首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 174 毫秒
1.
琼东南盆地陆坡深水区晚中新世以来的地层中有比较明显的BSR(似海底反射)分布。由于BSR是识别天然气水合物存在与否的重要地球物理参考标志,而构造变动是影响其分布的重要因素之一。本文结合南海发生的构造运动以及全球和莺—琼盆地海平面相对变化,以11.6 Ma,5.3 Ma和1.8 Ma 3个时间点为界,将琼东南深水区晚中新世以来的地层划分为3个层,自下而上分别为层序Ⅲ、层序Ⅱ、层序Ⅰ。通过对工区二维地震资料301个虚拟点进行盆地模拟,结果表明,3个层序存在构造沉降加速的过程。其中层序Ⅲ构造沉降速率变化相对最为缓慢,层序Ⅱ构造沉降速率整体增大,同时其变化加剧;层序Ⅰ构造沉降速率变化剧烈,最高沉降速率增至170 m/Ma。但是5.3 Ma以来的构造沉降加速在时空上存在东西的差异。空间上构造沉降速率呈周边向中心地带递增的规律。研究区BSR主要分布在各凹陷与凸起次级构造单元相接、构造沉降速率在70~110 m/Ma且变化迅速的区域。  相似文献   

2.
南海北部深水区新生代热演化史   总被引:2,自引:1,他引:1       下载免费PDF全文
在构造沉降史恢复的基础上确定拉张期次,再采用非瞬时非均匀多期拉张纯剪切模型恢复南海北部深水区新生代热流史,结果表明:始新世以来,南海北部深水区存在多期热流升高的加热事件。裂谷阶段盆地基底热流幕式升高,裂后阶段也并非完全处于热衰减期。琼东南盆地新生代存在56.5~32 Ma、32~16 Ma和5.3 Ma以来3期加热事件,珠江口盆地存在56.5~32 Ma和32~23.3 Ma两期加热事件。琼东南盆地深水区基底热流始新世末为56~62 mW/m2; 早中新世末上升到60~64 mW/m2; 上新世末在深断陷区最高达75mW/m2。珠江口盆地深水区基底热流始新世末升高到60 mW/m2; 渐新世末升高到70 mW/m2。深水区新生代裂谷阶段多期拉张决定了基底热流幕式升高的多期加热事件,琼东南盆地晚期加热事件与红河走滑断裂在10~5 Ma时由左旋走滑转变为右旋走滑拉张有关。  相似文献   

3.
为了研究珠江口盆地的沉降特征、沉降特征时空差异性以及影响因素,文章共选取了32口人工井进行沉降史计算,并进行综合分析,从中又特选出12口典型人工井进行对比分析,编绘和对比分析了3条典型沉降演化图。结果表明:盆地整体沉降可分为3幕,第一幕为始新世,平均总沉降速率为85 m/Ma;第二幕为渐新世至中中新世,平均总沉降速率为146 m/Ma;第三幕为晚中新世至第四纪,平均总沉降速率为104 m/Ma。同一时期不同构造单元之间及同一构造单元在不同时期,沉降与演化特征都存在差异性,各时期沉降速率平面分布表现出"分区"、"分带"的特征,沉降演化的差异性变化与盆地的演化阶段及其构造特征有关。盆地整体沉降特征受成盆动力学影响,而沉降特征差异性受盆地动力学和构造格局共同影响。珠江口盆地整体沉降表现为"幕式"特征,沉降及其演化特征表现出明显的时空差异性,盆地动力学特征和构造格局共同影响盆地的沉降特征。  相似文献   

