首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xenoliths from the upper mantle and lower crust are abundant in Plio–Pleistocene alkali basalts of the Nógrád-Gömör Volcanic Field (NGVF; northern Pannonian Basin, northern Hungary/southern Slovakia), representing a valuable ‘probe’ of lithospheric structures and processes. Ultramafic xenoliths have been divided into two groups: (1) Type-I, composed mostly of olivine with subsidiary orthopyroxene, clinopyroxene and spinel, and (2) Type-II, containing mostly Al- and Ti-rich clinopyroxene with subordinate olivine, spinel and plagioclase. Both types often contain amphibole and, to a lesser extent, mica. The refractory character of Type-I xenoliths suggests they represent mantle depleted by prior episodes of partial melting. In contrast, Type-II series (wehrlites, olivine clinopyroxenites, clinopyroxenites and plagioclase-bearing ultramafic lithologies), on the basis of their textural features, thermobarometric histories and major and trace element variation, appear to have formed as magmatic cumulates. Petrologic and geochemical studies of Type-II xenoliths from Nógrád-Gömör suggest they crystallized from basaltic melts emplaced within the lithospheric mantle and lower crust, prior to the onset of Plio–Pleistocene volcanic activity. After their consolidation, metasomatic agents reacted with the anhydrous cumulate phases producing amphiboles and micas at the expense of olivine and clinopyroxene. The metasomatic agents appear to have been adakitic rather than basaltic in composition, possibly linked to a retreating arc–forearc system. Large-scale contamination of the lithospheric mantle can therefore be attributed to fluid and melt fractions related to subduction beneath the outer Carpathian arc.  相似文献   

2.
Dunite, wehrlite and websterite are rare members of the mantle xenolith suite in the Kimberley kimberlites of the Kaapvaal Craton in southern Africa. All three types were originally residues of extensive melt extraction and experienced varying amounts and types of melt re-enrichment. The melt depletion event, dated by Re-Os isotope systematics at 2.9 Ga or older, is evidenced by the high Mg# (Mg/(Mg + Fe)) of silicate minerals (olivine (0.89-0.93); pyroxene (0.88-0.93); garnet (0.72-0.85)), high Cr# (Cr/(Cr + Al)) of spinel (0.53-0.84) and mostly low whole-rock SiO2, CaO and Al2O3 contents. Shortly after melt depletion, websterites were formed by reaction between depleted peridotites and silica-rich melt (>60 wt% SiO2) derived by partial melting of eclogite before or during cratonization. The melt-peridotite interaction converted olivine into orthopyroxene.All three xenolith types have secondary metasomatic clinopyroxene and garnet, which occur along olivine grain boundaries and have an amoeboid texture. As indicated by the preservation of oxygen isotope disequilibrium in the minerals and trace-element concentrations in clinopyroxene and garnet, this metasomatic event is probably of Mesozoic age and was caused by percolating alkaline basaltic melts. This melt metasomatism enriched the xenoliths in CaO, Al2O3, FeO and high-field-strength-elements, and might correspond to the Karoo magmatism at 200 Ma. The websterite xenoliths experienced both the orthoyproxene-enrichment and clinopyroxene-garnet metasomatic events, whereas dunite and wehrlite xenoliths only saw the later basaltic melt event, and may have been situated further away from the source of melt migration channels.  相似文献   

3.
Olivine-clinopyroxenite xenoliths exhumed in alkali basalts(sensu lato) in the Nógrád–GömörVolcanic Field (NGVF), northern Hungary, contain abundant silicatemelt inclusions. Geothermobarometric calculations indicate thatthese xenoliths crystallized as cumulates in the upper mantlenear the Moho. These cumulate xenoliths are considered to representa period of Moho underplating by mafic alkaline magmas priorto the onset of Late Tertiary alkaline volcanism in the Carpathian–Pannonianregion. The major and trace element compositions of silicatemelt inclusions in olivine display an evolutionary trend characterizedby a strong decrease in CaO/Al2O3. The parental melt of thecumulates was a basanite formed by low-degree ( 2%) partialmelting of a garnet peridotite source. The compositional trendof the silicate melt inclusions, textural features, and modellingwith pMELTS show that the parental melt evolved by major clinopyroxeneand minor olivine crystallization followed by the appearanceof amphibole simultaneously with significant resorption of theearlier clinopyroxene and olivine. The resulting residual meltwas highly enriched in Al2O3, alkalis and most incompatibletrace elements. This type of melt is likely to infiltrate andreact with surrounding mantle peridotite as a metasomatic agent.It might also form high-pressure pegmatite-like bodies in themantle that might be the source of the amphibole and sanidinemegacrysts also found in the alkali basalts of the NGVF. Preferentialremelting of the later-formed (i.e. lower temperature) mineralassemblage (amphibole, sanidine, residual glass) might havesignificantly contaminated the host alkaline mafic lavas, increasingtheir Al2O3 and total alkali contents and, therefore, reducingtheir MgO, FeO and CaO content. KEY WORDS: silicate melt inclusions; geochemistry; petrogenesis; Nógrád–Gömör Volcanic Field; Pannonian Basin  相似文献   

