首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Volcanic activity has produced Late Tertiary and Quaternary cinder cones and flows between the Snake River Plain, U.S.A. and the Yukon Territory, Canada. The rock types include basanites, alkali olivine basalts, high-iron basalts, hawaiites, ankaramites, nephelinites, and olivine tholeiites. The alkali olivine basalts, basanites and hawaiites sampled are chemically similar to rocks from the mid-Atlantic islands. Associated with the volcanic rocks are xenoliths of ultramafic rocks, gabbros, granites and granulites.Seismic data indicate that the Moho throughout the region dips eastward at a very shallow angle. The low velocity zone has been located beneath southern British Columbia and displays a topographic high trending northwest-southeast. The nephelinite was erupted from near the crest of this high with less undersaturated lavas erupted from along its flanks.The suite of ultramafic xenoliths spans a greater variety of rock types than can be generated by maximum amounts of partial melting of a uniform source material to produce the lavas in the region. Calculated residual olivine compositions in equilibrium with the magmas at low velocity zone depths and liquidii temperatures are more iron-rich than the typical lherzolite xenolith olivine. This suggests that the residua from the partial melting episodes which produced the volcanic rocks are different from the upper mantle lid above the low velocity zone as represented by the ultramafic xenoliths.  相似文献   

2.
A total of 17 alkali basalts (alkali olivine basalt, limburgite, olivine nephelinite) and quartz tholeiites, and of 10 peridotite xenoliths (or their clinopyroxenes) were analyzed for Nd and Sr isotopes. 143Nd/144Nd ratios and 87Sr/86Sr ratios of all basalts and of the majority of ultramafic xenoliths plot below the mantle array with a large variation in Nd isotopes and a smaller variation in Sr isotopes. The tholeiites were less radiogenic in Nd than the alkali basalts. Volcanics from the Eifel and Massif Central regions contain Nd and Sr, which is more radiogenic than that of the basalts from the Hessian Depression. Nd and Sr isotopic compositions of all rocks from the latter area, with the exception of one tholeiite and one peridotite plot in the same field of isotope ratios as the Ronda ultramafic tectonite (SW Spain), which ranges in composition from garnet to plagioclase peridotite. The alkali basaltic rocks are products of smaller degrees of partial melting of depleted peridotite, which has undergone a larger metasomatic alteration compared with the source rock of tholeiitic magmas. For the peridotite xenoliths such metasomatic alteration is indicated by the correlation of their K contents and isotopic compositions. We assume that the upper mantle locally can acquire isotopic signatures low in radiogenic Nd and Sr from the introduction of delaminated crust. Such granulites low in radiogenic Nd and Sr are products of early REE fractionation and granite (Rb) separation.  相似文献   

3.
吉林双辽七星山新生代玄武岩的特点及其成因探讨   总被引:8,自引:1,他引:8  
本文通过岩石学、稀有元素及同位素地球化学等方面的研究,确认吉林双辽七星山火山是在国内含超镁铁岩包体的火山中唯一喷发于早第三纪的钠质系列碱性玄武岩火山群。该火山群中部三座山所产富橄碧玄岩系幔源原生岩浆直接喷发于地表的产物,并携有大量超镁铁岩包体;东部和西部五座山中的碱性橄榄玄武岩和粒玄岩同样来源于上地幔,但曾经历过一定程度的结晶分异作用。文中根据本区的特点和新的参数,重新计算了原生岩浆的几个判别标准。  相似文献   

4.
Major and trace element data on the Archean metavolcanic rocks of the Prince Albert Group (PAG), Northwest Territories. Canada, are reported. The following major groups were found, based on combined field and geochemical evidence: ultramafic flows; basaltic rocks, predominantly tholeiites; andesites; heavy REE depleted dacites; and rhyolites.The ultramafic and basaltic rocks are relatively normal Archean volcanics except for the downward bowed REE patterns of the tholeiitic basalts. The andesites, dacites and rhyolites, however, are not typical of Archean terrains. Comparisons between the andesites of the PAG and other Archean and more recent ones show that those of the PAG are most similar chemically to modern high-K andesites. REE patterns in these rocks suggest that partial melting of assemblages with significant garnet are an unlikely source but it is not possible to ascribe their origin to any simple process. Partial melting of a garnet-poor mafic granulite is an acceptable source for the heavy REE depleted dacites. The geochemical characteristics of the rhyolites cannot be explained by partial melting of a mafic source or by fractional crystallization from the daeites. It is suggested that these rocks originated by partial melting of pre-existing sialic crust.  相似文献   