4.
为了研究渭河盆地新生代沉积速率特征与成因,系统收集、整理了研究区已有的重力和磁力资料,结合地震、地质、钻井等研究成果,分析了新生代各期沉积速率变化,探讨了盆地内新生代各期沉积速率与盆内基底、断裂、周缘构造的关系。研究表明,中新世,西安凹陷沉积速率较大,几乎是固市凹陷的2倍,沉积速率最大处位于渭深10井附近,约为93m/Ma;上新世,西安凹陷沉积速率仍较固市凹陷大,二者的沉积速率最大处分别为1 800,1 400m/Ma;第四纪三门期,盆内沉积速率逐渐变缓,沉积速率最大处位于固市凹陷内,约为380m/Ma;秦川期,盆地整体沉积速率明显加快。新生代西安凹陷沉降中心变化不大,主要位于户县以北地区,而固市凹陷沉降中心多变,主要位于华县和临潼以北地区,沉降中心整体偏南。沉积速率的变化受多种因素控制,古近纪,盆地周缘板块运动导致地壳加厚及深部地幔对流对盆内沉积速率影响较小;新近纪早中新世,受青藏高原快速隆升影响,渭河盆地沉积速率显著增大;晚中新世,秦岭北缘大型正断层活动导致渭河盆地发生大规模的沉降和扩展;上新世到第四纪,盆内沉积速率受秦岭山脉和渭北隆起共同作用。  相似文献   

5.
南海陆坡中新世以来沉积物特性与气体水合物分布初探   总被引:27,自引:12,他引:15  
通过对南海陆坡地区中新世以来沉积物的一些属性和特征的研究,获得了下面的初步认识:(1)南海陆坡有几个沉积速率较高的地区, 如东沙一带、西沙海槽、中建南地区,以及南沙西南部和西北部(曾母、万安盆地);(2)大洋钻探钻井资料的研究表明,中新世与早上新世为高碳酸盐比值的低速堆积期,而近200万a以来为低碳酸盐比值的高速堆积期,上新世晚期至全新世沉积物以粘土质粉砂和粉砂质粘土为最主要成分;(3)南海不同时期的沉积速率不同,全新世为沉积速率最高的时期,其次为更新世;上新世和中新世为沉积速率较低的时期。南海利于气体水合物存藏的沉积可能为全新世和更新世的沉积;(4)对南海晚第四纪以来沉积物的综合研究表明南海陆坡的A区(东沙附近)、B区(西沙海槽)、D区(南海西部、越南以东)等地区可能利于气体水合物的形成和分布;而E区(南沙西南部)、F区(南沙中上部)和G区(南沙海槽)则是气体水合物调查值得关注的地区。  相似文献   

6.
基于TM遥感图像解译和野外调研,分析了攀西地区大渡河、安宁河深切河谷地貌特征和断裂带构造变形特征,建立了安宁河断裂带晚新生代5阶段变形历史。研究表明,中新世晚期—上新世早期,安宁河断裂以挤压走滑活动为主;上新世晚期至早更新世时期,断裂以斜张走滑活动为主,活动强度较弱;早中更新世之间发生的元谋运动使昔格达组湖相地层褶皱变形;中晚更新世时期发生断陷作用,形成安宁河两堑夹—垒的构造格局;晚更新世—全新世时期又以左旋走滑活动为主。综合安宁河、大渡河河谷地貌和晚新生代地层记录和变形特征,提出了攀西高原晚新生代4阶段隆升模式:中新世早中期(12Ma之前)以缓慢隆升与区域夷平化作用为主,中新世晚期—上新世早期(12~3.4Ma)是高原快速隆升与河流强烈下切的时期,上新世晚期—早更新世(3.4~1.1Ma)为昔格达湖盆发育时期,中晚更新世—全新世(1.1Ma以来)是高原快速隆升与河谷阶地发育时期。最后指出,至上新世晚期(3.4Ma以前),攀西高原海拔高度可能超过了3000m。  相似文献   