4.
Mantle xenoliths (lherzolites, clinopyroxene dunites, wehrlites, and clinopyroxenites) in the Early Cretaceous volcanic rocks of Makhtesh Ramon (alkali olivine basalts, basanites, and nephelinites) represent metasomatized mantle, which served as a source of basaltic melts. The xenoliths bear signs of partial melting and previous metasomatic transformations. The latter include the replacement of orthopyroxene by clinopyroxene in the lherzolites and, respectively, the wide development of wehrlites and olivine clinopyoroxenites. Metasomatic alteration of the peridotites is accompanied by a sharp decrease in Mg, Cr, and Ni, and increase of Ti, Al, Ca contents and 3+Fe/2+Fe ratio, as well as the growth of trace V, Sc, Zr, Nb, and Y contents. The compositional features of the rocks such as the growth of 3+Fe/2+Fe and the wide development of Ti-magnetite in combination with the complete absence of sulfides indicate the high oxygen fugacity during metasomatism and the low sulfur concentration, which is a distinctive signature of fluid mode during formation of the Makhtesh Ramon alkali basaltic magma. Partial melting of peridotites and clinopyroxenites is accompanied by the formation of basanite or alkali basaltic melt. Clino- and orthopyroxenes are subjected to melting. The crystallization products of melt preserved in the mantle rock are localized in the interstices and consist mainly of fine-grained clinopyroxene, which together with Ti-magnetite, ilmenite, amphibole, rhenite, feldspar, and nepheline, is cemented by glass corresponding to quartz–orthopyroxene, olivine–orthopyroxene, quartz–feldspar, or nepheline–feldspar mixtures of the corresponding normative minerals. The mineral assemblages of xenoliths correspond to high temperatures. The high-Al and high-Ti clinopyroxene, calcium olivine, feldspar, and feldspathoids, amphibole, Ti-magnetite, and ilmenite are formed at 900–1000°. The study of melt and fluid inclusions in minerals from xenoliths indicate liquidus temperatures of 1200–1250°C, solidus temperatures of 1000–1100°C, and pressure of 5.9–9.5 kbar. Based on the amphibole–plagioclase barometer, amphibole and coexisting plagioclase were crystallized in clinopyroxenites at 6.5–7.0 kbar.  相似文献   

5.
The Okete Volcanics form small volume monogenetic volcanoes situated around the flanks of larger tholeiitic cones of the Plio-Pleistocene Alexandra Volcanics, in the back-arc tectonic environment of western North Island, New Zealand. The lavas and tuffs of the Okete Volcanics have compositions which include basanites, alkali olivine basalts, olivine tholeiites, and hawaiites. Most rocks have Mg numbers >66, >250 p.p.m. Ni, >500 p.p.m. Cr, and often contain ultramafic xenoliths, which indicate that they are very close to being primary magmas. The Okete Volcanics show geochemical trends, from basanite to hawaiite, of progressive depletion of both compatible and incompatible trace elements, progressive increase in Al2O3, and heavy REE and Y enrichment with crossingover REE patterns in the hawaiites. These geochemical trends can be accounted for by varying degrees of partial melting of a light REE enriched garnet peridotite with subsequent modification of the melts near source or during ascent by fractional crystallization of olivine and minor clinopyroxene. Mass balance calculations cannot quantitatively constrain the degree of partial melting or fractional crystallization, but nevertheless indicate that the Okete alkali olivine basalts, olivine tholeiites, and hawaiites have been derived by successively larger degrees of partial melting relative to basanites, and have also been progressively more modified by fractional crystallization than have the basanites. Sources of the alkalic melts lay at depths corresponding to >20 kb, and most of the ultramafic xenoliths, apart from some which may be cognate cumulates, are unrelated to the magmas that brought them to the surface. Magmas have changed in composition with time from older smaller-volume volcanoes of basanite or alkali olivine basalt compositions, to younger and more voluminous volcanoes which contain hawaiites. The geochemical trends shown by the Okete Volcanics and their spatial association with voluminous tholeiitic volcanism, are features which are different from those observed elsewhere in the Pliocene to Recent basaltic fields of northern North Island, and may be related to their unique tectonic setting, situated in a distinct structural domain.  相似文献   