5.
Rare earth abundances were determined by neutron activation in twenty Hawaiian lavas and one diabase of known chemical and mineralogical compositions. These results demonstrate a systematic relationship between the absolute or relative rare earth abundances and the petrochemistry of these rocks. Three distinct lava groups are recognized. These correspond to: (1) tholeiites, (2) alkali series, (3) nepheline-melilite basalts.Based on rare earths: a) The hawaiites and mugearite of the alkali series represent residual melts derived from alkali olivine basalts, most likely by fractional crystallization; the trachyte, however, seems to have a more complicated history. b) Fractional crystallization models linking nephelinites or alkali olivine basalts to tholeiites are possible. However, production of these three lava groups, independently, by various degrees of partial melting of the mantle is equally likely and cannot be distinguished from these fractional crystallization models. c) Daly limestone syntexis hypothesis to produce the nephelinites is unlikely.  相似文献   

6.
ADAM  JOHN 《Journal of Petrology》1990,31(6):1201-1223
Sodic basalts of Oligocene-Early Micene age occur within anEarly Tertiary graben in the Oatlands district of Tasmania.They include olivine tholeiites, alkali olivine basalts, basanites,transitional nephelinites, nepheline hawaiites, and nephelinemugearites. They have compositional characteristics in commonwith sodic alkaline basalt suites from other parts of the world.With decreasing SiO2, concentrations of CaO, alkalis, P2O5,and incompatible trace elements increase. Compositional and experimental data for the basalts are consistentwith their derivation by polybaric partial melting of a garnetlherzolite source enriched in P2O5, light rare earths, Nb, andother incompatible trace elements. Experimental data for a primitivenepheline basanite from the Oatlands district indicate thatconcentrations of H2O+CO2 need not have been more than 6?5 wt.%for the original basanite magma to have derived from an amphibole-bearinggarnet lherzolite source. In the case of more SiO2-undersaturatedolivine melilitites from the neighbouring Central Plateau, theexperimental evidence is consistent with either higher concentrationsof H2O+CO2 (approaching 14 wt.%), or higher pressures of origin(>35 kb). Petrographic and geochemical evidence suggeststhat the latter is the more probable of the alternatives.  相似文献   

7.
Tholeiitic basalts dredged from the Mid-Atlantic Ridge (MAR) axis at 43 ° N are enriched in incompatible trace elements compared to the ‘ normal’ incompatible element depleted tholeiites found from 49 ° N to 59 ° N and south of 33 ° N on the MAR. The most primitive 43 ° N glasses have MgO/FeO*= 1.2 and coexist with olivine (Fo90–91) and chrome-rich spinel. The tholeiitic basalts from the MAR 43 ° N are distinct from the strongly incompatible trace element depleted tholeiities found elsewhere in the Atlantic, and have trace element features typical of island tholeiities and MAR axis tholeiites from 45 ° N. Petrographic, major, and compatible trace element trends of the axial valley tholeiites at 43 ° N are consistent with shallow-level fractionation; in particular, evolution from primitive liquids with forsteritic olivine plus chrome spinel as liquidus phases to fractionated liquids with plagioclase plus clinopyroxene as major crystallizing phases. However, each dredge haul has distinctive incompatible trace element abundances. These trace element characteristics require a hetrogeneous mantle or complex processes such as open system fractional crystallization and magma mixing. Alkali basalts (~5% normative nepheline) were dredged from a prominent fracture zone at 43 ° N. Typical of alkali basalts they are strongly enriched (compared to tholeiites) in incompatible elements. Their highly fractionated rare-earth element (REE) abundances require residual garnet during partial melting. The 43 ° N tholeiites and alkali basalts could be derived from a garnet peridotite source with REE contents equal to 2 × chondrites by ~5% and 1% melting, respectively. Alternatively, they could be derived from a moderately light REE enriched source by ~25% and 9.5% melting, respectively.  相似文献   