7.
渭河盆地、渭北隆起及东秦岭造山带地处青藏块体东北缘、华北克拉通和扬子克拉通的交界处,形成了特有的盆山体系,分布有油气、氦气及地热等多种能源矿产资源。新生代是渭河盆地沉积-构造演化及渭北隆起和东秦岭隆升的重要时期,缺乏该时期盆山体系耦合关系的研究,制约了对区域矿产资源分布规律的认识。盆山耦合体现在时间、空间、物质、构造作用及地表形态等多方面。以大量钻孔资料为依托,运用“回剥法”分析了渭河盆地新生代的沉降幅度及沉降速率,并根据主沉降期新近纪以来不同阶段沉积地层厚度展布特征恢复了盆地沉积演化历史。研究表明渭河盆地新生代以来沉降中心具有自西南方向西安凹陷向北东方向固市凹陷迁移的特征。古近纪始新世以来,渭河盆地发生快速构造沉降,中新世早-中期以西安凹陷为主要沉积、沉降中心,晚中新世以来以西安、固市两个凹陷为主要沉积、沉降中心,晚上新世-早更新世沉降中心转移到东北部固市凹陷,晚更新世以来,西安凹陷和固市凹陷均发生快速沉降。裂变径迹的分析测试结果表明渭北隆起约45~32 Ma整体快速抬升,同步于东秦岭太白山和华山约57~40 Ma的快速隆升阶段,与渭河盆地古近纪始新世约40 Ma的基底快速沉降具有耦合关系。晚中新世约7.3 Ma以来,渭河盆地的持续快速沉降,与渭北隆起上新世约5 Ma及东秦岭太白山约10~9.6 Ma、华山约8~5 Ma以来的快速耦合关系明显。太平洋板块的俯冲、欧亚板块与印度板块始新世约55~45 Ma碰撞及青藏高原约10~8 Ma隆升外扩的远程效应对研究区影响较大。  相似文献   

8.
吴中海  吴珍汉 《地质学报》2003,77(3):399-406
本文根据以裂变径迹测年为主的低温热年代学方法,认为燕山及邻区在晚白垩世进入区域性伸展构造环境以来经历了造山带伸展裂解引发的6次强烈差异升降运动,分别发生在120~105Ma、95~85Ma、60~50Ma、38Ma左右、25~20Ma和10~5Ma,造成燕山及邻区约7~8km的剥蚀量。而在相邻两次强烈差异升降运动期之间的相对构造稳定期,则形成了燕山—太行山地5期夷平面以及周缘盆地多期沉积间断。燕山与邻区盆地之间晚中新世以来的快速差异升降运动导致燕山及邻区现今盆—山构造—地貌格局。  相似文献   

9.
珠江口盆地陆架区岩石圈伸展模拟及裂后沉降分析   总被引:7,自引:0,他引:7  
赵中贤 《地质学报》2010,84(8):1135-1145
本文根据伸展盆地发育的挠曲悬臂梁模型,以二维正、反演相结合的方法,计算了珠江口盆地陆架区1530测线北段的岩石圈伸展系数,分析了其裂后沉降规律。由正演模拟,发现盆地1530测线北段的裂陷由北向南逐渐发育,其陆架岩石圈的平均伸展系数为1.2和较大凹陷处的岩石圈理论伸展系数变化在1.08~1.24之间。整条剖面裂后沉降的实测值比理论值大2.5km左右,本文分析造成这一差值的最大可能是裂后异常沉降的存在。由前人成果可知,陆坡区也存在其他大的异常,对于陆架和陆坡区的异常,本文认为它们之间以及它们与其他南海陆缘之间都可能有关联,它们的产生可能是某种共同机制的结果。珠江口盆地陆架区的实测裂后沉降速率明显不同于逐渐减小的理论变化规律,而是存在两期(30~18.5Ma和18.5Ma至今)由快到慢的变化。在30~23.8Ma沉降速率集中在140~190m/Ma,之后23.8~18.5Ma减小至35~65m/Ma。18.5~16Ma的沉降速率迅速增大到300m/Ma,随后16Ma至今又减小至75~110m/Ma。其中18.5~16Ma的沉降速率最大,并与当时陆架坡折的形成和海平面的快速上升相对应,也与前人在陆坡区白云凹陷发现的17.5~15.5Ma裂后重大加速沉积的时间一致,因此本文推测珠江口盆地18.5~17.5Ma可能存在一重大构造事件,引起盆地从陆架到陆坡的裂后快速沉降的发生。但对于构造事件的成因、准确时间及其范围都有待进一步的研究。  相似文献   

