首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Zahra Paydar  John Gallant 《水文研究》2008,22(13):2094-2104
A new modelling framework capable of incorporating detailed one‐dimensional models in a catchment context is presented which can be used to asses the hydrological implications (recharge, discharge, salt movement) of different land uses on different parts of the catchment. The modelling framework incorporates farming systems models and, thus, simulates crop and pasture production, whilst also accounting for lateral fluxes of water (surface and subsurface) and groundwater recharge and discharge. The framework was applied to Simmons Creek catchment, a subcatchment of the Billabong Creek in southern New South Wales, comprising gentle uplands and substantial low‐relief areas containing swamps. An integrated approach incorporating soil, hydrology, hydrogeology, and terrain analysis resulted in interpretation of landscape function and the necessary parameterization of the modelling framework. Current land use (crop rotation and pasture) and an alternative land use (10% trees on uphill units and pasture in the lower lying lands) were simulated to compare the relative contribution of parts of the catchment with total recharge. Comparison between current and alternative land use over 44 years of simulations indicated a decrease of mean annual drainage from 39 to 29 mm year?1 and an average reduction of the groundwater level of about 0·4 m. A more substantial decrease in water‐table depth would require targeted tree planting over larger areas. This can be investigated further with the spatial framework. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Soil and vadose zone profiles are used as an archive of changes in groundwater recharge and water quality following changes in land use in an area of the Loess Plateau of China. A typical rain‐fed loess‐terrace agriculture region in Hequan, Guyuan, is taken as an example, and multiple tracers (chloride mass balance, stable isotopes, tritium and water chemistry) are used to examine groundwater recharge mechanisms and to evaluate soil water chloride as an archive for recharge rate and water quality. Results show that groundwater recharge beneath natural uncultivated grassland, used as a baseline, is about 94–100 mm year?1 and that the time it takes for annual precipitation to reach water table through the thick unsaturated zone is from decades to hundreds of years (tritium free). This recharge rate is 2–3 orders of magnitude more than in the other semiarid areas with similar annual rainfall but with deep‐rooted vegetation and relatively high temperature. Most of the water that eventually becomes recharge originally infiltrated in the summer months. The conversion from native grassland to winter wheat has reduced groundwater recharge by 42–50% (50–55 mm year?1 for recharge), and the conversion from winter wheat to alfalfa resulted in a significant chloride accumulation in the upper soil zone, which terminated deep drainage. The paper also evaluates the time lag between potential recharge and actual recharge to aquifer and between increase in solute concentration in soil moisture and that in the aquifer following land‐use change due to the deep unsaturated zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The semiarid Chaco plains present one of the highest rates of forest clearing and agricultural expansion of the world. In other semiarid plains, such massive vegetation replacements initiated a groundwater recharge and salt mobilization process that, after decades, raised regional water tables and salts to the surface, degrading agricultural and natural ecosystems. Indirect evidence suggests that this process (known as dryland salinity) began in the Chaco plains. Multiple approaches (deep soil profiles, geoelectric surveys and monitoring of groundwater salinity, level and isotopic composition) were combined to assess the dryland salinity status in one of the oldest and most active agricultural hotspots of the region, where isolated forest remnants occupy an extremely flat cultivated matrix. Full vadose moisture and chloride profiles from paired agriculture‐forest stands (17 profiles, six sites) revealed the following: a generalized onset of deep drainage with cultivation (32 to >87 mm year?1), full leaching of native chloride pools (13.7 ± 2.5 kg m?2) down to the water table after >40 years following clearing and differential groundwater table rises (0.7 to 2 m shallower water tables under agriculture than under neighbouring forests). Continuous level monitoring showed abrupt water table rises under annual crops (up to 2.6 m in 15 days) not seen under forests or pastures. Varying deep drainage rates and groundwater isotopic composition under agricultural plots suggest that these pulses are strongly modulated by crop choices and sequences. In contrast to other dryland salinity‐affected areas of the world, forest remnants in the study area (10–20% of the area) are not only surviving the observed hydrological shifts but also sustaining active salty groundwater transpirative discharge, as evidenced by continuous water table records. The overall impact of these forest remnants on lowering neighbouring water tables would be limited by the low hydraulic conductivity of the sediments. As highly cultivated areas of the Chaco evolve to new hydrological conditions of shallower saline water tables, innovative crop rotations that minimize recharge, enhance transpirative discharge and tolerate salinity will be needed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
