首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
李超  刘少峰  白玉 《现代地质》2014,28(6):1213-1224
为了研究松辽盆地白垩纪裂后期沉降的动力机制,以松辽盆地南部长岭、十屋凹陷为例,用回剥法和应变速率反演方法对研究区钻井和地层剖面资料进行了研究。结果表明:观测得到的裂后沉降和模拟预测的理论裂后沉降结果存在较大差异,异常沉降量达160~800 m;并且异常沉降经历了两次沉降高峰期,分别出现在裂后期的泉头组及嫩江组沉积时期,平均沉降速率最大值出现在泉头组沉积时期,达16 m/Ma,同期地壳应变速率也达到裂后期最大值,约为6 Ga-1。该异常沉降除受到裂后期基底断裂和盆地小型正断层活动的小部分影响外,可能主要受控于中生代晚期Izanagi俯冲板片在松辽盆地深部的下拽作用及其诱发的深部地幔流动,属动力沉降。  相似文献   

2.
为了探究渤海湾盆地新生代沉降过程与西太平洋板块俯冲过程的对应关系,作者收集整理27口钻孔和1条地震地质 剖面数据,并运用回剥技术和应变速率反演方法,模拟出渤海湾盆地中北部裂陷期地壳应变速率变化,分离出裂后期异常 沉降。模拟获得裂陷期地壳应变速率曲线具有明显的三次大的波动,可指示三次构造沉降事件:裂陷Ⅰ幕(60~42 Ma),对 应于渤海湾盆地孔店组-沙四段沉积过程,平均构造沉降速率为4.6 m/Ma;裂陷Ⅱ幕(42~36 Ma),对应沙三段-沙二段沉 积过程,平均构造沉降速率为5.5~30.5 m/Ma;裂陷Ⅲ幕(36~24.6 Ma),对应于沙一段-东营组沉积过程,平均构造沉降速 率为14.7~54.7 m/Ma。研究区内裂后期观测构造沉降与模拟的理论值存在明显的差异,即存在异常沉降。盆地北部异常沉 降值在100~200 m,中部渤海海域异常沉降值在500~700 m,裂后期异常沉降向海域增大。作者推测渤海湾盆地裂后异常沉 降主要是太平洋板块俯冲诱发的深部地幔物质流动导致向下拖拽力引起的。因此,渤海湾盆地中异常沉降可能是一种动力 沉降。  相似文献   

3.
The Paleocene-recent post-rift subsidence history recorded in the Mumbai Offshore Basin off western continental margin of India is examined. Results obtained through 2-D flexural backstripping modelling of new seismic data reveal considerable thermo-tectonic subsidence over last ca. 56 Myr. Reverse postrift subsidence modelling with variable β stretching factor predicts residual topography of ca. 2000 m to the west of Shelf Margin Basin and fails to restore late Paleocene horizon and the underlying igneous basement to the sea level. This potentially implies that:(1) either the igneous basement formed during the late Cretaceous was emplaced under open marine environs; or(2) a laterally varying cumulative subsidence occurred within Mumbai Offshore Basin(MOB) during ca. 68 to ca. 56 Ma. Pre-depositional topographic variations at ca. 56 Ma across the basin could be attributed to the extensional processes such as varied lower crustal underplating along Western Continental Margin of India(WCMI). Investigations about basement tectonics after unroofing of sediments since late Paleocene from this region support a transitional and heavily stretched nature of crust with high to very high β factors. Computations of past sediment accumulation rates show that the basin sedimentation peaked during late Miocene concurrently with uplift of Himalayan-Tibetan Plateau and intensification of Indian monsoon system. Results from basin subsidence modelling presented here may have significant implications for further studies attempting to explore tectono-climatic interactions in Asia.  相似文献   