6.
Quaternary basalts in the Cerro del Fraile area contain two types of mantle xenoliths; coarse-grained (2–5 mm) C-type spinel harzburgites and lherzolites, and fine-grained (0.5–2 mm) intensely metasomatized F-type spinel lherzolites. C-type xenoliths have high Mg in olivine (Fo = 90–91) and a range in Cr# [Cr/ (Cr + Al) = 0.17–0.34] in spinel. Two C-type samples contain websterite veinlets and solidified patches of melt that is now composed of minute quenched grains of plagioclase + Cr-spinel + clinopyroxene + olivine. These patches of quenched melts are formed by decompression melting of pargasitic amphibole. High Ti contents and common occurrence of relic Cr-spinel in the quenched melts indicate that the amphibole is formed from spinel by interaction with the Ti-rich parental magma of the websterite veinlets. The fO2 values of these two C-type xenoliths range from ΔFMQ −0.2 to −0.4, which is consistent with their metasomatism by an asthenospheric mantle-derived melt. The rest of the C-type samples are free of “melt,” but show cryptic metasomatism by slab-derived aqueous fluids, which produced high concentrations of fluid-mobile elements in clinopyroxenes, and higher fO2 ranging from ΔFMQ +0.1 to +0.3. F-type lherzolites are intensely metasomatized to form spinel with low Cr# (∼0.13) and silicate minerals with low MgO, olivine (Fo = ∼84), orthpyroxene [Mg# = Mg/(Mg + ΣFe) = ∼0.86] and clinopyroxene (Mg# = ∼0.88). Patches of “melt” are common in all F-type samples and their compositions are similar to pargasitic amphibole with low TiO2 (<0.56 wt%), Cr2O3 (<0.55 wt%) and MgO (<16.3 wt%). Low Mg# values of silicate minerals, including the amphibole, suggest that the metasomatic agent is most likely a slab melt. This is supported by high ratios of Sr/Y and light rare earth elements (REE)/heavy REE in clinopyroxenes. F-type xenoliths show relatively low fO2 (ΔFMQ −0.9 to −1.1) compared to C-type xenoliths and this is explained by the fusion of organic-rich sediments overlying the slab during the slab melt. Trench-fill sediments in the area are high in organic matter. The fusion of such wet sediments likely produced CH4-rich fluids and reduced melts that mixed with the slab melt. High U and Th in bulk rocks and clinopyroxene in F-type xenoliths support the proposed interpretation.  相似文献   