8.
The Cenozoic volcanicity of eastern China is entirely basalticand occurred as relatively small eruptions widely dispersedin space and time, closely associated with graben basins andtheir regional bounding faults. Samples (157) from over 30 sitesin eastern China have been studied. They are predominantly alkalinebasalts, but vary in composition from olivine nephelinites andleucitites to quartz tholeiites. The majority are aphyric butsome contain olivine and clinopyroxene phenocrysts. Whole-rockanalyses (X-ray fluorescence) of all samples for the major and13 trace elements are used, as are the compositions of all themajor mineral phases determined by electron microprobe. It is argued that the most primitive basanites, alkali olivinebasalts, and olivine tholeiites represent primary or near-primarymagmas which were formed by different degrees of partial meltingof the upper mantle at different depths. The olivine tholeiitesrepresent larger degrees of partial melting (8–9%) ofa spinel peridotite at depths of <66 km. The alkalic basaltscarry xenoliths of spinel and garnet peridotite and appear tohave been derived by 1–7% partial melting of a garnetlherzolite (50% ol, 25% opx, 15% cpx, 10% garnet) at depths> 79 km. The olivine nephelinite may have formed by evensmaller degrees of partial melting. Most flows are not primary; the variations in their compositionsare consistent with fractional crystallization from the spectrumof primary parents created by varying degrees of partial meltingof a mineralogically heterogeneous source. The tholeiites havefractionated by the removal of clinopyroxene and some olivine;the alkali basalts by the removal of clinopyroxene with a smallerproportion of olivine. The incompatible behavior of Sr impliesthe absence of plagioclase from any of the fractionating assemblagesand, together with the high Al content of the pyroxene phenocrysts,suggests that much of the fractionation occurred at mantle depthsand pressures. The Cenozoic magmatism of eastern China is seen as a typicalexample of volcanism associated with continental extension.That is, small volumes of predominantly alkalic basalts andolivine tholeiites erupted over a prolonged period and associatedwith extensional basins and their bounding faults. As such,the province is distinct from continental flood basalt provinces.  相似文献   

9.
The Honolulu Volcanics comprises small volume, late-stage (post-erosional)vents along rifts cutting the older massive Koolau tholeüticshield on Oahu, Hawaii. Most of these lavas and tuff of theHonolulu Volcanics have geochemical features expected of near-primarymagmas derived from a peridotite source containing Fo87–89olivine; e. g. 100 Mg/(Mg + Fe2+) >65, >250 p. p. m. Ni,and presence of ultramafic mantle xenoliths at 18 of the 37vents. Consequently, the geochemistry of the alkali olivinebasalt, basanite, nephelinite and nepheline melilitite lavasand tuff of the Honolulu Volcanics have been used to deducethe composition of their mantle source and the conditions underwhich they were generated by partial melting in the mantle. Compositional trends in 30 samples establish that the magmaswere derived by partial melting of a garnet (<10 per cent)Iherzolite source, which we infer to have been carbon-bearing,from analogy with experimental results. This source was isotopicallyhomogeneous (Sr, Lanphere & Dalrymple, 1980; Pb, Sun, 1980;Nd, Roden et al., 1981), and we infer that the source was compositionallyuniform in all major-element oxides except TiO2, in compatibletrace elements (Sc, V, Cr, Mn, Co and Ni), and in highly incompatibletrace elements (P, Th, La, Ce). However, the source appearsto have been heterogeneous in TiO2, Zr, Hf, Nb, and Ta, elementsthat were not strongly incompatible during partial melting.Some nepheline melilitite samples may be derived from a sourcewith distinct Sc and heavy-rare-earth-elements (REE) abundances,or which had a phase or phases controlling the distributionof these elements. The relatively limited abundance range for several elements,such as Ti, Zr, Nb, is partly a consequence of the low degreesof melting inferred for the series (2 per cent for nephelinemelilitite, 11 per cent for alkali olivine basalt), which failedto exhaust the source in minor residual phases. We infer thatthese residual phases probably included phlogopite, amphibole,and another Ti-rich phase (an oxide?), but not apatite. In comparison with estimates of a primordial mantle compositionand the mantle source of mid-oceanic-ridge basalt the garnetperidotite source of the Honolulu Volcanics was increasinglyenriched in the sequence heavy REEs, Y, Tb, Ti, Sm, Zr, andHf all <P <Nd <Sr Ce <La <Nb Ta. A multi-stagehistory for the source of the Honolulu Volcanics is requiredbecause this enrichment was superimposed on a mantle that hadbeen previously depleted in incompatible elements, as indicatedby the relatively low 87Sr/86Sr ratio, high 143Nd/144Nd ratioand low contents of K, Rb, Ba, and Th. The composition of thesource of the Honolulu Volcanics differs from the source ofthe previously erupted tholeiitic shield. The modal mineralogyof the source of the Honolulu Volcanics is not represented inthe upper-mantle xenoliths, e. g. the garnet pyroxenite andolivine-poor garnet Iherzolite included within the lavas andtuff of the unit.  相似文献   