4.
琼东南盆地构造沉降的时空分布及裂后期异常沉降机制   总被引:2,自引:0,他引:2  
为考察琼东南盆地构造沉降的时空分布及裂后期异常沉降机制,利用回剥技术计算了盆内68口井的构造沉降史,并选择15口代表井进行拉张应变速率反演及拉张因子计算。结果表明:琼东南盆地构造沉降空间上表现为中央凹陷带和南部凹陷带强于北部凹陷带;时间上在裂陷期出现局部快速沉降-整体慢速沉降—局部快速沉降的阶段特征,进入裂后期逐渐减缓并在15.5~10.5Ma期间减至最低值,但自10.5~5.5Ma以来又明显增大。裂后期异常沉降在盆地东西部都有明显表现,在北部凹陷带较小,在中央凹陷带内往东区有逐渐增大趋势;时间上裂后异常构造沉降随时间增大,增长过程具有快-慢-快的阶段性。分析认为:裂后阶段早期的快速沉降可能是裂陷期非均匀拉张的结果,而晚中新世以后的快速构造沉降主要与岩浆活动有关。  相似文献   

5.
《Geodinamica Acta》2013,26(1-3):83-100
The Magura Basin domain developed in its initial stage as a Jurassic-Early Cretaceous rifted passive margin that faced the eastern parts of the oceanic Alpine Tethys. In the pre- and syn-orogenic evolution of the Magura Basin the following prominent periods can be distinguished: Middle Jurassic-Early Cretaceous syn-rift opening of basins (1) followed by Early Cretaceous post-rift thermal subsidence (2), latest Cretaceous–Paleocene syn-collisional inversion (3), Late Paleocene to Middle Eocene flexural subsidence (4) and Late Eocene - Early Miocene synorogenic closing of the basin (5). The driving forces of tectonic subsidence of the basin were syn-rift and thermal post-rift processes, as well as tectonic loads related to the emplacement of accretionary wedge. This process was initiated at the end of the Paleocene at the Pieniny Klippen Belt (PKB)/Magura Basin boundary and was completed during Late Oligocene in the northern part of the Magura Basin. During Early Miocene the Magura Basin was finally folded, thrusted and uplifted as the Magura Nappe.  相似文献   

6.
莺歌海盆地异常裂后沉降的动力学机制   总被引:1,自引:0,他引:1  
崔涛  解习农  任建业  张成 《地球科学》2008,33(3):349-356
为了理解莺歌海盆地形成与演化的动力过程, 用回剥法和应变速率反演方法对该区的钻井和地层剖面资料进行了研究.研究结果表明莺歌海盆地观测得到的裂后沉降和模拟预测的理论裂后沉降结果存在较大差异, 其中在西北部为300~500 m, 中部和东南部为900~1200 m, 其异常裂后沉降明显呈现向东南和向海方向递大的趋势.地幔对流模型预测的结果表明, 20 Ma以来南海北部边缘的动力地貌沉降量为300 m, 因此, 莺歌海盆地裂后异常沉降在300 m左右的地区可以用动力地貌沉降机理来解释, 但是盆地中部和东南部的巨厚的异常沉降远大于动力地貌沉降量, 它是自晚中新世以来盆缘断层的右旋走滑作用、裂后热回沉和动力地貌沉降共同作用的结果.   相似文献   