10.
通过对青藏高原东北部循化盆地、临夏盆地和贵德盆地沉积相和沉积充填速率演化的对比分析,提出研究区新生代4个构造隆升阶段。①渐新世晚期—中新世早期(25~20Ma),3个盆地沉积相和沉积速率的变化表明青藏高原新生代向北东的增生作用在渐新世已抵达西秦岭北缘地区,同时,22Ma拉脊山强烈隆升,区域上整体地势差异不显著。②中新世中期(17~13Ma),随着高原东北缘盆山耦合的相互作用,湖盆进一步扩张,14Ma左右积石山的隆起及西秦岭、拉脊山的持续隆升,使得研究区转变为盆地周缘型。③中新世晚期(11~6Ma),8Ma左右沉积相的转变、沉积速率的增大及不整合面的存在,都说明高原在该段时间内存在强烈的构造隆升活动,裂变径迹热年代学证据反映的构造隆升与沉积响应也是一致的。④上新世(5Ma以来),沉积速率继续增大,区域上地势差异增强,湖盆逐步萎缩消亡。  相似文献   

11.
BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark which identifies the gas hydrate and its distribution influenced by the tectonic movements. Single-point basin modeling was conducted using 473 points in the study area. To discuss the relationships between the tectonic subsidence and BSR, the volume and rate of tectonic subsidence in each geological time have been simulated. The results show that there are three tectonic accelerate subsidence processes in the study area since the late Miocene, especially since 1.8Ma the tectonic subsidence accelerates more apparently. Since the Late Miocene to Pleistocene, the rate of tectonic subsidence in deep-water underwent a transformation from weak to strong. The ratio of tectonic subsidence to the total subsidence was relatively high (65-70%). Through the superposition of the BSR developed areas and the contours of tectonic subsidence in this area, it was discovered that more than 80% of BSR tend to be distributed at the slope break or depression-uplift structural transfer zone and the average tectonic subsidence rate ranges from 70 m/Ma to 125 m/Ma.  相似文献   

12.
隆起带的形成和演化分析对于油气勘探具有重要的指导意义。通过对比生长地层法、沉降史回剥技术和剩余构造沉降3种构造演化的手段,旨在全面揭示东沙(DS)25凸起的演化历史。依据生长地层的厚度、地层反射终端等特征划分出白云凹陷DS25凸起演化的主要阶段;运用回剥法恢复DS25凸起的沉降历史和与周缘地区的沉降差异;结合剩余构造沉降分析,定量判断隆起的抬升、沉降和差异沉降作用及发育时期。在对以上3种方法对比综合的基础上,综合生长地层指示的重要构造变革界面、沉降史恢复和剩余构造沉降精细划分的沉降阶段和构造运动形式,重建DS25凸起演化过程,并提出以下5个演化阶段:65~30 Ma,凸起顶部遭受强烈剥蚀;30 Ma左右,凸起发生大规模抬升;30~23.8 Ma,发生微弱沉降;23.8~10.5 Ma,发生差异沉降,并出现三幕强烈沉降;10.5 Ma至今,凸起经历持续抬升。  相似文献   

13.
青海木里三露天井田构造沉降史分析   总被引:1,自引:0,他引:1  
根据三露天井田的煤田钻孔和地质勘查报告等资料,应用回剥技术分析研究区从晚古生代石炭纪以来的沉降史及构造演化特征,讨论了水合物形成与构 造演化的关系。模拟结果显示,研究区自石炭纪以来主要经历了4期沉降和3期抬升:石炭纪至晚三叠世,沉降由慢转快,沉降幅度较大;晚三叠世末期,由于晚印支运动影响构造抬升;早侏 罗世至早白垩世,快速沉降;晚白垩世,燕山运动导致区域隆升;中新世发生较快速沉降;上新世受青藏高原隆升影响,快速隆升,随后第四纪又出现较快速沉降。沉降史模拟结果为研究区 构造演化提供了定量或半定量的参数。三露天构造沉降对天然气水合物形成的控制作用体现在影响烃源岩成熟度和温压稳定带的形成两方面。  相似文献   