7.
Leander Franz  Rolf L. Romer 《Lithos》2010,114(1-2):30-53
Petrologic, geochemical and isotopic investigations on two ultramafic xenoliths with metasomatic veins from the TUBAF Seamount in the Bismarck Archipelago NE of Papua New Guinea reveal different styles of metasomatic overprinting. The first xenolith, a clinopyroxene–poor spinel lherzolite, was part of the depleted upper mantle. It contains an orthopyroxene-rich vein that formed by hydrous metasomatism at ~ 980 °C and ~ 1.5 GPa. The second xenolith is a clinopyroxene-dominated spinel olivine websterite that formed as a magmatic cumulate at the transition of the upper mantle to the oceanic crust. The websterite contains a vein with orthopyroxenes and clinopyroxenes, which give evidence for high-temperature crystallization at ~ 1300 °C and < 0.36 GPa. Both xenoliths were transported to the seafloor by a Quaternary trachybasalt in a fore-arc position. The vein minerals show a strong affinity to a supra-subduction zone or island arc setting. The REE pattern of the vein in the clinopyroxene–poor lherzolite strongly resembles the one from the host trachybasalt, with a high enrichment of the LREE and a strong to moderate enrichment of the MREE and HREE. Although broadly similar in shape, the REE pattern of the vein in the websterite shows a much weaker enrichment. The same applies to the trace-element patterns, although there are significant differences in the Eu, Zr, Hf and Nb concentrations. The isotope signatures of both veins suggest a derivation from a subducted slab that had been hydrothermally altered by seawater (high 87Sr/86Sr values).The contrasting crystallization temperatures of the vein minerals as well as their overall geochemical differences indicate that the metasomatic agents responsible for the vein in the websterite were mobilized from a previously depleted source at a much deeper mantle level than those forming the vein of the clinopyroxene–poor lherzolite. The metasomatic agents may also have been mobilized at different times and from different plates, i.e., the deeply subducted Solomon Sea Microplate (for the veins in the websterite) and the shallow dehydrating Pacific Plate (for the veins in the clinopyroxene–poor lherzolite).Metasomatic agents responsible for similar petrologic phenomena, i.e., modal or cryptic metasomatism, may have distinctly different origins and show contrasting histories. A strongly depleted lherzolite may totally lose its initial geochemical signature by the influence of an enriched metasomatic agent, whereas a primarily enriched ultramafic rock, e.g., a websterite, may strongly obscure the trace-element pattern of a less enriched metasomatic vein. Furthermore, the geochemistry of the ultramafic xenoliths may reflect polyphase cryptic and modal metasomatism related to veining and later transport by the hosting melt to the seafloor.  相似文献   

8.
We found fine-grained Fe-rich orthopyroxene-rich xenoliths (mainly orthopyroxenite) containing partially digested dunite fragments of Group I from Takashima, Southwest Japan. Orthopyroxenite veinlets, some of which contain plagioclase at the center, also replace olivine in dunite and wehrlite xenoliths of Group I. This shows high reactivity with respect to olivine of the melt involved in orthopyroxenite formation, indicating its high SiO2 activity. The secondary orthopyroxene of this type is characterized by low Mg# [= Mg/(Mg + total Fe) atomic ratio] (down to 0.73) and high Al2O3 contents (5–6 wt%). It is different in chemistry from other secondary orthopyroxenes found in peridotite xenoliths derived from the mantle wedge. Clinopyroxenes in the Fe-rich orthopyroxenite show a convex-upward REE pattern with a crest around Sm. This pattern is strikingly similar to that of clinopyroxenes of Group II pyroxenite xenoliths and of phenocrystal and xenocrystal clinopyroxenes, indicating involvement of similar alkali basaltic melts. The Fe-rich orthopyroxenite xenoliths from Takashima formed by reaction between evolved alkali basalt melt and mantle olivine; alkali basalt initially slightly undersaturated in silica might have evolved to silica-oversaturated compositions by fractional crystallization at high-pressure conditions. The Fe-rich orthopyroxenites occur as dikes within the uppermost mantle composed of dunite and wehrlite overlying pockets of Group II pyroxenites. The orthopyroxene-rich pyroxenites of this type are possibly common in the uppermost mantle beneath continental rift zones where alkali basalt magmas have been prevalent.  相似文献   

9.
We found extremely high-Mg# (=Mg/(Mg + total Fe) atomic ratio) ultramafic rocks in Avacha peridotite suite. All the high-Mg# rocks have higher modal amounts of clinopyroxene than ordinary Avacha peridotite xenoliths, and their lithology is characteristically heterogeneous, varying from clinopyroxenite through olivine websterite to pyroxene-bearing dunite. The Mg# of minerals is up to 0.99, 0.98 and 0.97 in clinopyroxene, orthopyroxene and olivine, respectively, decreasing progressively toward contact with dunitic part, if any. The petrographical feature of pyroxenes in the high-Mg# pyroxenite indicates their metasomatic origin, and high LREE/HREE ratio of the metasomatic clinopyroxene implies that the pyroxenites are the products of reaction between dunitic peridotites and high-Ca, silicate-rich fluids. The lithological variation of the Avacha high-Mg# pyroxenites from clinopyroxenite to olivine websterite resulted from various degrees of fluid-rock reaction coupled with fractional crystallization of the high-Ca fluids, which started by precipitation of high-Mg# clinopyroxene. Such fluids were possibly generated originally at a highly reduced serpentinized peridotite layer above the subducting slab. The fluids can reach the uppermost mantle along a shear zone as a conduit composed of fine-grained peridotite that developed after continent-ward asthenospheric retreats from the mantle wedge beneath the volcanic front. The fluids are incorporated in mantle partial melts when the magmatism is activated by expansion of asthenosphere to mantle wedge beneath the volcanic front.  相似文献   

