stress axes (σh) became perpendicular to the main strike of the thrusts. The high topography and the rotation of σh could induce nearly pure extension (dip-slip faulting) along the pre-existing low-angle thrusts. On the contrary, the Derecske trough was situated near the Carpathian subduction belt, with lower crustal thickness and no pronounced topography. This resulted in much lower σv value than in the Danube basin. Moreover, the proximity of the retreating subduction slab provided low values of σh and the oblique orientation of the paleostress fields with respect to the master faults of the trough. This led to the dominance of strike-slip faulting in combination with extension and basin subsidence (transtension).  相似文献   


8.
开滦矿区唐山矿位于开平向斜北西翼,隶属燕山南麓赋煤构造带,由北向南依次发育FI、FII、FIII、FIV、FV主断层,地质构造复杂,控制了井田构造格局。基于钻孔和矿井地质资料,以构造规律解析为基础,结合平衡剖面技术,探讨了唐山矿现今构造特征及构造演化期次。研究结果显示:唐山矿主体构造形成于燕山期NW-SE向的挤压应力作用,动力来源为库拉-太平洋板块与欧亚大陆的相互挤压作用;喜马拉雅期,由于库拉-太平洋板块淹没于欧亚大陆之下,唐山矿受到NW-SE向的拉张应力作用,形成了一系列小型正断层,并导致FI逆断层发生构造反转而变为正断层;利用平衡剖面技术恢复了唐山矿构造演化过程,得到唐山矿地层缩短率为27.3%。   相似文献   

9.
地应力、煤储层渗透率和煤储层压力等是影响煤层气开发的重要因素。通过分析新疆库拜煤田铁列克矿区注入/压降试井及原地应力测试数据,结合铁列克矿区煤层气井日产气量分析,研究了新疆库拜煤田铁列克矿区地应力变化规律及其对煤层气开发的影响,分析了铁西矿区和铁东矿区煤储层地应力特征及其对煤储层物性的影响。结果表明:(1)地应力状态在垂向上发生变化,埋深处于550~650 m、650~850 m和850~1 200 m时,地应力状态类型依次为σH>σv>σhσHσv>σhσv>σH>σh;(2)埋深850 m处既是垂直主应力和最大水平主应力的转换点也是渗透率趋势变化点,指示了地应力对渗透率的控制作用;(3)渗透率和煤储层压力与地应力分别呈负相关和正相关关系;(4)地应力对产能的负效应大于地应力对产能的正效应,使典型日产气量随着地应力的增大而减小;(5)铁西矿区和铁东矿区中部煤储层碎粒煤较发育、吸附孔体积和含气量均较大,是煤层气开发的有利区带。研究成果可为库拜煤田下一步煤层气开发提供理论指导。  相似文献   

10.
藏东江达构造带形成演化与成矿   总被引:2,自引:0,他引:2  
江达构造带源自洋-陆作用的岛弧体制,从晚三叠世以前起经历了陆-陆碰撞焊合、陆内裂谷、陆内造山等多种构造体制的转换,随着印度-欧亚板块的大规模、全面碰撞,陆内裂谷夭折,进入新生代碰撞造山的新阶段。江达构造带在其经历三种体制下都有成矿作用发生,构成三个各具特色的成矿体系。三个成矿体系在同一构造带中历史地叠合,有机组合成一个多元复合的成矿系统,主要的成矿作用发生在陆内裂谷期。  相似文献   

11.
燕山运动与东亚构造体制的转变   总被引:92,自引:7,他引:85  
构造体制转变的本质是动力学体系的转变。东亚构造体制的转变是从一个汇聚碰撞的动力学体系转变为一个活动大陆边缘的动力学体系。其核心问题是古太平洋板块开始向新生的亚洲大陆下俯冲。在这一独特的动力学体系转变过程中 ,产生了陆缘俯冲消减增生杂岩带 ,火山弧和相关的表壳变形等一系列标志。文中强调以自然的、显著的、易于识别的标志———火山弧的出现代表东亚构造域动力学体系的转变 ;指出翁文灏命名的燕山运动A幕———髫髻山组火山岩下的不整合 ( ( 16 0± 5 )Ma前 )和B幕———张家口组火山岩下的不整合 ( ( 13 5± 1)Ma前 )代表这一转变。也就是说 ,燕山运动是东亚构造体制转变的产物 ,其出现有着深刻的地球动力学背景  相似文献   