7.
The Songliao Basin in Northeast Asia is the largest and longest-lived rift basin and preserves a near-continuous continental succession of the most of the Cretaceous period, providing great material to investigate the adaption of the terrestrial systems to the Cretaceous greenhouse climate and tectonic events. However, the paucity of precise and accurate radioisotopic ages from the Early Cretaceous strata of the Songliao Basin has greatly held back the temporal and causal correlation of the continental records to the global Early Cretaceous records. Three tuff layers intercalated in the Yingcheng Formation have been intercepted by the SK-2 borehole, which offer excellent materials for radioisotopic dating and calibration of the chronostratigraphy of the Lower Cretaceous sequence of Songliao Basin. Moreover, the Yingcheng Formation recorded the largest and the last of the two major volcanic events in Songliao Basin, which also represents a turning point in the basin evolution history of Songliao from syn-rift stage to post-rift stage. Here we report high-precision U–Pb zircon geochronology by the CA-ID-TIMS technique on three tuff samples from the Yingcheng Formation of the SK-2 borehole in the Songliao Basin to construct a greatly improved, absolute age framework for the Yingcheng Formation and provide crucial age constraints for the Songliao Lower Cretaceous Strata. The new CA-ID-TIMS geochronology constrained the Yingcheng Formation at 102.571 + 0.320/?2.346 Ma to ca. 113 Ma, correlating to the Albian Stage. Combined with the previous published Songliao geochronology, the Quantou Formation is constrained to between 96.442 + 0.475/?0.086 Ma and 91.923 + 0.475/?0.086 Ma; the Denglouku Formation is constrained to between 102.571 + 0.320/?2.346 Ma and 96.442 + 0.475/?0.086 Ma; the age of the Shahezi Formation is estimated at ca. 113 Ma to ca. 118 Ma, which could extend to ca. 125 Ma in some locations in Songliao Basin. The major unconformity between the Yingcheng Formation and the Denglouku Formation, which represents the transition of the basin from syn-rift to post-rift is thus confined to between 102.571 + 0.320/?2.346 Ma and 96.442 + 0.475/?0.086 Ma. This is roughly contemporaneous with the change in the direction of the paleo-Pacific plate motion from west-southwest to north or northwest in mid-Cretaceous, suggesting their possible connections.  相似文献   

8.
以琼东南盆地为研究对象,在地震资料构造解释的基础上,选取琼东南盆地6条典型剖面,采用面积守恒法对其进行平衡剖面的恢复,计算出各个剖面在不同时期的拉张量以及拉张率,以此为基础对琼东南盆地的构造演化过程及区域性差异进行了定性以及定量分析。研究表明,在琼东南盆地中部位置,水平拉张率显著减小并较为稳定,表明盆地内部的打开是均匀的;琼东南盆地新生代的构造演化分为四个阶段,65~33.9 Ma: 盆地伸展活动开始;33.9~23 Ma: 盆地伸展活动增强并达到顶峰;23~10.5 Ma: 伸展活动明显减弱,发育了少量继承性断层;10.5~0 Ma: 平静沉积,基本没有断裂活动。琼东南盆地东西段构造样式存在明显差异,盆地西部断裂数量较少,单一断层断距大,有利于油气从烃源岩向内部储层运移填充,上部形成良好的盖层,防止油气的逃逸;盆地东段地堑内部发育较多断裂,断裂期次多、组合复杂,沉积盖层厚度薄,不利于油气的保存。基底性质和先存断裂影响着琼东南盆地东、西部的构造演化。  相似文献   

9.
华北盆地新生代裂陷机制与过程的数值模拟   总被引:5,自引:2,他引:3  
采用McKenzie的纯剪切动力学模型对似环状的“大华北盆地”的形成机制与过程进行初步的数值模拟。模拟结果表明:(1)“大华北盆地”新生代以来经历了两次伸展减薄--热事件.而不是原来所认为的一次事件的两个阶段;(2)第二次伸展减薄--热事件(即新近纪一第四纪)的沉降幅度要小于第一次伸展减薄--热事件(即古近纪)的沉降幅度;(3)“大华北盆地”古近纪的第一次伸展减薄一热事件可能已经进入后裂谷相,并且是处于后裂谷相的初期;(4)现今盆地的演化可能处于第二次伸展减薄--热事件的同裂谷相的晚期。这一研究对认识华北地区新生代的盆地演化及动力学背景有重要的意义。  相似文献   