10.
Reported in this paper are the chemical compositions and trace element (REE,Ba,Rb,Sr,Nb,Zr,Ni,Cr,V,Ga,Y,Sc,Zn,Cu,etc)abundances of Tertiary continental alkali basalts from the Liube-yizheng area,Jiangsu Province,China.The olivine basalt,alkali olivine basalt and basanite are all derived from evolved melts which were once af-fected by different degrees of fractional crystallization of olivine and clinopyroxene(1:2)under high pres-sures.The initial melts were derived from the garnet lherzolite-type mantle source through low-degree par-tial melting.The mantle source has been affected by recent mantle-enrichment events(e.g.mantle metasomatism),resulting in incompatible trace element enrichment and long-term depletion of radiogenic isotopic compositions of Sr and Nd.  相似文献   

11.
The ophiolite complex of Chamrousse (Belledonne Massif, Alps), consists of mafic to ultramafic cumulates and non-cumulates metamorphosed to amphibolite facies grade. The non-cumulitic rocks are similar in chemical composition to recent ocean-floor olivine tholeiites (both N-type and enriched P-type). The distribution of lithophile elements shows that the non-cumulitic rocks represent several magmas of different parentage. The character of the magmas varies according to the time of emplacement.Geological and geochemical data suggest that the Chamrousse complex was formed at a spreading oceanic ridge. The dynamic partial melting of an upper mantle diapir generated tholeiitic melt which decreased in amount and in REE contents. The first melt, enriched in light REE, was generated along the axis of the ridge while the second batch of melt, of lesser quantity and slightly depleted in light REE, was emplaced on the flank of the ridge. The third melt formed cross-cutting dikes with REE abundances typical of N-type (strongly light REE depleted) mid-ocean ridge basalts.  相似文献   