10.
Rare dunite and 2-pyroxene gabbro xenoliths occur in banded trachyte at Puu Waawaa on Hualalai Volcano, Hawaii. Mineral compositions suggest that these xenoliths formed as cumulates of tholeiitic basalt at shallow depth in a subcaldera magma reservoir. Subsequently, the minerals in the xenoliths underwent subsolidus reequilibration that particularly affected chromite compositions by decreasing their Mg numbers. In addition, olivine lost CaO and plagioclase lost MgO and Fe2O3 during subsolidus reequilibration. The xenoliths also reacted with the host trachyte to form secondary mica, amphibole, and orthopyroxene, and to further modify the compositions of some olivine, clinopyroxene, and spinel grains. The reaction products indicate that the host trachyte melt was hydrous. Clinopyroxene in one dunite sample and olivine in most dunite samples have undergone partial melting, apparently in response to addition of water to the xenolith. These xenoliths do not contain CO2 fluid inclusions, so common in xenoliths from other localities on Hualalai, which suggests that CO2 was introduced from alkalic basalt magma between the time CO2-inclusion-free xenoliths erupted at 106±6 ka and the time CO2-inclusion-rich xenoliths erupted within the last 15 ka.  相似文献   

11.
Kazuhito Ozawa 《Lithos》1983,16(1):1-16
The Miyamori ultramafic complex forms the basal ultramafic portion of an ophiolite. The complex consists of a tectonic member which is composed dominantly of harzburgite and dunite, and a cumulate member which is composed of interlayered wehrlite, dunite and clinopyroxenite. The tectonite member is overlain by the cumulate member and characterized by tabular granular or porphyroclastic textures, a strong lineation and magnesian olivine (Mg/Mg + Fe = 0.88–0.93). In contrast, the cumulate member exhibits igneous textures and shows no evidence of a penetrative deformation. The olivine is less magnesian than that of the tectonite member (Mg/Mg + Fe = 0.82–0.89). At the boundary of the two members, harzburgite xenoliths have been found in wehrlite of the cumulate member. The minerals at the core of a few large harzburgite xenoliths preserve the compositional characteristics of typical harzburgites in the tectonic member. The occurrence of the harzburgite xenolith in vehrlite and the structural and textural features of the two members indicate that the tectonite member had already been deformed before a magma intruded into the tectonite member and formed a magma chamber in which cumulates were deposited together with harzburgite fragments on the floor of the tectonite. The xenoliths show a fine grained mosaic texture, which may be attributed by the heat of the intruded magma. This hiatus implies that the magma which made the cumulate member did not originate directly from the underlying harzburgite.  相似文献   

12.
Ultramafic xenoliths (harzburgite, olivine-orthopyroxenite,orthopyroxenite, websterite and clinopyroxenite) in a Plio-Quaternarystrombolian cone near Tissemt (Egg?r?, Hoggar, Algerian Sahara)contain large (up to 1 mm in diameter) euhedral flakes of graphite.These xenoliths are associated with mafic granulites free ofgraphite. Petrological, mineralogical, and geochemical dataindicate that these rocks have been scavenged from a Precambrianlayered intrusion emplaced in the deep crust. Textural evidencesuggests that the graphite could have crystallized relativelyearly from a silica-saturated melt: following cumulus crystallizationof olivine and orthopyroxene, the graphite crystallized, togetherwith olivine, orthopyroxene, and spinel, as a component of theintercumulus assemblage. The crystallization of graphite directlyfrom the melt is related to relatively high pressure (c. 5 kb)of carbon-rich fluid (CO+CO2+H2O) at relatively low oxygen fugacity(–logfo2, 10 at 1200 ?C).  相似文献   