10.
Backstripping analysis has been carried out on five boreholes and one outcrop section of the Ecca Group in the Main Karoo Basin of South Africa to determine the sedimentation rate and subsidence history of the basin. The result shows that the rate of sedimentation in the Prince Albert, Whitehill, Collingham, Ripon and Fort Brown Formations range between 0.003–0.03, 0.02–0.05, 0.01–0.05, 0.03–0.22, and 0.15–0.025 mm year?1, respectively. The backstripped subsidence curves that are constructed by removing the effects of decompaction to the water column and sediment loads show subsidence rates decreasing with time, resembling the typical thermal subsidence curves of passive continental margins. Three major subsidence episodes characterized the Ecca Group, namely, (1) rapid subsidence in an extensional regime, (2) slow subsidence in the middle of basin development and (3) another rapid subsidence in a compressional regime. The aforementioned subsidence episodes show that the southeastern Karoo Basin was located on a passive continental margin, suggesting that the subsidence was initiated and mainly controlled by mechanical (gravitational loading) or tectonic events, with little contribution of thermal events. The average rate of tectonic subsidence in the Prince Albert, Whitehill, Collingham, Ripon and Fort Brown Formations are 63, 28, 25, 215 and 180 m Ma?1, respectively. It is also inferred that the southeastern Karoo Basin evolved from a passive continental margin into an Andean-type continental foreland basin; thus, portraying a completely evolved post-rift setting along the southeastern Gondwana margin.  相似文献   

11.
Tectonic transition from a syn-rift stage to subsequent post-rift stage is an important mechanism in the evolution of extensional basins. The sedimentary infill records the crustal response to this process. We have obtained new detrital zircon U-Pb and Lu-Hf signatures from the Lower Cretaceous stratigraphic successions encompassing the commonly accepted syn- to post-rift transition boundary, the T4 unconformity, in the Songliao Basin, NE China. These constrain the Songliao Basin’s evolution from its center to distal margins, providing insights into the sediment provenance and dispersal pattern over the tectonic transition. Analysis of zircons from the syn-rift (the Shahezi and Yingcheng formations) and immediate post-rift (the Lower and Middle Denglouku Formation) stages reveals Phanerozoic age populations with positive ?Hf(t) values, which were derived from the proximal juvenile mantle-derived melt origin bedrocks of the Songliao Block. In contrast, the overlying samples from the Upper Denglouku Formation deposited in the subsequent post-rift stage contain exotic and ancient zircon populations with ages of 2.5 Ga & 1.8 Ga and complex hafnium signatures, characteristic of a mixed origin. These are interpreted to be transported from distant cratonic terranes via larger drainage networks. It is obvious that the sediment dispersal pattern switched from being a local and hydrologically closed “intraregional” pattern to a “transcontinental” pattern during the transition. The time lag between the development of the T4 unconformity and the drainage reorganization also ensures a distinguishable ~3 Myr (106103 Ma, Late Albian) transition period of regional extent. During this transition stage, syn-rift faulting was replaced by post-rift thermal subsidence, exhibiting a uniform sag configuration. Our new findings are important for understanding other continental rift basins during syn- to post-rift transition, which often demonstrates a complex interaction between the linkage and integration of sub-basins, and the reorganization of fluvial drainages and catchment systems.  相似文献   

12.
2007年中国在南海北部神狐海域通过钻探首次获得天然气水合物样品,证实了珠江口盆地深水区是水合物富集区。通过对珠江口盆地深水区构造沉降史的定量模拟研究,发现晚中新世以来区内构造沉降总体上具有由北向南、自西向东逐渐变快的演化趋势;从晚中新世到更新世,盆地深水区经历了构造沉降作用由弱到强的变化过程:晚中新世(11.6~5.3 Ma),平均构造沉降速率为67 m/Ma;上新世(5.3~1.8 Ma),平均构造沉降速率为68 m/Ma;至更新世(1.8~0 Ma),平均构造沉降速率为73 m/Ma。而造成这些变化的主因是发生在中中新世末-晚中新世末的东沙运动和发生在上新世-更新世早期的台湾运动。东沙运动(10~5 Ma)使盆地在升降过程中发生块断升降,隆起剥蚀,自东向西运动强度和构造变形逐渐减弱,使得盆地深水区持续稳定沉降;台湾运动(3 Ma)彻底改变了盆地深水区的构造格局,因重力均衡调整盆地深水区继续沉降,越往南沉降越大。将似海底反射(BSR)发育区与沉降速率平面图进行叠合分析,发现80%以上的BSR分布趋于构造沉降速率值主要在75~125 m/Ma之间、沉降速率变化迅速的隆坳接合带区域。  相似文献   

