首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An assessment of water quality measurements during a long‐lasting low water period in the Elbe River is presented. Weekly samples were taken from May to December 2003 at a sampling site in the middle part of the Elbe River. For multivariate data analysis, 34 parameters of 46 samplings were considered. As a result of this analysis, 78% of the variance of the data set is explained by five factors. They can be assigned to the following latent variables: season (37.5%) > tributaries (12.7%) > re‐suspension (10.4%) > discharge (9.4%) > complexation (8.5%). For the investigated sampling site, two key processes were identified as dominating factors on the water quality during low water conditions. First, seasonal phytoplankton development caused changes in redox conditions with consequences for re‐solution of pollutants from sediments. Second, tributaries have a higher impact on the main stream, due to changes in mixing processes. Therefore, in addition to flood investigations, monitoring strategies, and management plans should be developed in order to survey changes in water quality during low water conditions.  相似文献   

2.
J. Pfannkuche  A. Schmidt 《水文研究》2003,17(10):1951-1963
Measurements of suspended particulate matter concentration and turbidity point towards the possibility of a site‐specific algorithm (SPM), relating SPM to nephelometric turbidity units (NTU). In this paper regression models are presented that account for changes in the relationship of SPM and NTU as a result of changes in particle properties. The models have been developed by the use of daily measurements of SPM concentration and a continuous record of turbidity for the period from June 1996 to February 2001 in the River Elbe, a major river in the eastern part of Germany. The effect of changes in the particle properties with increasing water discharge was taken into account by varying the slope of a linear regression equation according to a logistic function. Water discharge, Q, was defined to be the only variable of this function—as an adequate substitute of the parameter bottom shear stress, which cannot be measured directly. Measurements of flow velocity in the River Elbe show that bottom shear stress is related almost linearly to water discharge up to bankful discharges. Regression models with slopes varying continuously with hydraulic parameters may account for the effects resulting from changes of particle characteristics and thus may have some advantages compared with models with a constant slope or models calibrated for different seasons. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The reduction of pollution in the river Elbe since 1990 has resulted in changes in the processes taking place in the river. The heterotrophic degradation which dominated until 1990 was accompanied by a lack of oxygen, floating masses of sewage fungi, and sludge formation in the areas of still water. Since the early 1990s, autotrophic processes have come to dominate, with an increase in pH fluctuations and the oxygen production potential, but evidently not the chlorophyll level during the growing season. The degradable organic pollution of the Elbe is determined by algae production. The high levels of ammonium previously encountered in the Elbe were attributable to not only dischargers but also in particular the lack of oxygen in the water. Via heterotrophic nitrate assimilation, nitrate served as an oxygen reserve, resulting in high levels of nitrite. At present, when the oxygen contents are sufficient, the concentration reductions of nitrate and nitrite along the reach of the Elbe are approximately parallel, which in view of the lack of ammonium indicates the denitrification of microzones low in oxygen. The relative proportion of structurally bound substance turnover will become increasingly important for the Elbeπs material budget.  相似文献   

4.
Diffuse pollution is a significant and sometimes even major component of surface water pollution. Diffuse inputs of pollutants to the surface water are related to runoff of precipitation. This means that the analysis of diffuse pollutant fluxes from the land surface to the surface water requires an analysis of water fluxes. In this paper we have modelled the average long‐term total runoff, groundwater recharge index and groundwater residence times for two large European river basins (Rhine and Elbe). We applied and compared two independently developed and recently published methods. We found that with the available large‐scale databases and methods we could simulate successfully the regional patterns of the average long‐term total runoff. The reported groundwater recharge indices and groundwater residence times should be interpreted as estimates based on available knowledge and databases. They do not represent absolute values, but illustrate the possible travel times and spatial patterns of the different runoff components that have to be taken into account for the analysis of diffuse pollution at large regional and temporal scales. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Taking continuous spatiotemporal in situ measurements with multi‐probes in fast‐flowing waters/rivers can be problematic because the sensors may be damaged by high shear forces and flotsam. To protect the multi‐probe and to enable easy access for the maintenance and calibration of the sensors, a special multi‐probe holder fixed in a hydrographic slot was developed. The validation of the probe system revealed a “memory effect” at short time scales (< 10 s) within sharp gradients caused by the overflow container of the multi‐probe rack keeping the sensors submerged in the sample water. Continuously recorded data (conductivity, temperature, pH, oxygen concentration and saturation, as well as in vivo fluorescence of chlorophyll‐a) from a research cruise on board the RV ALBIS along the river Elbe (river km 309) and entering the river Saale are presented. This river stretch upstream of the city of Magdeburg to the mouth of the Saale tributary was found to have a complex physicochemical character, which is attributable to the long mixing process of water from the river Saale and the river Elbe.  相似文献   

