首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This integrated study examines the implications of changes in crop water demand and water availability for the reliability of irrigation, taking into account changes in competing municipal and industrial demands, and explores the effectiveness of adaptation options in maintaining reliability. It reports on methods of linking climate change scenarios with hydrologic, agricultural, and planning models to study water availability for agriculture under changing climate conditions, to estimate changes in ecosystem services, and to evaluate adaptation strategies for the water resources and agriculture sectors. The models are applied to major agricultural regions in Argentina, Brazil, China, Hungary, Romania, and the US, using projections of climate change, agricultural production, population, technology, and GDP growth.For most of the relatively water-rich areas studied, there appears to be sufficient water for agriculture given the climate change scenarios tested. Northeastern China suffers from the greatest lack of water availability for agriculture and ecosystem services both in the present and in the climate change projections. Projected runoff in the Danube Basin does not change substantially, although climate change causes shifts in environmental stresses within the region. Northern Argentina's occasional problems in water supply for agriculture under the current climate may be exacerbated and may require investments to relieve future tributary stress. In Southeastern Brazil, future water supply for agriculture appears to be plentiful. Water supply in most of the US Cornbelt is projected to increase in most climate change scenarios, but there is concern for tractability in the spring and water-logging in the summer.Adaptation tests imply that only the Brazil case study area can readily accommodate an expansion of irrigated land under climate change, while the other three areas would suffer decreases in system reliability if irrigation areas were to be expanded. Cultivars are available for agricultural adaptation to the projected changes, but their demand for water may be higher than currently adapted varieties. Thus, even in these relatively water-rich areas, changes in water demand due to climate change effects on agriculture and increased demand from urban growth will require timely improvements in crop cultivars, irrigation and drainage technology, and water management.  相似文献   

2.
This paper evaluates the role of trade as a mechanism of economic adjustment to the impacts of climate change on agriculture. The study uses a model of the world economy able to reflect changes in comparative advantage; the model is used to test the hypotheses that trade can assure that, first, satisfying global agricultural demand will not be jeopardized, and, second, general access to food will not decrease. The hypotheses are tested for three alternative scenarios of climate change; under each scenario, regions adjust to the climatic assumptions by changing the land areas devoted to agriculture and the mix of agricultural goods produced, two of the major mechanisms of agricultural adaptation. We find that trade makes it possible to satisfy the world demand for agricultural goods under the changed physical conditions. However, access to food decreases in some regions of the world. Other patterns also emerge that indicate areas of concern in relying on trade as a mechanism for the adjustment of agriculture to likely future changes in climate.  相似文献   

3.
This study applies the Ricardian technique to estimate the effect of climate change on the smallholder agriculture sector in Sri Lanka. The main contribution of the paper is the use of household-level data to analyze long-term climate impacts on farm profitability. Household-level data allows us to control for a host of factors such as human and physical capital available to farmers as well as adaptation mechanisms at the farm level. We find that non-climate variables explain about half the variation in net revenues. However, our results suggest that climate change will have a significant impact on smallholder profitability. In particular, reductions in precipitation during key agricultural months can be devastating. At the national level, a change in net revenues of between −23% and +22% is likely depending on the climate change scenario simulated. These impacts will vary considerably across geographic areas from losses of 67% to gains that more than double current net revenues. The largest adverse impacts are anticipated in the dry zones of the North Central region and the dry zones of the South Eastern regions of Sri Lanka. On the other hand, the intermediate and wet zones are likely to benefit, mostly due to the predicted increase in rainfall.  相似文献   