12.
雪峰造山带位于江南造山带西南段,是研究和认识华南构造演化的重要窗口.本文在对雪峰造山带北段灰山港地区的构造变形特征系统调查的基础上,探讨了构造变形体制、成因机制和加里东运动及印支运动构造线方向横向变化的成因.调查发现,区内存在两个角度不整合面,据此划分3个构造层,即加里东构造层(Nh~S1)、海西-印支构造层(D2~P...  相似文献   

13.
Jun Deng    Liqiang Yang    Bangfei Gao    Zhongshi Sun    Chunying Guo    Qingfei Wang    Jianping Wang 《Resource Geology》2009,59(2):140-152
The Jiapigou gold belt, one of the most important gold-producing districts in China, is located in the northern margin of the North China Craton (NCC). The tectonic evolution of the gold belt is closely related to the Siberian Plate (SP) in the north, Yangtze Craton (YC) in the south and Pacific Plate in the east. In order to investigate the nature of the tectono-fluid-metallogenic system, the authors investigated the relationships among the tectonic regimes, fluid evolution and metallogenesis. This paper examined the corresponding spatial–temporal relationship between the ore-controlling tectonic regime and hydrothermal fluid evolution in the Jiapigou gold belt. There are two types of gold mineralization: disseminated ores that are distributed within the NW-trending main ductile shear zone and gold-bearing quartz veins and minor disseminated ores that are distant to the ductile shear zone. The fluid inclusions in quartz contain a large amount of CO2. Metamorphic fluids of middle to high temperatures and pressures and meteoric waters of low temperatures and pressures mixed together during mineralization. A proposed ore-forming model is as follows: in the pre-ore phase, the collision of SP and NCC resulted in the NS-trending compression of the ore belt. This formed the NE-trending and NW-trending shear faults and EW-trending folds. During the ore-forming phase, the collision of YC and NCC resulted in dextral shearing of the NW-trending Jiapigou fault and the NE-trending Green faults. High-pressure fluids caused by the compression flowed into the dilatant zone. This may have caused both phase separation of CO2-bearing fluids and the mixing of meteoric waters, metamorphic waters and magmatic source fluids and finally resulted in the disequilibrium of the ore fluids and precipitation of ore minerals.  相似文献   

14.
长江中下游及其邻区中生代构造体制转换   总被引:16,自引:13,他引:3  
长江中下游及其邻区中生代以来经历了特提斯、古亚洲、太平洋三大构造体制复杂的转换过程,地壳活动频繁,不同期次、不同方向、不同性质的构造叠加强烈,并控制了区内的岩浆活动和热液成矿。(1)印支晚期特提斯构造体制作用,具有俯冲带性质的襄樊-广济断裂带和先后具有左旋平移转换断层性质的郯庐断裂带产生。(2)燕山早期特提斯构造体制向古亚洲构造体制和太平洋构造体制转换,其一,晚侏罗世古亚洲构造体制近南北向挤压,桐柏-大别造山带形成共轭剪切带。其二,晚侏罗世与早白垩世之交古太平洋板块活动,NE向展布的华南板内构造形成。(3)燕山晚期脉动式伸展构造产生大规模火山喷发和岩浆活动;晚白垩世-始新世长江中下游地区盆-岭构造形成。(4)喜马拉雅早期太平洋构造体制下近E-W向挤压作用,近S-N向展布的红色盆地发生反转,呈NE-SW向线状展布。  相似文献   