12.
The Leiqiong area, which includes the Leizhou Peninsula and the northern part of the Hainan Island, is the largest province of exposed basalts in southern China. Ar–Ar and K–Ar dating indicates that incipient volcanism in the Leiqiong area may have taken place in late Oligocene time and gradually increased in tempo toward the Miocene and Pliocene Epoch. Volcanic activities were most extensive during Pleistocene, and declined and ended in Holocene. Based on radiometric age dating and geographic distribution, Pliocene and Quaternary volcanism in Hainan Island can be grouped into two stages and six eruptive regions. The early volcanism is dominated by flood type fissure eruption of quartz tholeiites and olivine tholeiites whereas the later phase is dominated by central type eruption of alkali olivine basalts and olivine tholeiites. The systematic decrease of MgO, ΣFeO and TiO2 with increasing SiO2 content for basalts from Hainan Island indicates that fractional crystallization of olivine, clinopyroxene and Ti-bearing opaques may have occurred during magmatic evolution. From coexisting Fe–Ti oxide minerals, it is estimated that the equilibrium temperatures range from 895–986°C and oxygen fugacities range from 10−13.4 to 10−10.7 atmospheres in the basaltic magmas. The incompatible element ratios and the chondrite-normalized REE patterns of basalts from the Leiqiong area are generally similar to OIB. The Nb/U ratios (less than 37) in most of the tholeiitic rocks and the negative Nb anomaly observed in the spidergram of some basalts indicated that the influence of a paleo-subduction zone derived component can not be excluded in considering the genesis of the basalts from the Leiqiong area. The tholeiites in the Leiqiong area may have mixed with a more enriched lithospheric mantle component as well as undergone relatively larger percentages of partial melting than the alkali basalts.  相似文献   

13.
The Miocene to Quaternary lavas of northwestern Syria range from basanite, alkali basalts, and tholeiites to basaltic andesites, hawaiites, and mugearites. Crustal assimilation and fractional crystallization processes (AFC) modified the composition of the mantle derived magmas. Crustal assimilation is indicated by decreasing Nb/U (52.8–17.9) and increasing Pb/Nd (0.09–0.21) and by variable isotopic compositions of the lavas (87Sr/86Sr: 0.7036–0.7048, 143Nd/144Nd: 0.51294–0.51269, 206Pb/204Pb: 18.98–18.60) throughout the differentiation. Modeling of the AFC processes indicates that the magmas have assimilated up to 25% of continental upper crust. The stratigraphy of the lavas reveals decreasing degrees and increasing depths of melting with time and the strongly fractionated heavy rare earth elements indicate melt generation in the garnet stability field. Modeling of melt formation based on trace element contents suggests that 8–10% melting of the asthenospheric mantle source produced the tholeiites, whereas basanite and alkali basalts are formed by 2–4% melting of a similar source.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
The Austral Islands, a volcanic chain in the South-Central Pacific Ocean (French Polynesia) are composed mainly of alkali basalts and basanites with subordinate amounts of olivine tholeiites and strongly undersaturated rocks (phonolite foidites and phonolite tephrites). The basaltic rocks have geochemical features typical of oceanic island suites. The distribution of incompatible trace elements indicate that the lavas were derived from a heterogeneous mantle source. The chondrite-normalized patterns of the incompatible elements in basaltic rocks of the Austral Islands are complementary to those of island arc tholeiites. As supported by isotope data, the observed trace element heterogeneities of the source are probably due to mixing of the upper mantle with subducted oceanic crust from which island arc tholeiitic magma was previously extracted.  相似文献   

15.
Seventeen upper-mantle ultramafic xenoliths from the Lower Quaternary Tal Khodr Imtan cinder cone in southern Syria have revealed a dominant protogranular texture of nine spinel lherzolites, two spinel harzburgites, four spinel dunites, one spinel olivine websterite, and one spinel clinopyroxenite. The lherzolites, harzburgites, and dunites contain Cr-diopside and brown-red picotite, with a basanitic host rock; the websterite and clinopyroxenite contain Ti-Al-augite and Cr-hercynite. A lherzolite to dunite depletion trend is shown in the abundance of intermediate- and lightrare-earth elements (IREE and LREE) and from analytical data of dunitic olivine, with Ca, Al, Fe, Cr, and Si being the most depleted elements. The depletion probably resulted from successive partial melting. The scoriaceous basanite shows enrichments in REE and trace elements from a plume; the basanitic coating (around ultramafic xenoliths) increases in Mg/Mg+Fe+2 and concentrations of Al2O3, TiO2, and Na2O by contamination from peridotitic olivine, and also from eclogite-gabbro and nephelinite near the bottom of the rifted crust.