6.
An assessment of water quality measurements during a spring flood in the Elbe River is presented. Daily samples were taken at a site in the middle Elbe, which is part of the network of the International Commission for the Protection of the Elbe River (IKSE/MKOL). Cluster analysis (CA), principal components analysis (PCA), and source apportionment (APCS apportioning) were used to assess the flood‐dependent matter transport. As a result, three main components could be extracted as important to the matter transport in the Elbe River basin during flood events: (i) re‐suspended contaminated sediments, which led to temporarily increased concentrations of suspended matter and of most of the investigated heavy metals; (ii) water discharge related concentrations of pedogenic dissolved organic matter (DOM) as well as preliminary diluted concentrations of uranium and chloride, parameters with stable pollution background in the river basin; and (iii) abandoned mines, i.e., their dewatering systems, with particular influence on nickel, manganese, and zinc concentrations.  相似文献   

7.
D. Markovic  M. Koch 《水文研究》2015,29(7):1806-1816
Hydrological processes commonly exhibit long‐term persistence, also known as the ‘Hurst phenomenon’. Here, we examine long‐term precipitation and streamflow time series from the Elbe River Basin to quantify differences in the spectral properties and in the Hurst parameter estimates () of the individual hydrological cycle components. Precipitation‐runoff modelling is performed for the Elbe River sub‐catchment Striegis using the Soil and Water Assessment Tool (SWAT). For 38 daily 50 years long streamflow time series from the Elbe River Basin, baseflow separation and spectral analysis is performed. The results show a spectral shift towards low‐frequency scales (>2 years) from precipitation to baseflow, with a parallel increase of from 0.52 (precipitation) to 0.65 (baseflow). The SWAT model is able to reproduce both, the main low‐frequency mode (≈7 yr.) and the (0.62) of the observed Striegis River flow time series. The baseflow appears to be the main component which shapes the low‐frequency response and of streamflow in the Elbe River Basin to the input precipitation. This conclusion is further confirmed through PMWIN‐MODFLOW groundwater modelling of a hypothetic phreatic stream‐connected aquifer system that consists of various soils (sand, loamy sand and silt). A power shift towards lower frequencies and an increase of for the hydraulic heads is obtained, as the aquifer's lateral dimensions increase and its hydraulic conductivity decreases. The average of the groundwater heads is 0.80, 0.90 and 1.0 for sand, loamy sand and silt aquifers, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A survey was conducted to determine the status of pollution of surficial sediments in the Elbe catchment area (Germany, Czech Republic) for the period 1992 to 1994. Chlorinated benzenes, PCBs, DDT and its metabolites, and HCH isomers were determined by GC/ECD following a simultaneous steam distillation-extraction procedure. Most of the investigated compounds showed increased concentration levels in sections of the Elbe or its main tributaries exceeding the target value II (quality criteria ARGE Elbe). Patterns of chlorinated hydrocarbons could be traced back from the Elbe into tributaries, and in some cases, links between patterns and inputs or long-term effects of former chemical production sites were supposed.  相似文献   