14.
目前对珠江口盆地中生代以来的演化过程及其与沉积环境演变的响应关系尚缺乏系统性认识.基于珠江口盆地中-新生代岩浆活动、断陷结构样式及其改造、典型构造变形样式、沉积中心的转换等特征的对比分析,将盆地中-新生代的构造演化划分为4个阶段、7个期次:(1)中侏罗世-晚白垩世早期(~170~90 Ma)为古太平洋板块俯冲主控的陆缘岩浆弧-弧前盆地演化阶段;(2)晚白垩世-始新世中期(~90~43 Ma)为太平洋板块俯冲后撤背景下弧后周缘前陆/造山后塌陷-主动裂谷演化阶段;(3)始新世中期-中中新世(~43~10 Ma)为华南挤出-古南海俯冲拖曳主导的被动陆缘演化阶段;(4)晚中新世以来(~10~0 Ma)为菲律宾板块NWW向仰冲主导的挤压张扭演化阶段.~90 Ma、~43 Ma、~10 Ma分别实现了由安第斯型俯冲向西太平洋型俯冲、由主动裂谷向被动陆缘伸展、由被动陆缘伸展向挤压张扭的转换.在此过程中,伴随着古南海和南海的发育-消亡,新生代裂陷期沉积环境由东向西、由南向北逐渐海侵,裂后期由南向北阶段性差异沉降,由陆架浅水向陆坡深水转换,这使得珠一/三、珠二、珠四坳陷的石油地质条件具有显著的分带差异性.   相似文献   

15.
青藏高原古大湖与夷平面的关系及高原面形成演化过程   总被引:4,自引:2,他引:2  
青藏高原经过古近纪挤压缩短和增厚地壳均衡隆升,晚新生代形成了以走滑和伸展为主的相对稳定构造环境。中新世早期与晚更新世分别发育巨型古大湖,上新世-早更新世发育很多规模较大的古湖泊,古大湖对夷平面形成演化具有重要的控制作用。中新世早期((24.1±0.6) ~(14.5±0.5)Ma)以古大湖的湖面为侵蚀基准面,经过隆起区剥蚀夷平和长期湖相沉积,在高海拔环境下形成早期夷平面。中新世晚期-第四纪以湖面与五道梁群湖相沉积顶面为基准,在高海拔环境下继续发生剥蚀夷平和准平原化,逐步形成主夷平面或高原面。第四纪河流溯源侵蚀导致内外流水系分界线自东向西迁移,在青藏高原东部形成高山峡谷地貌。  相似文献   

16.
Quantitative studies on the extension and subsidence of the Wanan Basin were carried out based on available seismic and borehole data together with regional geological data.Using balanced cross-section and backstripping techniques,we reconstructed the stratigraphic deposition and tectonic evolution histories of the basin.The basin formed from the Eocene and was generally in an extensional/transtensional state except for the Late Miocene local compressoin.The major basin extension ocurred in the Oligocene and Early Miocene(before ~16.3 Ma) and thereafter uniform stretch in a smaller rate.The northern and middle basin extended intensely earlier during 38.6–23.3 Ma,while the southern basin was mainly stretched during 23.3–16.3 Ma.The basin formation and development are related to alternating sinistral to dextral strike-slip motions along the Wanan Fault Zone.The dominant dynamics may be caused by the seafloor spreading of the South China Sea and the its peripheral plate interaction.The basin tectonic evolution is divided into five phases:initial rifting,main rifting,rift-drift transition,structural inversion,and thermal subsidence.  相似文献   

17.
The characteristics of Late Cenozoic tectonic uplift of the southern margin of the Qinghai- Tibet Plateau may be inferred from fluvio-lacustrine strata in the Zanda basin, Ngari, Tibet. Magnetostratigraphic study shows that the very thick fluvio-lacustrine strata in the basin are 5.89- 0.78 Ma old and that their deposition persisted for 5.11 Ma, i.e. starting at the end of the Miocene and ending at the end of the early Pleistocene, with the Quaternary glacial stage starting in the area no later than 1.58 Ma. Analysis of the sedimentary environment indicates that the Zanda basin on the southern Qinghai-Tibet Plateau began uplift at -5.89 Ma, later than the northern Qinghai-Tibet Plateau. Presence of gravel beds in the Guge and Qangze Formations reflects that strong uplift took place at -5.15 and -2.71 Ma, with the uplift peaking at -2.71 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号