This simulation study explores opportunities to reduce catchment deep drainage through better matching land use with soil and topography, including the ‘harvesting’ (evapotranspiration) of excess water running on to lower land units. A farming system simulator was coupled with a catchment hydrological framework to enable analysis of climate variability and 11 different land‐use options as they impact the catchment water balance. These land‐use options were arranged in different configurations down a sequence of three hydrologically interconnected slope units (uphill, mid‐slope and valley floor land units) in a subcatchment of Simmons Creek, southern New South Wales, Australia. With annual crops, the valley floor land units were predicted to receive 187 mm year?1 of run‐on water in addition to annual rainfall in 1 in 10 years, and in excess of 94 mm year?1 in 1 in 4 years. In this valley floor position, predicted drainage averaged approximately 110 mm year?1 under annual crops and pastures, whereas permanent tree cover or perennial lucerne was predicted to reduce drainage by up to 99%. The planting of trees or lucerne on the valley floor units could ‘harvest’ run‐on water, reducing drainage for the whole subcatchment with proportionately small reduction in land areas cropped. Upslope land units, even though often having shallower soil, will not necessarily be the most effective locations to plant perennial vegetation for the purposes of recharge reduction. Water harvesting opportunities are site specific, dependent on the amounts and frequency of flows of water to lower landscape units, the amounts and frequency of deep drainage on the different land units, the relative areas of the different land units, and interactions with land use in the different slope positions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Sediments produced from eroding cultivated land can cause on‐site and off‐site effects that cause considerable economic and social impacts. Despite the importance of soil conservation practices (SCP) for the control of soil erosion and improvements in soil hydrological functions, limited information is available regarding the effects of SCP on sediment yield (SY) at the catchment scale. This study aimed to investigate the long‐term relationships between SY and land use, soil management, and rainfall in a small catchment. To determine the effects of anthropogenic and climatic factors on SY, rainfall, streamflow, and suspended sediment concentration were monitored at 10‐min intervals for 14 years (2002–2016), and the land use and soil management changes were surveyed annually. Using a statistical procedure to separate the SY effects of climate, land use, and soil management, we observed pronounced temporal effects of land use and soil management changes on SY. During the first 2 years (2002–2004), the land was predominantly cultivated with tobacco under a traditional tillage system (no cover crops and ploughed soil) using animal traction. In that period, the SY reached approximately 400 t·km?2·year?1. From 2005 to 2009, a soil conservation programme introduced conservation tillage and winter cover crops in the catchment area, which lowered the SY to 50 t·km?2·year?1. In the final period (2010–2016), the SCP were partially abandoned by farmers, and reforested areas increased, resulting in an SY of 150 t·km?2·year?1. This study also discusses the factors associated with the failure to continue using SCP, including structural support and farmer attitudes.  相似文献   

6.
In the Manas River basin (MRB), groundwater salinization has become a major concern, impeding groundwater use considerably. Isotopic and hydrogeochemical characteristics of 73 groundwater and 11 surface water samples from the basin were analysed to determine the salinization process and potential sources of salinity. Groundwater salinity ranged from 0.2 to 11.91 g/L, and high salinities were generally located in the discharge area, arable land irrigated by groundwater, and depression cone area. The quantitative contributions of the evaporation effect were calculated, and the various groundwater contributions of transpiration, mineral dissolution, and agricultural irrigation were identified using hydrogeochemical diagrams and δD and δ18O compositions of the groundwater and surface water samples. The average evaporation contribution ratios to salinity were 5.87% and 32.7% in groundwater and surface water, respectively. From the piedmont plain to the desert plain, the average groundwater loss by evaporation increased from 7% to 29%. However, the increases in salinity by evaporation were small according to the deuterium excess signals. Mineral dissolution, transpiration, and agricultural irrigation activities were the major causes of groundwater salinization. Isotopic information revealed that river leakage quickly infiltrated into aquifers in the piedmont area with weak evaporation effects. The recharge water interacted with the sediments and dissolved minerals and subsequently increased the salinity along the flow path. In the irrigation land, shallow groundwater salinity and Cl? concentrations increased but not δ18O, suggesting that both the leaching of soil salts due to irrigation and transpiration effect dominated in controlling the hydrogeochemistry. Depleted δ18O and high Cl? concentrations in the middle and deep groundwater revealed the combined effects of mixing with paleo‐water and mineral dissolution with a long residence time. These results could contribute to the management of groundwater sources and future utilization programs in the MRB and similar areas.  相似文献   

7.