9.
10.
A back‐propagation algorithm neural network (BPNN) was developed to synchronously simulate concentrations of total nitrogen (TN), total phosphorus (TP) and dissolved oxygen (DO) in response to agricultural non‐point source pollution (AGNPS) for any month and location in the Changle River, southeast China. Monthly river flow, water temperature, flow travel time, rainfall and upstream TN, TP and DO concentrations were selected as initial inputs of the BPNN through coupling correlation analysis and quadratic polynomial stepwise regression analysis for the outputs, i.e. downstream TN, TP and DO concentrations. The input variables and number of hidden nodes of the BPNN were then optimized using a combination of growing and pruning methods. The final structure of the BPNN was determined from simulated data based on experimental data for both the training and validation phases. The predicted values obtained using a BPNN consisting of the seven initial input variables (described above), one hidden layer with four nodes and three output variables matched well with observed values. The model indicated that decreasing upstream input concentrations during the dry season and control of NPS along the reach during average and flood seasons may be an effective way to improve Changle River water quality. If the necessary water quality and hydrology data are available, the methodology developed here can easily be applied to other case studies. The BPNN model is an easy‐to‐use modelling tool for managers to obtain rapid preliminary identification of spatiotemporal water quality variations in response to natural and artificial modifications of an agricultural drainage river. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
I. Haag  B. Westrich 《水文研究》2002,16(16):3113-3130
The present study demonstrates the usefulness of principal component analysis in condensing and interpreting multivariate time‐series of water quality data. In a case study the water quality system of the lock‐regulated part of the River Neckar (Germany) was analysed, with special emphasis on the oxygen budget. Pooled data of ten water quality parameters and discharge, which had been determined at six stations along a 200 km reach of the river between the years 1993 and 1998, were subjected to principal component analysis. The analysis yielded four stable principal components, explaining 72% of the total variance of the 11 parameters. The four components could be interpreted confidently in terms of underlying processes: biological activity, dilution by high discharge, seasonal effects and the influence of wastewater. From analysing the data of single stations separately, these processes were found to be active throughout the complete reach. Considering the oxygen budget of the river, the variance of biological activity, representing the counteracting processes of primary production and microbial degradation, was found to be most important. This principal component explained 79% of the observed variance of oxygen saturation. In contrast, the analysis of a reduced data set from the 1970s showed that oxygen saturation was then dominated by discharge and temperature variations. The findings indicate that the oxygen budget used to be governed directly by the emission of degradable matter, whereas nowadays eutrophication is most important for extreme oxygen concentrations. Therefore, controlling eutrophication has to be the primary goal, in order to mitigate the rare episodes of pronounced oxygen over‐ and undersaturation in the future. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The main objectives of this study were to describe the seasonal standing stock dynamics of phytoplankton, bacterioplankton and heterotrophic flagellates in the highly eutrophic River Elbe (Germany), and to compare the seasonal patterns observed with other streams. Emphasis was placed on examining and assessing abiotic and biotic controlling factors influencing the structure and dynamics of the riverine plankton. All the physico-chemical and biological parameters determined were within the range or somewhat higher (in the case of phytoplankton abundance and biomass) than reported for other large streams. The underwater light conditions resulting from atypically short phytoplankton growth periods of about 6 months per year and the low phytoplankton carbon to chl a ratio of 23 were identified as a major limiting factor for phytoplankton development in the River Elbe. The seasonal distribution pattern of bacterioplankton indicated probable tight trophodynamical coupling both with phytoplankton and with heterotrophic flagellates, whereas heterotrophic flagellates showed a more trophic link with bacterial densities. Although approximately constant DOC and DON levels throughout the year sustained bacterial growth rates, during the phytoplankton growing season an increase of bacterial standing stocks was observed. Although the left-bank sampling site of the Elbe is strongly influenced by the tributaries Mulde and Saale containing higher concentrations of chloride, nitrogen nutrients, heavy metals and organic pollutants, no clear differences were observed between the two sides of the river concerning the biological parameters measured. Possible reasons and the slightly higher phytoplankton abundance and diversity at the right bank are discussed.  相似文献   