13.
14.
本文对华北克拉通三个不同地区(河北汉诺坝、内蒙古集宁三义堂、河南鹤壁)新发现的含金云母尖晶石二辉橄榄岩和尖晶石橄榄单斜辉石岩捕虏体进行了详细的矿物组成、单斜辉石的微量元素和 Sr-Nd 同位素研究。通过与相同地区不含金云母尖晶石二辉橄榄岩捕虏体的系统对比发现通常含金云母的地幔橄榄岩比不含金云母的地幔橄榄岩岩富 Al_2O_3、CaO、NaO、K_2O、TiO_2,但相对贫镁;其单斜辉石的 LREE 更为富集,但 Sr、Nd 同位素组成则相对亏损。这说明地幔交代作用不仅能够造成地幔橄榄岩的玄武质组分和稀土元素的富集,而且亦能够造成全岩和橄榄石 Mg~#的降低和同位素组成的相对亏损。捕虏体的 Rb-Sr 等时线年龄暗示地幔交代作用发生在中、新生代;其交代熔体来源于软流圈。同时说明华北新生代岩石圈地慢普遍存在的主、微量元素和同位素组成类似于"大洋型"岩石圈地幔的特征很可能是岩石圈地幔橄榄岩与软流圈来源的熔体的大规模反应的结果,而非真正意义上的新增生的岩石圈地幔。  相似文献   

15.
A suite of spinel lherzolite and wehrlite xenoliths from a Devonian kimberlite dyke near Kandalaksha, Kola Peninsula, Russia, has been studied to determine the nature of the lithospheric mantle beneath the northern Baltic Shield. Olivine modal estimates and Fo content in the spinel lherzolite xenoliths reveal that the lithosphere beneath the Archaean–Proterozoic crust has some similarities to Phanerozoic lithospheric mantle elsewhere. Modal metasomatism is indicated by the presence of Ti-rich and Ti-poor phlogopite, pargasite, apatite and picroilmenite in the xenoliths. Wehrlite xenoliths are considered to represent localised high-pressure cumulates from mafic–ultramafic melts trapped within the mantle as veins or lenses. Equilibration temperatures range from 775 to 969 °C for the spinel lherzolite xenoliths and from 817 to 904 °C for the wehrlites.

Laser ablation ICP-MS data for incompatible trace elements in primary clinopyroxenes and metasomatic amphiboles from the spinel lherzolites show moderate levels of LREE enrichment. Replacement clinopyroxenes in the wehrlites are less enriched in LREE but richer in TiO2. Fractional melt modelling for Y and Yb concentrations in clinopyroxenes from the spinel lherzolites indicates 7–8% partial melting of a primitive source. Such a volume of partial melt could be related to the 2.4–2.5 Ga intrusion of basaltic magmas (now metamorphosed to garnet granulites) in the lower crust of the northern Baltic Shield. The lithosphere beneath the Kola Peninsula has undergone several episodes of metasomatism. Both the spinel lherzolites and wehrlites were subjected to an incomplete carbonatitic metasomatic event, probably related to an early carbonatitic phase associated with the 360–380 Ma Devonian alkaline magmatism. This resulted in crystallisation of secondary clinopyroxene rims at the expense of primary orthopyroxenes, with development of secondary forsteritic olivine and apatite. Two separate metasomatic events resulted in the crystallisation of the Ti–Fe-rich amphibole, phlogopite and ilmenite in the wehrlites and the low Ti–Fe amphibole and phlogopite in the spinel lherzolites. Alternatively, a single metasomatic event with a chemically evolving melt may have produced the significant compositional differences seen in the amphibole and phlogopite between the spinel lherzolites and wehrlites. The calculated REE pattern of a melt in equilibrium with clinopyroxenes from a cpx-rich pocket is identical to that of the kimberlite host, indicating a close petrological relationship.  相似文献   