Differences in the REE and trace-element concentrations among the peridotite xenoliths, the basanite host rock, and websterite indicate at least three different depths for their parent sources. The ultramafic inclusions in the basanitic host rock, as well as xenoliths in a carbonatite dike, suggest a deeper source for the carbonatite magma. At least part of the enrichment of the plume probably was accomplished by the subducted Tethys oceanic crust, suboceanic litho-sphere, and eclogite-gabbro. The thick plateau basalt in southern Syria indicates heavy and deep fracturing, and the extrusions of successive magmas from the upper mantle created a stretching and thinning in the continental crust. The proximity of this plateau basalt area to the Dead Sea-Jordan River Valley Rift, together with the source of the ultramafic xenoliths, points to a possible close relationship between the Red Sea Rift and the fracturing (offshoot rifting) in southern Syria.  相似文献   

16.
The Niutoushan basaltic cone, consisting of subalkali (quartz-tholeiite and olivine-tholeiite) and alkali basalts, is Late Tertiary in age. Its major characteristics are generalized as follows:
  1. Both early subalkali and late alkali bali basalts are formed under the same geological environment.
  2. The continuity in chemical composition from subalkali to alkali and the low FeO/MgO in alkali basalts show that they are the products of cognate magmatic differentiation.
  3. The change from low REE abundance and weak enrichment of LREE in subalkali to high REE abundance and strong enrichment of LREE in alkali basalts indicates obvious REE enrichment and fractionation during magmatic differentiation. Weak positive Eu anomalies in the REE patterns are indicative of their formation under low oxygen fugacity conditions.
  4. According to the calculated values, 70–75% of the primary olivine tholeiitic magma had been separated as subalkaline basaltic magma, the rest residual magma became alkaline basaltic magma. This result is consistent to the field observation that the outcrop area of subalkali basalts is four times as much as that of alkali basalts.
  5. The basaltic rocks of Niutoushan show an S-type distribution straddling the thermal barrier on Ol′-Ne′-Qu′ diagram and an evolution tendency for Ne to increase with increasing FeO/MgO. This is in agreement with the melting experimental data on olivine basalts at 10–20 kb.
  6. Mantle-derived inclusions (spinel lherzolite) in this area occur in both alkali olivine basalts and olivine tholeiites. The latter is of extremely rare occurrence. The formation temperature and pressure of the inclusions in alkalibasalts and olivine tholeiites have been calculated. The results show that the alkaline basaltic magma was separated from the subalkaline basaltic magma at about 20 kb.
Basaltic rocks in Niutoushan were formed through the so-called “high pressure differentiation”, that is, at about 20 kb the crystallization of clinopyroxene and orthpyroxene resulted in the separation of subalkaline basaltic magma from the primary olivine tholeiitic magma, and then the residue gradually became alkaline olivine basaltic magma.  相似文献   