13.
泥河湾古湖的形成机制及其与早期古人类生存环境的关系   总被引:6,自引:1,他引:5  
泥河湾盆地位于汾渭裂谷系的东北端,是裂谷系的重要组成部分。古近纪初恒山-大同一带发育软流圈上涌柱,导致岩浆喷发和地壳变薄,距今25~24Ma,阳原-石匣一带开始沉陷形成盆地,北侧出现伸展造山带。受到挤压作用使盆地内地壳缩短并在盆地南侧形成台地。上新世末至早更新世为盆地沉陷最盛时期,泥河湾古湖形成。距今2.0~0.8Ma,该地区为温和的温带气候环境,有的时段为亚热带气候,同时火山喷发的火山灰和风成沉积为盆地土壤提供了丰富矿物质养分,湖泊周边地区动植物繁盛,为早期古人类在此栖息提供了必要的条件。该裂谷型盆地是适于早期古人类生存和发展的地区,泥河湾盆地将是我国最有可能发现早期古人类化石的地点。  相似文献   

14.
辽河盆地营口-佟二堡断裂带形成和演化的新构造物理模拟实验结果和地质资料分析证明,营口-佟二堡断裂带成因机制归因于早期大陆裂谷演化阶段的地幔上涌派生拉张应力和后期右行走滑构造运动引起的右行剪应力的复合作用。大陆裂谷的演化受古近纪古新世房身泡期至始新世沙河街一期(Ef-Es1,大约63.0~37.0Ma.BP)地幔上涌派生拉张应力的驱动,右行走滑构造运动发生在古近纪渐新世东营期(Ed,大约36.9-24.5Ma.BP),两期构造运动导致了辽河盆地营口-佟二堡复杂断裂体系的形成和演化。裂谷演化阶段后的右行走滑构造运动使得早期断裂再活动并形成新的断裂。基于构造物理模拟实验结果和地质资料分析,辽河盆地古近纪渐新世东营期右行走滑构造运动引起的水平位移大约为4~8km,辽河盆地营口-佟二堡断裂带不仅受到早期拉张应力的强烈控制,而且还受到后期右行走滑构造运动的影响,由此认为,两期构造运动决定了现今所勘探到的复杂含油气构造体系的展布,并导致了该区油气的运移和聚集。  相似文献   

15.
Geohistory analysis was carried out on block 10 in the Say??un-Masilah Basin. The present study is based on the analysis of the well logs of six exploration wells. In the Middle Jurassic to the Middle Eocene, Say??un-Masilah Basin exhibited a complex subsidence history over a period of about 155?Ma. Backstripped subsidence curves are constructed by removing the effects of decompaction to the water column and sediment loads. In the Middle Jurassic, slow subsidence was driven under the effect of sediment load as Kuhlan and Shuqra Formations were deposited as pre-rift deposits. The average total subsidence value of the basement during the deposition of Shuqra Formation was 276?m. The highest subsidence rates during this time are observed northeast of the study area. Rapid subsidence initiated in the Upper Jurassic driven by mechanical extension of the rift, resulting in the deposition of Madbi and Safer Formations, or the so-called Syn-rift deposits. The average tectonic subsidence value of the basements during the deposition of Madbi Formation was 368?m. The highest subsidence rates during this time are observed southwest of the study area. Mechanical extension ceased at about 145?Ma, being replaced by a phase of post-rift subsidence, resulting in more widespread uniform sedimentation, with reduced tectonic subsidence rates forming post-rift deposits represented by Nayfa Formation, Sa??ar Formation, Biyad Formation, and Mahra Group. The total subsidence value of the basement during the deposition of the post-rift sediments increases gradually due to the increase of the sediment load as the rate of deposition was high especially northeast of the area.  相似文献   