4.
IPCC特别报告SRCCL关于气候变化与粮食安全的新认知与启示   总被引:3,自引:0,他引:3  
气候变化对粮食安全的影响是广泛的,不但影响粮食产量和品质,还会影响到农户的生计以及农业相关的产业发展等;而粮食系统在保障粮食安全的同时,又会产生一系列的环境问题,其中农业源温室气体(GHG)的排放加剧全球变暖。IPCC在2019年8月份发布的《气候变化与土地特别报告》(SRCCL),从粮食生产、加工、储存、运输及消费的各个环节评估气候变化对粮食安全的影响及粮食系统的温室气体排放对气候系统的影响;系统梳理粮食系统供给侧和需求侧的适应与减缓措施、适应与减缓的协同和权衡问题,以及气候变化条件下保障粮食安全的政策环境等。SRCCL评估结论认为,由于大量施用氮肥和消耗水资源,目前粮食系统GHG排放占全球总排放的21%~37%;农业和粮食系统是全球应对气候变化的重要方面,供给侧和需求侧的综合措施可以减少食物浪费、减少GHG排放、增加粮食系统的恢复力。未来工作的重点应丰富和扩展气候变化影响评估内容,量化适应效果,加深对适应、减缓及其协同和权衡的科学认知,大力加强应对气候变化能力建设。  相似文献   

5.
Various frameworks related to climate change and adaptations that have been developed to date have notable benefits as well as significant limitations. It is not always practical to implement advanced climate change frameworks in situations with limited data availability. Social aspects, such as people’s experience and perception, are often under-prioritized. Therefore, this study introduces an integrated framework linking social and physical aspects of climate change to assess its impacts on water resources and to evaluate differing adaptation options in poorly gauged basins. A case study of the Kali Gandaki River Basin (KGRB) in western Nepal is presented to demonstrate the applicability of this framework. Results of the study show that people of the mountainous Mustang district in the KGRB have perceived climate change or climate variability, its impacts on water resources, as well as other water-related issues and potential adaptations or responses. Furthermore, evaluation of people’s perception using available physical data confirms the increase in temperature and average annual discharge in the Kali Gandaki River as well as poor water use, as a major problem at all levels in the basin. Despite increasing water availability, a concurrent increase in water use is difficult due to topographic constraints on irrigation development. However, the impacts of climate change are particularly severe in Mustang, owing to the fact that a large proportion of the population depends on a climate-sensitive livelihood like agriculture. Therefore, various adaptation options are identified in the agricultural sector, and one relevant option is further evaluated. The framework developed in this study has the potential to be further applied to other poorly gauged basins.  相似文献   

6.
Prediction of the effects of external influences such as climate change on wetland systems requires the prediction of hydrologic effects. Because wetland soils are typically heterogeneous, it is particularly important to understand the extent and connectedness of hydraulically conductive soil units, since water flow may be concentrated in such units while bypassing others of lower conductivity. However, subsurface hydrologic models typically do not represent heterogeneity adequately, being limited by sparse parameterization of soil properties. Conventional techniques for mapping units of soil within wetlands are highly laborious, requiring soil coring and laboratory testing. As an alternative, we developed a portable piezocone driver and highly sensitive piezocone designed to map wetland soil units with centimeter-scale resolution in the vertical and meter-scale resolution in the horizontal dimension. This system successfully delineated several different layers of peat, sand, and limnetic sediments, and their degree of interconnectedness in an eight-meter-thick peat deposit. Monitoring of wetland response to precipitation, changes in stream stage, and overbank flooding was then used in conjunction with the piezocone data and a two-dimensional flow model to constrain the hydraulic properties of the soil units. Thus parameterized, a standard subsurface flow model was able to realistically simulate a variety of hydrologic processes relevant to climate change, including wetland-stream water exchange, the movement of wetland porewaters to the root zone of plants, and wetland desaturation under dry conditions.  相似文献   