17.
Geochemistry of tholeiites from Lanai,Hawaii   总被引:3,自引:0,他引:3  
Lanai is the third smallest of the fifteen principal subaerial shield volcanoes of the Hawaiian hotspot. This volcano apparently became extinct during the shield-building stage of volcanism, as shown by the absence of both alkalic cap and post-erosional lavas. Major and trace element analyses of 22 new samples collected primarily from 3 stratigraphic sections show that Lanai tholeiites span a large range in composition. Some Lanai lavas are unique geochemically among Hawaiian tholeiites in having the lowest abundances of incompatible trace elements of any Hawaiian lavas and well-developed positive Eu anomalies. The geochemical characteristics of these low-abundance Lanai tholeiites are not the result of alteration, differences in mantle source modal mineralogy, the presence of residual accessory mantle phases or fractional crystallization of such phases, assimilation of depleted [MORB] wall-rock, or accumulation/resorption of phenocrysts or xenocrysts. Incompatible trace element ratios (e.g., Nb/La, Nb/Th, La/Th, La/Hf, Ce/Pb) in Lanai tholeiites span considerable ranges and form coherent trends with each other and with absolute abundances of these elements. Large variations in La/Sm, La/Yb, and absolute REE abundances at constant MgO suggest that Lanai tholeiites formed by variable amounts of partial melting. However, large ranges in incompatible element ratios cannot be explained solely by variations in partial melting of a geochemically homogeneous source, but must reflect geochemical heterogeneities in the Lanai source. Partial melting modeling indicates that the mixed Lanai source is probably LREE-enriched [i.e., (La/Yb)CN>1]. One component in the Lanai source, exemplified by the low-abundance tholeiites, has markedly lower REE/HFSE, Th/HFSE, alkali/HFSE, and Ce/Pb ratios than other Lanai or Hawaiian tholeiites and may indicate the presence of recycled residual subduction zone materials in the Hawaiian plume source. The positive Eu anomalies that characterize the low-abundance Lanai tholeiites are not the result of plagioclase accumulation or assimilation but are a feature of this source component. Progressive temporal geochemical variations in Lanai tholeiites from 2 stratigraphic sections indicate that the source composition of these lavas probably evolved over time. This change could have resulted from a progressive decrease in the extent of partial melting of the Lanai source. The compositional variability of Lanai tholeiites suggests that geochemical heterogeneities in their source are larger than the scale of partial melting. Lanai tholeiites could not have formed by smaller degrees of partial melting of plume material than did the larger-volume Hawaiian shields. Therefore, volume differences between Hawaiian shields must be controlled primarily by differences in the volume of supplied plume material rather than by differences in the degree of partial melting. The premature cessation of eruptive activity at Lanai may be attributed to relatively large degrees of partial melting of a small plume.  相似文献   

18.
Tenerife is the largest of the seven Tertiary to Recent volcanic islands that make up the Canary Archipelago. The island is composed of volcanics belonging to the basanitetrachyte-phonolite assemblage that characterises many Atlantic islands. The most voluminous development of intermediate and salic volcanics has been in the centre of the island where the Las Canadas volcanoes arose upon a basement shield composed mainly of basanite and ankaramite flows, tuffs and agglomerates. The initial post-shield activity built the Vilaflor volcanic complex (Lower and Upper Canadas Series) that originally covered much of the underlying shield volcanics. A vast collapse of the complex, probably during post-Pleistocene times, in the centre of the island has left a large semi-circular wall, and provides an excellent vertical section through the complex. Quaternary volcanism within the collapsed area has built the twin, central-type volcanoes, Viejo and Teide, both of which have attendant satellite vents. That part of the Vilaflor Complex exposed in Las Canadas, together with the Viejo and Teide volcanoes, comprise the Las Canadas volcanoes.Four distinct rock types can be recognised in these volcanoes, basanite, trachybasanite, plagioclase phonolite, and phonolite. Each rock type can be recognised chemically and mineralogically, but there is essentially a gradational series from basanite to phonolite that includes both aphyric and glomerophyric rocks. The volcanics are strongly undersaturated and sodic, and some of the phonolites are mildly peralkaline. Variations in degree of undersaturation, and trace element abundances indicate a number of cycles of activity which would be consistent with the known field relations.Forsteritic olivine occurs in the basanites and trachybasanites but is not a stable phase in the more salic volcanics. Clinopyroxene is ubiquitous, varying in composition from titanaugite in the basanites to slightly sodic augite in the phonolites. Strongly sodic pyroxene is restricted to the groundmass of the microcrystalline phonolites along with aenigmatite and a kataphoritic amphibole. Plagioclase is found only in the groundmass of the basanites, but andesine and potash-oligoclase are common phenocryst minerals in the trachybasanites and plagioclase phonolites respectively, whereas the characteristic feldspar of the phonolites is anorthoclase.The relatively smooth curves of major and trace element variation, the presence of accumulative volcanics at all stages of differentiation, zoning of the mineral phases, and the clustering of the phonolites around the low temperature trough in Petrogeny's Residua System, all indicate that the descent from basanite to phonolite has resulted from fractional crystallisation of a basanite parent magma. The trend of pyroxene crystallisation, and the fairly constant FeO/Fe2O3 ratio during fractionation indicate crystallisation under low PO2 conditions.  相似文献   