We examined the fire‐induced changes in groundwater recharge rate. This aspect is particularly important in the case of large forested areas growing over a coastal aquifer affected by saltwater intrusion. In the Ravenna coastal area (Italy), pine forests grow on coastal dune belts, overlying a sandy unconfined aquifer, which is strongly affected by marine ingression. Three groundwater profiles across the forest and perpendicular to the coastline were monitored for groundwater level, physical, and chemical parameters. The aims were to define groundwater quality, recharge rate, freshwater volume, and highlight change, which occurred after a forest fire with reference to pre‐fire conditions. Analytical solutions based on Darcy Law and the Dupuit Equation were applied to calculate unconfined flow and compare recharge rates among the profiles. The estimated recharge rates increased in the partially and completely burnt areas (219 and 511 mm year?1, respectively) compared with the pristine pine forest area (73 mm year?1). Although pre‐fire conditions were similar in all monitored profiles, a post‐fire decrease in salinity was observed across the burnt forest, along with an increase in infiltration and freshwater lens thickness. This was attributed to decrease canopy interception and evapotranspiration caused by vegetation absence after the fire. This research provided an example of positive forest fire feedback on the quantity and quality of fresh groundwater resources in a lowland coastal aquifer affected by saltwater intrusion, with limited availability of freshwater resources. The fire provided an opportunity to evaluate a new forest management approach and consider the restoration and promotion of native dune herbaceous vegetation.  相似文献   

8.
The present study examined groundwater recharge/discharge mechanisms in the regional Central Sudan Rift Basins (CSRB). Aquifers in CSRB constitute poorly sorted silisiclastics of sand, clay and gravels deposited in closed hydrologic systems of the Cretaceous–Pleistocene fluviolacustrine environments. CSRB are bounded to the north by the highlands of the Central African Shear Zone (CAZS) that represents the surface and groundwater divides. Sporadic recharge in the peripheries of the basins along the CASZ occurs subsequent to decadal and centennial storm events. Inflow from the Nile into the aquifers represents an additional source of recharge. Thus, groundwater resources cannot be labelled fossil nor can they be readily recharged. Closed hydrologic troughs located adjacent to the influent Nile system mark areas of main groundwater discharge characterized by lower hydraulic heads. This study has examined mechanisms that derive the discharge of the groundwater in these closed basins and concluded that only evapotranspirative discharge can provide a plausible explanation. Groundwater abstraction is mainly through deep‐rooted trees and effective evaporation. The increase of TDS along the flow indicates local recharge at the peripheries of basins and shows the influence of evaporation and rock/water interaction. The decline in groundwater level along a flow path was calculated using Darcy's law to estimate average recharge and evapotranspirative discharge, which are equal under natural equilibrium and make the only fluxes in CSRB. Steady‐state 2D flow modelling has demonstrated that an average recharge of 4–8 mm yr?1 and evapotranspirative discharge of 1–22 mm yr?1 will maintain natural equilibrium in CSRB. Sporadic storms provide recharge in the highlands to preserve the current hydraulic gradient and maintain aquifer dynamics. Simulated recharge from the Nile totals about 17·5 mm yr?1 and is therefore a significant contributor to the water balance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This study involved a baseline evaluation of fluvial carbon export and degas rates in three nested rural catchments (1 to 80 km2) in Taboão, a representative experimental catchment of the Upper Uruguay River Basin. Analyses of the carbon content in stream waters and the catchment carbon yield were based on 4‐year monthly in situ data and statistical modeling using the United States Geological Survey load estimator model. We also estimated p CO2 and degas fluxes using carbonate equilibrium and gas‐exchange formulas. Our results indicated that the water was consistently p CO2 saturated (~90% of the cases) and that the steep terrain favors high gas evasion rates. The mean calculated fluvial export was 5.4 tC·km?2·year?1 with inorganic carbon dominating (dissolved inorganic carbon:dissolved organic carbon ratio >4), and degas rates (~40 tC km?2·year?1) were nearly sevenfold higher than the downstream export. The homogeneous land use in this nested catchment system results in similar water‐quality characteristics, and therefore, export rates are expected to be closely related to the rainfall–runoff relationships at each scale. Although the sampling campaigns did not fully reproduce storm‐event conditions and related effects such as flushing or dilution of in‐stream carbon, our results indicated a potential link between dissolved inorganic carbon and slower hydrological pathways related to subsurface water storage and movement.  相似文献   

10.