16.
Qiongdongnan Basin is a Cenozoic rift basin located on the northern passive continental margin of the South China Sea. Due to a lack of geologic observations, its evolution was not clear in the past. However, recently acquired 2-D seismic reflection data provide an opportunity to investigate its tectonic evolution. It shows that the Qiongdongnan Basin comprises a main rift zone which is 50–100 km wide and more than 400 km long. The main rift zone is arcuate in map view and its orientation changes from ENE–WSW in the west to nearly E–W in the east. It can be divided into three major segments. The generally linear fault trace shown by many border faults in map view implies that the eastern and middle segments were controlled by faults reactivated from NE to ENE trending and nearly E–W trending pre-existing fabrics, respectively. The western segment was controlled by a left-lateral strike-slip fault. The fault patterns shown by the central and eastern segments indicate that the extension direction for the opening of the rift basin was dominantly NW–SE. A semi-quantitative analysis of the fault cut-offs identifies three stages of rifting evolution: (1) 40.4–33.9 Ma, sparsely distributed NE-trending faults formed mainly in the western and the central part of the study area; (2) 33.9–28.4 Ma, the main rift zone formed and the area influenced by faulting was extended into the eastern part of the study area and (3) 28.4–20.4 Ma, the subsidence area was further enlarged but mainly extended into the flanking area of the main rift zone. In addition, Estimates of extensional strain along NW–SE-trending seismic profiles, which cross the main rift zone, vary between 15 and 39 km, which are generally comparable to the sinistral displacement on the Red River Fault Zone offshore, implying that this fault zone, in terms of sinistral motion, terminated at a location near the southern end of the Yinggehai Basin. Finally, these observations let us to favour a hybrid model for the opening of the South China Sea and probably the Qiongdongnan Basin.  相似文献   

17.
Baltica was one of continents formed as a result of Rodinia break-up 850-550 Ma. It was separated from Amazonia(?) by the Tornquist Ocean, the opening of which was preceded by Neoproterozoic extension in a network of continental rifts. Some of these rifts were subsequently aborted whereas the Tornquist Rift gave rise to splitting of Rodinia and formation of the Tornquist Ocean. The results of 1-D subsidence analysis at the fossil passive margin of Baltica provided insight in the timing and kinematics of continental rifting that led to break-up of Rodinia. Rifting was associated with Neoproterozoic syn-rift subsidence accompanied by deposition of continental coarse-grained sediments and emplacement of continental basalts.Transition from a syn-rift to post-rift phase in the latest Ediacaran to earliest early Cambrian was concomitant with deposition of continental conglomerates and arkoses, laterally passing into mudstones. An extensional scenario of the break-up of Rodinia along the Tornquist Rift is based on the character of tectonic subsidence curves, evolution of syn-rift and post-rift depocenters in time, as well as geochemistry and geochronology of the syn-rift volcanics. It is additionally reinforced by the high-quality deep seismic reflection data from SE Poland, located above the SW edge of the East European Craton. The seismic data allowed for identification of a deeply buried(11-18 km), well-preserved extensional half-graben, developed in the Palaeoproterozoic crystalline basement and filled with a Neoproterozoic syn-rift volcano-sedimentary succession. The results of depth-to-basement study based on integration of seismic and gravity data show the distribution of local NE-SW elongated Neoproterozoic depocenters within the SW slope of the East European Craton. Furthermore,they document the rapid south-eastwards thickness increase of the Neoproterozoic succession towards the NW-SE oriented craton margin. This provides evidence for extensive crustal thinning occurring prior to the break-up of Rodinia and formation of the Tornquist Ocean.  相似文献   