19.
Mantle xenoliths (lherzolites, clinopyroxene dunites, wehrlites, and clinopyroxenites) in the Early Cretaceous volcanic rocks of Makhtesh Ramon (alkali olivine basalts, basanites, and nephelinites) represent metasomatized mantle, which served as a source of basaltic melts. The xenoliths bear signs of partial melting and previous metasomatic transformations. The latter include the replacement of orthopyroxene by clinopyroxene in the lherzolites and, respectively, the wide development of wehrlites and olivine clinopyoroxenites. Metasomatic alteration of the peridotites is accompanied by a sharp decrease in Mg, Cr, and Ni, and increase of Ti, Al, Ca contents and 3+Fe/2+Fe ratio, as well as the growth of trace V, Sc, Zr, Nb, and Y contents. The compositional features of the rocks such as the growth of 3+Fe/2+Fe and the wide development of Ti-magnetite in combination with the complete absence of sulfides indicate the high oxygen fugacity during metasomatism and the low sulfur concentration, which is a distinctive signature of fluid mode during formation of the Makhtesh Ramon alkali basaltic magma. Partial melting of peridotites and clinopyroxenites is accompanied by the formation of basanite or alkali basaltic melt. Clino- and orthopyroxenes are subjected to melting. The crystallization products of melt preserved in the mantle rock are localized in the interstices and consist mainly of fine-grained clinopyroxene, which together with Ti-magnetite, ilmenite, amphibole, rhenite, feldspar, and nepheline, is cemented by glass corresponding to quartz–orthopyroxene, olivine–orthopyroxene, quartz–feldspar, or nepheline–feldspar mixtures of the corresponding normative minerals. The mineral assemblages of xenoliths correspond to high temperatures. The high-Al and high-Ti clinopyroxene, calcium olivine, feldspar, and feldspathoids, amphibole, Ti-magnetite, and ilmenite are formed at 900–1000°. The study of melt and fluid inclusions in minerals from xenoliths indicate liquidus temperatures of 1200–1250°C, solidus temperatures of 1000–1100°C, and pressure of 5.9–9.5 kbar. Based on the amphibole–plagioclase barometer, amphibole and coexisting plagioclase were crystallized in clinopyroxenites at 6.5–7.0 kbar.  相似文献   

20.
Mount Erebus, Ross Island, Antarctica, is an active, intraplate,alkaline volcano. The strongly undersaturated sodic lavas rangefrom basanite to anorthoclase phonolite, and are termed theErebus lineage (EL). The lavas are porphyritic with olivine(Fo88–51), clinopyroxene (Wo45–53En36–41Fs8–30),opaque oxides (Usp31–76), feldspar (An72–11), andapatite. Rare earth element (REE) contents increase only slightlywith increasing differentiation compared with other incompatibleelements. The light REE are enriched (LaN/YbN= 14–20)and there are no significant Eu anomalies. 87Sr/86Sr is uniformand low ({small tilde} 0.7030) throughout the EL, suggestingderivation of the basanites from a depleted asthenospheric mantlesource, and lack of significant crustal contamination duringfractionation of the basanite. Regular geochemical trends indicatethat the EL evolved from the basanites by fractional crystallization.Major element mass balance calculations and trace element modelsshow that fractionation of 16% olivine, 52% clinopyroxene, 14%Fe-Ti oxides, 11% feldspar, 3% nepheline, and 3% apatite froma basanite parent leaves 23.5% anorthoclase phonolite. Minor volumes of less undersaturated, more iron-rich benmoreite,phonolite, and trachyte are termed the enriched iron series(EFS). The trachytes have 87Sr/86Sr of 0.704, higher than otherEFS and EL rocks, and they probably evolved by a combined assimilation-fractionalcrystallization process. The large volume of phonolite at Mt. Erebus requires significantbasanite production. This occurs by low degrees of partial meltingin a mantle plume (here termed the Erebus plume) rising at arate of about 6 cm/yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号