15.
南冈底斯岩浆岩带出露的一套早—中侏罗世火山-沉积建造经历了多期构造变形,致使这套火山-沉积层序发生了强烈的面理置换,形成了典型的构造-岩石地层。依据造山带地层划分方法将叶巴火山弧厘定为叶巴岩群,并根据内部岩性组合特征和构造变形特征将其进一步划分为邦堆岩组、叶巴岩组、甲玛岩组。运用构造解析原理划分了3期构造变形事件。第一期构造变形为脆-韧性剪切变形,剪切方式为纯剪占优的一般剪切变形,透入性面理S1普遍置换层理S0(S1∥S0),伴生倾伏向85°~100°陡倾的拉伸线理,运动学指示顶面朝西运动,存在左行和右行两个方向的剪切旋转碎斑共存的现象;EBSD实验结果显示变形的温度≤380 ℃,石英颗粒细粒化明显,重结晶方式为亚颗粒旋转重结晶;40Ar-39Ar年代学结果表明该期构造变形时代约为79 Ma,其可能代表新特提斯洋板片低角度(平板式)俯冲引起在弧后挤压背景下形成的挤出构造。第二期构造变形表现为S1面理发生纵弯褶皱变形形成的轴面劈理S2,轴面产状倾向北或南,倾角40°~70°,枢纽向西或北西西倾伏;结合区域地质演化特征,认为其可能是在晚白垩世(79~68 Ma)南北向持续的挤压应力条件下,南冈底斯弧后盆地整体向上挤出,引发上地壳缩短、加厚进而导致褶皱作用的发生。第三期主要为浅层次膝折构造和近东西向正断层,最大主压应力方向为铅直向,最小主压应力方向(伸展方向)为近南北向;结合区域构造演化特征,认为该期变形可能代表渐新世末—中新世初期(23.74~21.1 Ma),印度岩石圈或青藏高原岩石圈或两者组合的拆沉作用引起冈底斯岩基隆升(主要动力学机制)和GCT活动并共同作用导致近南北向伸展滑覆事件发生。  相似文献   

16.
通过对北大港构造带东翼对油气运聚影响较大的华北期(52~23.5 Ma)进行应力场模拟,结果表明,华北期构造运动的最大主压应力方向为近ESE向。华北期构造运动在北大港构造带东翼的构造剪应力值分布在18~42 MPa,大多分布在22~32 MPa,而在22~25 MPa间有较明显的梯度带,塑性变形后应力释放处,为构造裂缝发育区带。构造裂缝发育区NEE向的断层与华北期构造应力方向之间的夹角较小,开启性较好,有可能成为油气运移和聚集部位,但是也有可能成为油气散失的部位。结合现今构造应力场的模拟结果,综合分析认为构造剪应力值在22~25 MPa的构造发育区带内的ESE向的裂缝发育区带可能形成较好的油气藏,而ENE向的裂缝发育带则易成为现代油气散失的部位。  相似文献   

17.
In this study, we address the late Miocene to Recent tectonic evolution of the North Caribbean (Oriente) Transform Wrench Corridor in the southern Sierra Maestra mountain range, SE Cuba. The region has been affected by historical earthquakes and shows many features of brittle deformation in late Miocene to Pleistocene reef and other shallow water deposits as well as in pre-Neogene, late Cretaceous to Eocene basement rocks. These late Miocene to Quaternary rocks are faulted, fractured, and contain calcite- and karst-filled extension gashes. Type and orientation of the principal normal palaeostress vary along strike in accordance with observations of large-scale submarine structures at the south-eastern Cuban margin. Initial N–S extension is correlated with a transtensional regime associated with the fault, later reactivated by sinistral and/or dextral shear, mainly along E–W-oriented strike-slip faults. Sinistral shear predominated and recorded similar kinematics as historical earthquakes in the Santiago region. We correlate palaeostress changes with the kinematic evolution along the boundary between the North American and Caribbean plates. Three different tectonic regimes were distinguished for the Oriente transform wrench corridor (OTWC): compression from late Eocene–Oligocene, transtension from late Oligocene to Miocene (?) (D1), and transpression from Pliocene to Present (D2–D4), when this fault became a transform system. Furthermore, present-day structures vary along strike of the Oriente transform wrench corridor (OTWC) on the south-eastern Cuban coast, with dominantly transpressional/compressional and strike-slip structures in the east and transtension in the west. The focal mechanisms of historical earthquakes are in agreement with the dominant ENE–WSW transpressional structures found on land.  相似文献   