16.
Hualalai Volcano, Hawaii, is best known for the abundant and varied xenoliths included in the historic 1800 Kaupulehu alkalic basalt flow. Xenoliths, which range in composition from dunite to anorthosite, are concentrated at 915-m elevation in the flow. Rare cumulate ultramafic xenoliths, which include websterite, olivine websterite, wehrlite, and clinopyroxenite, display complex pyroxene exsolution textures that indicate slow cooling. Websterite, olivine websterite, and one wehrlite are spinel-bearing orthopyroxene +olivine cumulates with intercumulus clinopyroxene +plagioclase. Two wehrlite samples and clinopyroxenite are spinel-bearing olivine cumulates with intercumulus clinopyroxene+orthopyroxene + plagioclase. Two-pyroxene geothermometry calculations, based on reconstructed pyroxene compositions, indicate that crystallization temperatures range from 1225° to 1350° C. Migration or unmixing of clinopyroxene and orthopyroxene stopped between 1045° and 1090° C. Comparisons of the abundance of K2O in plagioclase and the abundances of TiO2 and Fe2O3in spinel of xenoliths and mid-ocean ridge basalt, and a single 87Sr/ 86Sr determination, indicate that these Hualalai xenoliths are unrelated to mid-ocean ridge basalt. Similarity between the crystallization sequence of these xenoliths and the experimental crystallization sequence of a Hawaiian olivine tholeiite suggest that the parental magma of the xenoliths is Hualalai tholeiitic basalt. Xenoliths probably crystallized between about 4.5 and 9 kb. The 155°–230° C of cooling which took place over about 120 ka — the age of the youngest Hualalai tholeiitic basalt — yield maximum cooling rates of 1.3×10–3–1.91×10–3 °C/yr. Hualalai ultramafic xenoliths with exsolved pyroxenes crystallized from Hualalai tholeiitic basalt and accumulated in a magma reservoir located between 13 and 28 km below sealevel. We suspect that this reservoir occurs just below the base of the oceanic crust at about 19 km below sealevel.  相似文献   

17.
《地学前缘(英文版)》2020,11(3):943-964
Clinopyroxene-enriched upper mantle xenoliths classified as wehrlites are common(~20% of all xenoliths) in the central part of the Nograd-G(o| ")m(o|")r Volcanic Field(NGVF),situated in the northern margin of the Pannonian Basin in northern Hungary and southern Slovakia.In this study,we thoroughly investigated 12 wehrlite xenoliths,two from each wehrlite-bearing occurrence,to determine the conditions of their formation.Specific textural features,including clinopyroxene-rich patches in an olivine-rich lithology,orthopyroxene remnants in the cores of newlyformed clinopyroxenes and vermicular spinel forms all suggest that wehrlites were formed as a result of intensive interaction between a metasomatic agent and the peridotite wall rock.Based on the major and trace element geochemistry of the rock-forming minerals,significant enrichment in basaltic(Fe,Mn,Ti) and high field strength elements(Nb,Ta,Hf,Zr) was observed,compared to compositions of common lherzolite xenoliths.The presence of orthopyroxene remnants and geochemical trends in rock-forming minerals suggest that the metasomatic process ceased before complete wehrlitization was achieved.The composition of the metasomatic agent is interpreted to be a mafic silicate melt,which was further confirmed by numerical modelling of trace elements using the plate model.The model results also show that the melt/rock ratio played a key role in the degree of petrographic and geochemical transformation.The lack of equilibrium and the conclusions drawn by using variable lherzolitic precursors in the model both suggest that wehrlitization was the last event that occurred shortly before xenolith entrainment in the host mafic melt.We suggest that the wehrlitization and the Plio-Pleistocene basaltic volcanism are related to the same magmatic event.  相似文献   

18.
Orthopyroxene-rich olivine websterite xenoliths (OWB2) in Palaeogene basanites in East Serbia are mostly composed of tabular low-Al2O3 orthopyroxene (> 70 vol.%, Mg# 85–87) containing tiny Cr spinel inclusions. Orthopyroxene shows a slightly U-shaped primitive mantle-normalized trace element pattern with strong peaks at U and Pb, similar to that of orthopyroxene from normal regional peridotitic mantle. In between the orthopyroxenes are interstitial spaces composed of partially altered olivine (Mg# 85–87), clinopyroxene, Ti-rich spinel, Mg-bearing calcite, K-feldspar, apatite, ilmenite and relicts of a hydrous mineral. Clinopyroxene appears as selvages around orthopyroxene and as coarser euhedral crystals. Trace element patterns of the clinopyroxene selvages resemble those of adjacent orthopyroxene, whereas the coarser ones have flatter and more LREE- and LILE-enriched patterns, similar to that of metasomatic clinopyroxene. The OWB2 xenoliths are interpreted as having formed in two stages. During Stage I orthopyroxene crystallized, along with some spinel, olivine and probably hydrous phase(s). This original OWB2 lithology was a hydrous olivine-bearing orthopyroxenite that crystallised from subduction-related SiO2-saturated, boninite-like magmas. During Stage II the interstitial minerals formed due to infiltration of a low-SiO2, high-CaO and CO2-rich external melt, accompanied by decomposition of original H2O-bearing minerals. The calculated composition of the infiltrating liquid corresponds to a mafic alkaline melt similar to the basanitic host but more enriched in CO2, LREE and LILE. Metasomatism is interpreted in terms of small degree melts related to the Palaeogene mafic alkaline magmatism.  相似文献   