7.
Research on climate change and agriculture has largely focused on production, food prices, and producer incomes. However, societal interest in agriculture is much broader than these issues. The objective of this paper is to analyze the potential impacts of climate change on an important negative externality from agriculture, water quality. We construct a simulation model of maize production in twelve watersheds within the U.S. Chesapeake Bay Region that has economic and watershed components linking climate to productivity, production decisions by maize farmers, and nitrogen loadings delivered to the Chesapeake Bay. Maize is an important crop to study because of its importance to the region's agriculture and because it is a major source of nutrient pollution. The model is run under alternative scenarios regarding the future climate, future baseline (without any climate change), whether farmers respond to climate change, whether there are carbon dioxide (CO2) enrichment effects on maize production, and whether agricultural prices facing the region change due to climate change impacts on global agricultural commodity markets. The simulation results differ from one scenario to another on the magnitude and direction of change in nitrogen deliveries to the Chesapeake Bay. The results are highly sensitive to the choice of future baseline scenario and to whether there are CO2 enrichment effects. The results are also highly sensitive to assumptions about the impact of climate change on commodity prices facing farmers in the Chesapeake Bay region. The results indicate that economic responses by farmers to climate change definitely matter. Assuming that farmers do not respond to changes in temperature, precipitation, and atmosphericCO2 levels could lead to mistaken conclusions about the magnitude and direction of environmental impacts.  相似文献   

8.
U.S. Country Studies supported analyses of climate change impacts on water resources have been completed or are underway in the following Central and Eastern European nations: Czech Republic, Slovakia, Poland, Romania, Estonia, Russian Federation, and the Ukraine. Climate change impacts on the hydrologic resources of these countries is being performed at the river basin scale using monthly water balance models using GCM-based climate scenarios. The authors have performed a regional analysis of climate change impacts on the Hydrologic Resources of Europe using the Turc Annual Model. The regional analysis was done with GIS methodolgies using regional climate databases. The regional results were compared to the U.S. Country Studies hydrologic assessmnent results to validiate the use of this simplified methodolgy for making regional climate change assessment. Results from three countries showed acceptable performace of the annual approach . Using GCM-based climate scenarios regional analysis of potential climate change impacts on the hydrologic resources of Europe was conducted and national and regional results are presented.  相似文献   

9.
Conclusion Studies that include moderate climate forecasts, farmer adaptation, carbon fertilization, and warm-loving crops tend to show that climate change will have only mild impacts on average global agricultural output and may even improve temperate agricultural production. On this point, recent studies yield strikingly consistent results. Of course, impact estimates still contain uncertainties. Key questions include how agriculture might change by 2060, how tropical and subtropical farming will be affected, and how effects will be distributed regionally. The most likely threat to agriculture from climate warming is regional damages in relatively poor areas that lack either the knowledge or the financial resources to adjust. Although it is not clear which regions will actually suffer, the ones that are most vulnerable lie predominantly in or near the tropics (IPCC, 1995). Nonetheless, on average, the factors discussed in this essay will help mitigate the impact of climate change on agriculture.The authors are grateful to the Electric Power Research Institute (EPRI) for financial support. We also wish to thank Richard Adams, Cynthia Rosenzweig, Kathleen Segerson, Joel Smith, Robert Unsworth and Thomas Wilson for their helpful comments. The authors alone are responsible for any remaining errors or omissions.  相似文献   

10.
A meta-modelling approach has been adopted to link simulations of low and high water flows with simulations of suitable climate space for a selection of fen and bog species with differing drought and flood tolerance. The linked meta-models were used to examine the impacts of socio-economic and climate change scenarios on wetlands in two contrasting regions of the UK. The hydrological model shows that low and high flows are sensitive to climate change and to the regional distribution of abstractions and discharges. Where there are large changes in urbanisation, flows are more sensitive to socio-economic change. The changes in high flows have little impact on the species selected, but changes in low flows result in a number of areas becoming marginal or unsuitable due to dryness. At the regional scale, adaptation options appear to be limited and mostly involve, for surface water-influenced wetlands, increased water imports (either directly through increased non-consumptive water demand or indirectly through river augmentation), which may not be consistent with the socio-economic scenario or be feasible. This paper shows, therefore, that changes in hydrological regime are important for the future of wetlands and that these may depend as much on the future socio-economic situation as the projected changes in climate.  相似文献   