13.
S. Rehana  P. P. Mujumdar 《水文研究》2011,25(22):3373-3386
Analysis of climate change impacts on streamflow by perturbing the climate inputs has been a concern for many authors in the past few years, but there are few analyses for the impacts on water quality. To examine the impact of change in climate variables on the water quality parameters, the water quality input variables have to be perturbed. The primary input variables that can be considered for such an analysis are streamflow and water temperature, which are affected by changes in precipitation and air temperature, respectively. Using hypothetical scenarios to represent both greenhouse warming and streamflow changes, the sensitivity of the water quality parameters has been evaluated under conditions of altered river flow and river temperature in this article. Historical data analysis of hydroclimatic variables is carried out, which includes flow duration exceedance percentage (e.g. Q90), single low‐flow indices (e.g. 7Q10, 30Q10) and relationships between climatic variables and surface variables. For the study region of Tunga‐Bhadra river in India, low flows are found to be decreasing and water temperatures are found to be increasing. As a result, there is a reduction in dissolved oxygen (DO) levels found in recent years. Water quality responses of six hypothetical climate change scenarios were simulated by the water quality model, QUAL2K. A simple linear regression relation between air and water temperature is used to generate the scenarios for river water temperature. The results suggest that all the hypothetical climate change scenarios would cause impairment in water quality. It was found that there is a significant decrease in DO levels due to the impact of climate change on temperature and flows, even when the discharges were at safe permissible levels set by pollution control agencies (PCAs). The necessity to improve the standards of PCA and develop adaptation policies for the dischargers to account for climate change is examined through a fuzzy waste load allocation model developed earlier. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The stone crayfish Austropotamobius torrentium is the smallest native European crayfish, restricted to central and southeast Europe. Northeast boundary of its range is located within the Elbe basin but considerable uncertainties existed regarding its status in this area. Until recently, known stone crayfish populations in the Elbe basin were very scattered and human translocations have been implicated in such distribution pattern. Discoveries of additional populations in the Czech Republic and Saxony (east Germany) nevertheless suggest that the species may have been more widespread there. We provide data on genetic variation (based on 181 sequences of the mitochondrial COI gene) of 20 representative populations from the Elbe basin (both from the Czech Republic and Saxony). We tested whether the haplotype variation is consistent with a scenario of natural dispersal or whether long-range transport has been involved. All analysed individuals from the easternmost, geographically isolated Czech stone crayfish population carried a haplotype previously recorded only in Slovenia and its vicinity; it is therefore likely that such population has been introduced by humans. In contrast, all remaining studied populations were dominated by a haplotype widespread in adjacent regions of species’ distribution in Germany, and additional haplotypes differing by point mutations were occasionally detected. This is consistent with a scenario of a postglacial colonization from Bavaria (southeast Germany). Our study provides evidence for a double origin of stone crayfish populations in the upper Elbe basin, with both natural and anthropogenic factors likely affecting the present diversity and distribution of this species.  相似文献   

15.
The influence of land use patterns on water quality in a river system is scale‐dependent. In this study, a four‐order hierarchical arrangement method was used to select water sampling sites and to delineate sub‐basins in the Daliao River Basin, China. The 20 sub‐basins were classified into four spatial scales that represented four different stream orders. Pearson correlation analysis was used to quantify relationships between land use composition and the river's physical‐chemical variables for all samples collected. This analysis showed that the presence of forest cover was associated with higher water quality at the scale of the whole basin. The scale effects of land use patterns on water quality were then examined using stepwise multiple regression analysis that compared different land use types with water quality variables. The results from this analysis showed that urban areas, as opposed to forest areas, became the most significant contributors of water pollutants when scale effects were considered. The influence of urban land cover on water pollution was significantly higher at larger scales. The lack of a significant regression correlation for the forest land use type at smaller scales revealed that forest located upstream of the Daliao River Basin did not provide a buffer for improved water quality. Further analysis showed that this result could be because of disproportionate spatial distributions for forest and urban land use types. The topographic characteristics of sub‐basins, such as average slope (S) and size (A), were determined to be secondary explanatory variables that affected land use impacts on stream water quality. Areas with steep slopes were associated with increased water oxygenation, whereas areas with flatter slopes were associated with higher concentrations of pollutants. These results are significant because they can provide a better understanding of the appropriate spatial scale required for effective river basin management in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
D. Markovic  M. Koch 《水文研究》2014,28(4):2202-2211
Long‐term variations and temporal scaling of mean monthly time series of river flow, precipitation, temperature, relative humidity, air pressure, duration of bright sunshine, degree of cloud cover, short wave radiation, wind speed and potential evaporation within or in vicinity of the German part of the Elbe River Basin are analyzed. Statistically significant correlations between the 2–15 year scale‐averaged wavelet spectra of the hydroclimatic variables and the North Atlantic Oscillation‐ and Arctic Oscillation index are found which suggests that such long‐term patterns in hydroclimatic time series are externally forced. The Hurst parameter estimates (H) based on the Detrended Fluctuation Analysis (DFA) indicate persistence for discharge, precipitation, wind speed, air pressure and the degree of cloud cover, all having an annual cycle and a broad low‐frequency distribution. Also, DFA H parameter estimates are higher for discharge than for precipitation. The major long‐term quasi‐periodic variability modes of precipitation detected using Singular Spectrum Analysis coincide with those detected in the discharge time series. Upon subtraction of these low‐frequency quasi‐periodic modes, the DFA H parameter estimates suggest absence of the persistence for both precipitation and discharge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
From 1989 to 1992, the concentration of formaldehyde was measured along the Elbe estuary as well as at anchor stations. In mesocosm experiments, the turnover of formaldehyde could be investigated avoiding the variability caused by tidal advection of different water bodies. Formaldehyde concentrations in the Elbe estuary ranged from 0.5… 180 μg/L. As sources, a release by algae and microbial processes were identified. Three areas with different dominance of formaldehyde turnover processes were found in the estuary. In the limnic part of the estuary, a release of formaldehyde by algae was dominant. In the mixohaline zone and the turbidity maximum, bacterial degradation of organic matter increased the formaldehyde concentration. In the mouth of the estuary, the adjacent Wadden sea areas influenced the concentration due to formaldehyde-rich runoff from the tidal mud flats. In the other parts of the estuary, a fast degradation of formaldehyde kept the formaldehyde concentration at a low level. In sediment cores from the Elbe and a mesocosm, the formaldehyde concentrations were in the same range as in the water column. Mesocosms with and without sediment showed no significant differences in concentration levels which were similar to those measured in the Elbe at the same time. During the investigated period, no anthropogenic impacts of formaldehyde into the Elbe estuary could be detected.  相似文献   