19.
Seventeen upper-mantle ultramafic xenoliths from the Lower Quaternary Tal Khodr Imtan cinder cone in southern Syria have revealed a dominant protogranular texture of nine spinel lherzolites, two spinel harzburgites, four spinel dunites, one spinel olivine websterite, and one spinel clinopyroxenite. The lherzolites, harzburgites, and dunites contain Cr-diopside and brown-red picotite, with a basanitic host rock; the websterite and clinopyroxenite contain Ti-Al-augite and Cr-hercynite. A lherzolite to dunite depletion trend is shown in the abundance of intermediate- and lightrare-earth elements (IREE and LREE) and from analytical data of dunitic olivine, with Ca, Al, Fe, Cr, and Si being the most depleted elements. The depletion probably resulted from successive partial melting. The scoriaceous basanite shows enrichments in REE and trace elements from a plume; the basanitic coating (around ultramafic xenoliths) increases in Mg/Mg+Fe+2 and concentrations of Al2O3, TiO2, and Na2O by contamination from peridotitic olivine, and also from eclogite-gabbro and nephelinite near the bottom of the rifted crust.

Differences in the REE and trace-element concentrations among the peridotite xenoliths, the basanite host rock, and websterite indicate at least three different depths for their parent sources. The ultramafic inclusions in the basanitic host rock, as well as xenoliths in a carbonatite dike, suggest a deeper source for the carbonatite magma. At least part of the enrichment of the plume probably was accomplished by the subducted Tethys oceanic crust, suboceanic litho-sphere, and eclogite-gabbro. The thick plateau basalt in southern Syria indicates heavy and deep fracturing, and the extrusions of successive magmas from the upper mantle created a stretching and thinning in the continental crust. The proximity of this plateau basalt area to the Dead Sea-Jordan River Valley Rift, together with the source of the ultramafic xenoliths, points to a possible close relationship between the Red Sea Rift and the fracturing (offshoot rifting) in southern Syria.  相似文献   

20.
A suite of metasomatised xenoliths from the Letlhakane kimberlite (Botswana) forms a metasomatic sequence from garnet peridotite to garnet phlogopite peridotite to phlogopite peridotite. Before the modal metasomatism, most of the Letlhakane xenoliths were depleted harzburgites that had been subjected to an earlier cryptic metasomatic event. Modal phlogopite and clinopyroxene - Cr-spinel increase at the expense of garnet and orthopyroxene with increasing degrees of metasomatism. The most metasomatised xenolith is a wehrlite. With progressive modal metasomatism, the clinopyroxene becomes enriched in Sr, Sc and the LREE, orthopyroxene becomes depleted in Ca and Ni, but enriched in Al and Mn, and olivine becomes depleted in Al and V. Garnet chemical composition largely remains unchanged. The garnet replacement reaction seen in most xenoliths allows the measurement of the flux of trace elements through detailed modal analysis of the pseudomorphs. Mass balance calculations show that the modally metasomatised rocks became enriched in incompatible elements such as Sr, Na, K, the LREE and the HFSE (Ti, Zr and Nb). Major elements (Al, Cr and Fe) and garnet-compatible trace elements (V, Y, Sc, and the HREE) were removed during this metasomatic process. The modal metasomatism caused a strong depletion in Al, and the results challenge previous suggestions that this metasomatic process merely occurred within an Al-poor environment. The data suggest that the xenoliths represent the mantle wallrock adjacent to a major conduit for an alkaline basic silicate melt (with high contents of volatile and incompatible elements). The volatile and incompatible element-enriched component of this melt percolated into the wallrock along a strong temperature gradient and caused the observed range of metasomatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号