11.
Wetlands are among the most valuable ecosystems in the world due to their delivery of ecosystem services (ES), but they are particularly vulnerable to drivers of land-use change. However, little is known about how different wetlands respond to drivers of land-use change and how that impacts their delivery of ES. After extreme floods hit Colombia in 2010–2011, negative impacts from these storms heightened the interest of Colombian policy-makers in understanding and recognizing the importance of wetlands. Here, we present a map with 19 wetland types for Colombia and assess the ES that these wetlands deliver and how those ES are impacted by drivers of land-use change. We based our spatial analysis on the Corine Land Cover data for Colombia and combined that with spatial indices derived from knowledgeable experts using the matrix approach and participatory mapping (PGIS). The most vulnerable wetland types identified were floodplain forests, riparian wetlands, freshwater lakes and rivers. The region of Magdalena-Cauca has been identified as the most vulnerable to the impacts of land-use change, until 2025. We discuss our results in light of the current Colombian policy-debate which concerns the designation of wetlands as strategic ecosystems. This designation implies necessary restrictions or prohibition of harmful activities in wetlands, principally mining and industrial agriculture.  相似文献   

12.
Invasive species and climate change: an agronomic perspective   总被引:2,自引:0,他引:2  
In the current review we wish to draw attention to an additional aspect of invasive species and climate change, that of agricultural productivity and food security. We recognize that at present, such a review remains, in part, speculative, and more illustrative than definitive. However, recent events on the global stage, particularly in regard to the number of food riots that occurred during 2008, even at a time of record harvests, have prompted additional interest in those factors, including invasive species, which could, through climatic uncertainty, alter food production. To that end, as agricultural scientists, we wish to begin an initial evaluation of key questions related to food production and climate change including: how vulnerable is agriculture to invasive species?; are current pest management strategies sufficient to control invasive outbreaks in the future?; what are the knowledge gaps?; can we provide initial recommendations for scientists, land managers and policy makers in regard to available resources? Our overall goals are to begin a synthesis of potential impacts on productivity, to identify seminal research areas that can be addressed in future research, and to provide the scientific basis to allow agronomists and land managers to formulate mitigation and adaptation options regarding invasive species and climate change as a means to maintain food security.  相似文献   

13.
Climate Change and Agricultural Soils: Impacts and Adaptation   总被引:8,自引:1,他引:7  
This article reviews the current state of knowledge on the response of soils to climate change, and the implications such changes have for agriculture. The article is based on the material reported in the IPCC second assessment report (Watson et al., 1996) and updated with more recent information, where appropriate. The review highlights the importance of understanding the dynamics of soil processes when addressing climate change impacts on agriculture. Rapid soil responses to climate change (e.g. soil water, organic carbon and erodibility) have been widely investigated and reported in the literature. However, it is important that longer-term processes (e.g. pedogenesis) are not ignored by the research community because these have potentially important implications for long-term agricultural land use and are often irreversible. The use of good land management practices, as currently understood, provides the best strategy for adaptation to the impact of climate change on soils. However, it appears likely that farmers will need to carefully reconsider their management options, and land use change is likely to result from different crop selections that are more appropriate to the changing conditions. Perhaps the greatest impact of climate change on soils will arise from climate-induced changes in land use and management.  相似文献   

14.
Climate change due to a doubling of the carbon dioxide in the atmosphere and its possible impacts on the hydrological cycle are a matter of growing concern. Hydrologists are specifically interested in an assessment of the impacts on the occurrence and magnitude of runoff, evapotranspiration, and soil moisture and their temporal and spatial redistribution. Such impacts become all the more important as they may also affect the water availability in the storage reservoirs. This paper examines the regional effects of climate change on various components of the hydrologic cycle viz., surface runoff, soil moisture, and evapotranspiration for three drainage basins of central India. Plausible hypothetical scenarios of precipitation and temperature changes are used as input in a conceptual rainfall-runoff model. The influences of climate change on flood, drought, and agriculture are highlighted. The response of hypothetical reservoirs in these drainage basins to climate variations has also been studied. Results indicate that the basin located in a comparatively drier region is more sensitive to climatic changes. The high probability of a significant effect of climate change on reservoir storage, especially for drier scenarios, necessitates the need of a further, more critical analysis of these effects.  相似文献   