18.
The subsidence history of the Soutpansberg Basin was reconstructed by a tectonic subsidence analysis coupled with backstripping calculations based on data of newly interpreted sequence boundaries. Furthermore,burial and time plots were constructed in order to understand the burial and thermal history of the basin. Input data were based on facies,lithostratigraphic models and tectonic interpretations. The studied succession is up to 1000 m and is underlain by the Achaean Limpopo Mobile Belt. The subsidence within the basin supports the primary graben system which must have been centred within the present basins,and later became a region of faulting. The subsidence and burial history curves suggests two phases of rapid subsidence during the Early-Late Permian(300–230 Ma) and Middle Triassic(215–230 Ma). The areas of greater extension subsided more rapidly during these intervals. Two slow subsidence phases are observed during the Late Triassic(215–198 Ma) and Early Jurassic(198–100 Ma). These intervals represent the post-rift thermal subsidence and are interpreted as slow flexural subsidence. Based on these observations on the subsidence curves,it is possible to infer that the first stage of positive inflexion(300 Ma) is therefore recognised as the first stage of the Soutpansberg Basin formation.  相似文献   

19.
渭河盆地、渭北隆起及东秦岭造山带地处青藏块体东北缘、华北克拉通和扬子克拉通的交界处,形成了特有的盆山体系,分布有油气、氦气及地热等多种能源矿产资源。新生代是渭河盆地沉积-构造演化及渭北隆起和东秦岭隆升的重要时期,缺乏该时期盆山体系耦合关系的研究,制约了对区域矿产资源分布规律的认识。盆山耦合体现在时间、空间、物质、构造作用及地表形态等多方面。以大量钻孔资料为依托,运用“回剥法”分析了渭河盆地新生代的沉降幅度及沉降速率,并根据主沉降期新近纪以来不同阶段沉积地层厚度展布特征恢复了盆地沉积演化历史。研究表明渭河盆地新生代以来沉降中心具有自西南方向西安凹陷向北东方向固市凹陷迁移的特征。古近纪始新世以来,渭河盆地发生快速构造沉降,中新世早-中期以西安凹陷为主要沉积、沉降中心,晚中新世以来以西安、固市两个凹陷为主要沉积、沉降中心,晚上新世-早更新世沉降中心转移到东北部固市凹陷,晚更新世以来,西安凹陷和固市凹陷均发生快速沉降。裂变径迹的分析测试结果表明渭北隆起约45~32 Ma整体快速抬升,同步于东秦岭太白山和华山约57~40 Ma的快速隆升阶段,与渭河盆地古近纪始新世约40 Ma的基底快速沉降具有耦合关系。晚中新世约7.3 Ma以来,渭河盆地的持续快速沉降,与渭北隆起上新世约5 Ma及东秦岭太白山约10~9.6 Ma、华山约8~5 Ma以来的快速耦合关系明显。太平洋板块的俯冲、欧亚板块与印度板块始新世约55~45 Ma碰撞及青藏高原约10~8 Ma隆升外扩的远程效应对研究区影响较大。  相似文献   

20.
采用LA-ICP-MS方法对郯庐断裂带巢湖—庐江段的晚中生代火山岩进行了锆石U-Pb年代学研究。由6个样品获得的该处火山喷发时间在距今125~93Ma,为早白垩世晚期至晚白垩世初期,经历了32Ma的喷发历史。与附近的庐枞盆地、北大别造山带及北淮阳地区相比,该地火山喷发具有较晚的结束时间,说明岩石圈减薄具有相对强烈的程度和较长的持续时间。93Ma是已知的华北克拉通残留富集岩石圈地幔最晚的岩浆岩年代学记录。锆石的饱和温度计算、岩浆中较低的MgO含量和Mg#值均不支持岩浆由拆沉的下地壳部分熔融形成,岩浆活动的可能成因是壳幔相互作用,岩浆源区具有由幔源向壳源再过渡到幔源的时间演化顺序。这暗示断裂带下强烈的软流圈上涌引起岩石圈地幔的熔融(距今125Ma),随后岩石圈持续的减薄作用导致其内部热流升高,出现了以流纹岩为代表的地热异常背景下地壳源区的部分熔融(距今120Ma),而最终岩石圈强烈减薄背景下的软流圈物质参与岩浆过程可能是晚期幔源岩浆(距今93Ma)的成因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号