18.
东北亚大地构造发展经历了古亚洲洋、蒙古—鄂霍茨克洋和古太平洋的俯冲-碰撞作用。如何鉴别和厘定这三种构造体制的时空影响范围和叠合过程一直是一个难题。本文通过巨型岩浆岩带的建库编图,揭示了该地区晚古生代—中生代岩浆岩的时空迁移规律;据此,探讨和厘定了这三大板块构造体制的时空分布范围和构造叠合过程。二叠纪到三叠纪早期间,古亚洲洋体制经历了俯冲到碰撞,主要作用于阿拉善—华北北缘—大兴安岭一带;期间,鄂霍茨克洋主要为陆缘环境,影响范围限于中北部蒙古—外贝加尔一带,并在侏罗纪逐渐向蒙古—鄂霍茨克主缝合带迁移,到白垩纪,其造山带伸展垮塌阶段,影响范围增大,远程效应波及阿拉善—华北北缘—大兴安岭一带,叠加于古亚洲洋体制产物之上。古太平洋构造体制主要发育于三叠纪—侏罗纪时期,其平板俯冲影响范围抵达大兴安岭—太行山,在白垩纪,俯冲板片后撤,影响范围迁移至东亚大陆最东缘。这些作用叠加于古亚洲洋体制产物之上;并与蒙古—鄂霍茨克洋体制同时叠合于大兴安岭一带。  相似文献   

19.
The Highland Boundary Fault Zone (HBFZ) is one of the major faulted tectonic boundaries in Great Britain. Historically, seismicity has occurred in this zone around the town of Comrie. But an earthquake sequence that occurred in 2003 near the village of Aberfoyle (ML 1.3–3.2) was the first significant activity to be recorded in the HBFZ since the installation of modern seismograph networks in the 1970s. This study describes detailed analysis of these data. The waveform signals of the events were almost identical and by applying a cross-correlation technique combined with multiple event location, the alignment of the events was found to be WSW–ENE. This alignment matches one of the nodal planes determined by joint focal mechanism analysis. The fault plane dips to the northwest, and shows oblique sinistral strike–slip with normal movement. The orientation of the event alignment matches the direction and orientation of observed features in the HBFZ. Hence, it is concluded that the WSW–ENE striking nodal plane was the causative fault that is associated with the HBFZ. The orientation of maximum compressional stress is rotated from the regional average expected due to the Mid-Atlantic ridge-push force. This rotation is possibly explained by stresses due to postglacial rebound. Smaller events in the sequence were used as empirical Green's functions and deconvolved from the larger events to determine source time functions. The corresponding corner frequencies matched results from spectral fitting, showing that the events were of relatively low stress drop.  相似文献   

20.
实测地应力状态在连续地震事件前后的变化特征,对于应用地应力实测数据探索开展地震预报等研究有重要意义,但一直以来缺少典型实例研究。以龙门山断裂带西南段的跷碛和映秀地区为研究区,利用该地区汶川地震前至芦山地震后获得的地应力实测数据,分析了表征地应力状态的特征参数在汶川和芦山地震事件前后变化特征,探讨了其对地震预报研究的意义。研究表明,跷碛地区地应力状态特征参数KHV、KHh和μm变化表现为芦山地震后值(QQ-14)大于汶川地震前(QQ-99),QQ-99结果大于汶川地震后值(QQ-09),而主应力梯度系数变化为QQ-09>QQ-14>QQ-99;分析认为KHV、KHh和μm变化规律能准确反映汶川和芦山地震事件前后跷碛地区构造应力场演化特征,而仅用主应力随深度变化梯度系数变化特征,不能完全准确地反映构造应力场调整变化情况;映秀地区,除KHh外,主应力随深度变化梯度系数、KHV和μm均表现为汶川地震后结果大于震前,其变化反映的应力场调整变化特征需要补充数据检验;利用地应力状态参数变化规律开展地震预报探索研究时,长期的、可对比的高质量地应力测量数据是研究有所突破的关键。研究成果对于龙门山地区构造应力场和减灾防灾研究有重要意义,对于应用地应力数据探索开展地震预报研究等有参考价值。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号