15.
Climate change and increased atmospheric CO2 concentration can impact hydrological and nitrogen cycling at the catchment scale. The objective of this study is to assess these impacts in an intensive agricultural headwater catchment in western France. A calibrated and validated agro-hydrological model was driven by output of the climate model ARPEGE under the A1B emission scenario over 30-year simulation periods. Our study indicated that with climate warming and increased atmospheric CO2, the main trends in water balance were a decrease in annual actual evapotranspiration (AET), a decrease in annual discharge and wetland extent, and a decrease in spring and summer of groundwater recharge and soil-water content. Not considering the effects of increased atmospheric CO2 in the agro-hydrological model led to overestimating discharge decrease and underestimating AET decrease and wetland extent. Climate change could influence N cycling by increasing soil N mineralisation, increasing soil denitrification in wetlands and upstream areas, and decreasing NO3–N load to streams. Since wetlands appear to be sensitive to climate change, improving modelling to better predict their responses is an important issue, especially to help plan sustainable management of these vulnerable areas.  相似文献   

16.
The natural Australian landscape sustains a mosaic of wetlands that range from permanently wet to temporary. This diversity of wetland types and habitats provides for diverse biotic communities, many of which are specific to individual wetlands. This paper explores the prospects for southern Australian wetlands under modified water regime and salinity induced by climatic changes. Extended droughts predicted as a consequence of climate change (lower rainfall and higher temperatures) combined with human-induced changes to the natural hydrological regime will lead to reductions in the amount of water available for environmental and anthropogenic uses. Reduced runoff and river flows may cause the loss of some temporary wetland types that will no longer hold water long enough to support hydric communities. Species distributions will shift and species extinctions may result particularly across fragmented or vulnerable landscapes. Accumulation of salts in wetlands shift species-rich freshwater communities to species-poor salt tolerant communities. Wetlands will differ in ecological response to these changes as the salinity and drying history of each wetland will determine its resilience: in the short term some freshwater communities may recover but they are unlikely to survive and reproduce under long term increased salinity and altered hydrology. In the long term such salinized wetlands with altered hydrology will need to be colonized by salt tolerant species adapted for the new hydrological conditions if they are to persist as functional wetlands. As the landscape becomes more developed, to accommodate the need for water in a warmer drying climate, increasing human intervention will result in a net loss of wetlands and wetland diversity.  相似文献   

17.
Agricultural GHG mitigation policies are important if ambitious climate change goals are to be achieved, and have the potential to significantly lower global mitigation costs [Reisinger, A., Havlik, P., Riahi, K., van Vliet, O., Obersteiner, M., & Herrero, M. (2013). Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Climatic Change, 117, 677–690]. In the post-Paris world of ‘nationally determined contributions’ to mitigation, the prospects for agricultural mitigation policies may rest on whether they are in the national economic interest of large agricultural producers. New Zealand is a major exporter of livestock products; this article uses New Zealand as a case study to consider the policy implications of three global policy scenarios at the global, national and farm levels. Building on global modelling, a model dairy farm and a model sheep and beef farm are used to estimate the changes in profit when agricultural emissions are priced and mitigated globally or not, and priced domestically or not, in 2020. Related to these scenarios is the metric or GHG exchange rate. Most livestock emissions are non-CO2, with methane being particularly sensitive to the choice of metric. The results provide evidence that farm profitability is more sensitive to differing international policy scenarios than national economic welfare. The impact of the choice of metric is not as great as the impact of whether other countries mitigate agricultural emissions or not. Livestock farmers do best when agricultural emissions are not priced, as livestock commodity prices rise significantly due to competition for land from forestry. However, efficient farmers may still see a rise in profitability when agricultural emissions are fully priced worldwide.