18.
The river Elbe is a large eutrophic lowland river with high primary production and high phytoplankton biomass in the growing season. The objective of the study was to gain basic knowledge of the role of dead zones for phytoplankton distribution and the oxygen balance of the river Elbe. At two sampling stations water temperature, oxygen concentration, conductivity, pH value, turbidity, and chlorophyll fluorescence were measured with high precision to learn about the distribution of these parameters across the cross‐sections. The structures indicate differences in the intensity of physical and biological processes between the shallow waters near the shores, which are characterized by groyne fields, and the deep bulk flow. The conductivity clearly shows the high transverse mixing intensity in the groyne fields in contrast to the bulk flow. Groyne fields and the first, the groyne head near margin lamella of the bulk flow can be regarded as a unit. Groyne field results indicate higher primary production of phytoplankton, oxygen release, and higher pH. The turbidity of water entering the groyne fields decreases rapidly because of sedimentation within a short time. The groyne head lamella of the bulk flow sometimes shows higher chlorophyll fluorescence than the central lamella of the bulk flow and the water of the groyne field. The processes which contribute to the observed distribution are discussed, but could not yet be quantified. A modification of the dead zone model is proposed.  相似文献   

19.
The main regularities in the interaction of tides and storm surges at river mouths are discussed. A study of the Elbe River mouth area is used to describe the processes of interaction of the eustatic sea level rise, tides, surges, and river flow and special features of formation of maximum water levels. As shown, the intensification of cyclonic activity over the Northern Atlantic in the second half of the XX century resulted in more frequent extremely high storm surges at the Elbe River mouth. An assessment is given for possible changes in the regime of tides and surges at the Elbe River mouth in the XXI century, which may be caused by the acceleration of the eustatic sea level rise. The impact of local hydraulic engineering works (diking, dredging, and channel straightening) on maximum water levels within the town of Hamburg is analyzed.  相似文献   

20.
Lake‐water quality is highly dependent on the landscape characteristics in its respective watershed. In this study, we investigated the relationships between lake‐water quality and landscape composition and configuration within the watershed in the Yangtze River basin of China. Water quality variables, including pH, electrical conductivity (EC), dissolved oxygen (DO), Secchi depth (SD), NO2?, NO3?, NH4+, TN, TP, chemical oxygen demand (CODMn), chlorophyll‐a (Chl‐a), and trophic state index (TSI), were collected from 16 lakes during the period of 2001–2003. Landscape composition (i.e. the percentage of vegetation, agriculture, water, urban, and bare land) and landscape configuration metrics, including number of patches (NP), patch density (PD), largest patch index (LPI), edge density (ED), mean patch area (MPA), mean shape index (MSI), contagion (CONTAG), patch cohesion index (COHESION), Shannon's diversity index (SHDI), and aggregation index (AI), were calculated for each lake's watershed. Results revealed that the percentage of agriculture was negatively related to NO2?, TN, TP, Chl‐a concentrations, and TSI, while the percentage of urban was significantly correlated with EC, NH4+, and CODMn concentrations. Among landscape‐level configuration metrics, only ED showed significant relationships with TN, TP concentrations, and TSI. However, at the class level, the PD, LPI, ED, and AI of agriculture and urban land uses were significantly correlated with two or more water quality variables. This study suggests that, for a given total area, large and clustered agricultural or urban patches in the watershed may have a greater impact on lake‐water quality than small and scattered ones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号