Policy relevance

Exempting agricultural emissions from mitigation significantly increases the costs of limiting warming to 2 °C, placing the burden on other sectors. However, there may be a large impact on farmers if agricultural emissions are priced domestically when other countries are not doing the same. The impacts of global and national climate policies on farmers need to be better understood in order for climate policies to be politically sustainable. Transitional assistance that is not linked to emission levels could help, as long as the incentives to mitigate are maintained. In the long run, efficient farmers may benefit from climate policy; international efforts should focus on mitigation options and effective domestic policy development, rather than on metrics.  相似文献   

18.
Human appropriation of land for food production has fundamentally altered the Earth system, with impacts on water, soil, air quality, and the climate system. Changes in population, dietary preferences, technology and crop productivity have all played important roles in shaping today’s land use. In this paper, we explore how past and present developments in diets impact on global agricultural land use. We introduce an index for the Human Appropriation of Land for Food (HALF), and use it to isolate the effects of diets on agricultural land areas, including the potential consequences of shifts in consumer food preferences. We find that if the global population adopted consumption patterns equivalent to particular current national per capita rates, agricultural land use area requirements could vary over a 14-fold range. Within these variations, the types of food commodities consumed are more important than the quantity of per-capita consumption in determining the agricultural land requirement, largely due to the impact of animal products and in particular ruminant species. Exploration of the average diets in the USA and India (which lie towards but not at global consumption extremes) provides a framework for understanding land use impacts arising from different food consumption habits. Hypothetically, if the world were to adopt the average Indian diet, 55% less agricultural land would be needed to satisfy demand, while global consumption of the average USA diet would necessitate 178% more land. Waste and over-eating are also shown to be important. The area associated with food waste, including over-consumption, given global adoption of the consumption patterns of the average person in the USA, was found to be twice that required for all food production given an average Indian per capita consumption. Therefore, measures to influence future diets and reduce food waste could substantially contribute towards global food security, as well as providing climate change mitigation options.  相似文献   

19.
自IPCC第四次评估报告以来,对城市和农村地区气候变化影响、脆弱性、适应和风险管理文献都在增加。第五次评估报告取得了进展。主要包括:气候变化风险、脆弱性与所受的影响在全球范围不同规模、不同经济水平和地理位置的城市中心均在增加。改善基本服务不足的状况以及建设有恢复力的基础设施系统,可以显著降低城市地区的脆弱性和暴露度,特别是对于风险和脆弱性最高的人群来说。气候变化对农村地区的主要影响将体现在对淡水供应、粮食安全和农业收入的影响等方面。发展中国家农村人口更容易遭受多种非气候压力,包括农业投入不足、土地与自然资源政策问题和环境退化。包括增加可再生能源的供给、鼓励生物燃料种植或发展中国家减少砍伐森林和森林退化而造成的碳排放(REDD+)项目等在内的气候政策,将对有些农村地区有重要的间接影响,既有正面的影响(增加就业机会),也有负面的影响(景观变化和稀有资源冲突增多)。  相似文献   

20.
Climate change impacts on global agriculture   总被引:1,自引:0,他引:1  
Based on predicted changes in the magnitude and distribution of global precipitation, temperature and river flow under the IPCC SRES A1B and A2 scenarios, this study assesses the potential impacts of climate change and CO2 fertilization on global agriculture. The analysis uses the new version of the GTAP-W model, which distinguishes between rainfed and irrigated agriculture and implements water as an explicit factor of production for irrigated agriculture. Future climate change is likely to modify regional water endowments and soil moisture. As a consequence, the distribution of harvested land will change, modifying production and international trade patterns. The results suggest that a partial analysis of the main factors through which climate change will affect agricultural productivity provide a false appreciation of the nature of changes likely to occur. Our results show that global food production, welfare and GDP fall in the two time periods and SRES scenarios. Higher food prices are expected. No matter which SRES scenario is preferred, we find that the expected losses in welfare are significant. These losses are slightly larger under the SRES A2 scenario for the 2020s and under the SRES A1B scenario for the 2050s. The results show that national welfare is influenced both by regional climate change and climate-induced changes in competitiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号