Fred Worrall  Tim Burt 《水文研究》2005,19(9):1791-1806
The dissolved CO2 concentration of stream waters is an important component of the terrestrial carbon cycle. This study reconstructs long‐term records of dissolved CO2 concentration for the outlets of two large catchments (818 and 586 km2) in northern England. The study shows that:
  • 1. The flux of dissolved CO2 from the catchments (as carbon per catchment area), when adjusted for that which would be carried by the river water at equilibrium with the atmosphere, is between 0 and 0·39 t km−2 year−1 for the River Tees and between 0 and 0·65 t km−2 year−1 for the River Coquet.
  • 2. The flux of dissolved CO2 is closely correlated with dissolved organic carbon (DOC) export and is unrelated to dissolved CO2 export from the headwaters of the study catchments.
  • 3. The evasion rate of CO2 from the rivers (as carbon per stream area) is between 0·0 and 1·49 kg m−2 year−1, and calculated in‐stream productions of CO2 are estimated as between 0·5 and 2·5% of the stream evasion rate.
  • 4. By mass balance, it is estimated that 8% of the annual flux of DOC is lost within the streams of the catchment.
The study shows that the loss of CO2 from the streams of the Tees catchment is between 3·1 and 7·5 kt year−1 (as carbon) for the River Tees, which is the same order as annual CH4 flux from peats within the catchment and approximately 50% of the net CO2 exchange to the peats of the catchment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The development of intense agriculture in semiarid areas modifies intensity and spatial distribution of groundwater recharge by summing irrigation return flow to limited rainfall infiltration. Environmental tracers provide key information, but their interpretation is complicated by more complex groundwater flow patterns. In multilayered aquifers, the real origin of the groundwater samples is hard to assess because of local mixing processes occurring inside long‐screened boreholes. We use environmental tracers (14C, 13C, 2H, 18O, 3H) to investigate the long‐term evolution of recharge in the five‐layer Campo de Cartagena aquifer in South‐Eastern Spain, in addition to high‐resolution temperature loggings to identify the depth of origin of groundwater. Despite the complex background, this methodology allowed a reliable interpretation of the geochemistry and provided a better understanding of the groundwater flow patterns. The tritium method did not give good quantitative results because of the high variability of the recharge signal but remained an excellent indicator of recent recharge. Nonetheless, both pre‐anthropization and post‐anthropization recharge regime could be identified and quantified by radiocarbon. Before the development of agriculture, recharge varied from 17 mm.year‐1 at the mountain ranges to 6 mm.year‐1 in the plain, whereas the mean annual rainfall is about 300 mm. In response to the increase of agricultural activity, recharge fluxes to the plain were amplified and nowadays reach up to 210 mm.year‐1 in irrigated areas. These values are strengthened by global water budget and local unsaturated zone studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
There has been a great deal of research interest regarding changes in flow path/runoff source with increases in catchment area. However, there have been very few quantitative studies taking subscale variability and convergence of flow path/runoff source into account, especially in relation to headwater catchments. This study was performed to elucidate how the contributions and discharge rates of subsurface water (water in the soil layer) and groundwater (water in fractured bedrock) aggregate and change with catchment area increase, and to elucidate whether the spatial variability of the discharge rate of groundwater determines the spatial variability of stream discharge or groundwater contribution. The study area was a 5‐km2 forested headwater catchment in Japan. We measured stream discharge at 113 points and water chemistry at 159 points under base flow conditions. End‐member mixing analysis was used to separate stream water into subsurface water and groundwater. The contributions of both subsurface water and groundwater had large variability below 1 km2. The contribution of subsurface water decreased markedly, while that of groundwater increased markedly, with increases in catchment area. The specific discharge of subsurface water showed a large degree of variability and decreased with catchment area below 0.1 km2, becoming almost constant above 0.1 km2. The specific discharge of groundwater showed large variability below 1 km2 and increased with catchment area. These results indicated that the variabilities of stream discharge and groundwater contribution corresponded well with the variability of the discharge rate of groundwater. However, below 0.1 km2, it was necessary to consider variations in the discharge rates of both subsurface water and groundwater. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Groundwater discharge from the Riverine Plains of the southern Murray‐Darling Basin is a major process contributing salt to the Murray River in Australia. In this study, data from an irrigated 60 000 ha catchment in the Riverine Plains were analysed to understand groundwater discharge into deeply incised drains, the process dominating salt mobilization from the catchment. We applied three integrated methodologies: classification and regression trees (CART), conceptual modelling and artificial neural networks (ANNs) to a comprehensive, spatially lumped, monthly data set from July 1975 to December 2004. Using CART analysis, it was shown that rainfall was the most important variable consistently explaining the salt load patterns at the catchment outlet. Using the conceptual model representing spatially lumped groundwater discharge into deeply incised drains, we demonstrated that salt mobilization from the study catchment can be well represented by a rainfall contribution, influenced by the hydraulic head in the deep regional aquifer and potential evapotranspiration. Using ANNs, it was confirmed that rainfall had a much higher impact on salt loads at the catchment outlet than irrigation water use. All these results demonstrate that under conditions similar to those experienced from 1975 to 2004, it is rainfall rather than irrigation water use that governs salt mobilization from the study catchment. Management of salt mobilization from irrigated catchments has traditionally focussed on the improvement of irrigation practices but it could be equally important to further understand the scope for management to control groundwater discharge in these irrigation areas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Integrated hydrologic models characterize catchment responses by coupling the subsurface flow with land surface processes. One of the major areas of uncertainty in such models is the specification of the initial condition and its influence on subsequent simulations. A key challenge in model initialization is that it requires spatially distributed information on model states, groundwater levels and soil moisture, even when such data are not routinely available. Here, the impact of uncertainty in initial condition was explored across a 208 km2 catchment in Denmark using the ParFlow.CLM model. The initialization impact was assessed under two meteorological conditions (wet vs dry) using five depth to water table and soil moisture distributions obtained from various equilibrium states (thermal, root zone, discharge, saturated and unsaturated zone equilibrium) during the model spin‐up. Each of these equilibrium states correspond to varying computation times to achieve stability in a particular aspect of the system state. Results identified particular sensitivity in modelled recharge and stream flow to the different initializations, but reduced sensitivity in modelled energy fluxes. Analysis also suggests that to simulate a year that is wetter than the spin‐up period, an initialization based on discharge equilibrium is adequate to capture the direction and magnitude of surface water–groundwater exchanges. For a drier or hydrologically similar year to the spin‐up period, an initialization based on groundwater equilibrium is required. Variability of monthly subsurface storage changes and discharge bias at the scale of a hydrological event show that the initialization impacts do not diminish as the simulations progress, highlighting the importance of robust and accurate initialization in capturing surface water–groundwater dynamics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The summer discharge pattern of the Skeldal River, which drains a 560 km2 partly glacierized catchment in north‐east Greenland, is dominated by diurnal oscillations reflecting variations in the melt rate of snow and ice in the basin. Superimposed on this diurnal pattern are numerous short‐lived discharge fluctuations of irregular periodicity and magnitude. The larger fluctuations are described and attributed to both rainfall events and periodic collapse of the glacier margin damming flow from beneath the Skelbrae glacier. Other minor fluctuations are less readily explained but are associated with changes in the channelized and distributed reservoirs and possibly temporary blockage of subglacial conduits caused by ice melt with subsequent damming. Fluctuations in suspended sediment concentration (SSC) are normally associated with discharge fluctuations, although examples of ‘transient flushes’ were observed where marked increases in SSC occurred in the absence of corresponding discharge variations. A strong relationship between the event discharge increase and event SSC increase for rainfall‐induced events was established, but no such relationship existed for non‐rainfall‐induced events. There is some evidence for an exhaustion effect in the SSC patterns both at the event time‐scale and as the month proceeds. A mean suspended sediment load of 1765 ± 0·26 t day?1 was estimated for the study period, which would be equivalent to a suspended sediment yield of 732 ± 4 t km?2 year?1. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Recent trends of assimilating water well records into statewide databases provide a new opportunity for evaluating spatial dynamics of groundwater quality and quantity. However, these datasets are scarcely rigorously analyzed to address larger scientific problems because they are of lower quality and massive. We develop an approach for utilizing well databases to analyze physical and geochemical aspects of groundwater systems, and apply it to a multiscale investigation of the sources and dynamics of chloride (Cl?) in the near‐surface groundwater of the Lower Peninsula of Michigan. Nearly 500,000 static water levels (SWLs) were critically evaluated, extracted, and analyzed to delineate long‐term, average groundwater flow patterns using a nonstationary kriging technique at the basin‐scale (i.e., across the entire peninsula). Two regions identified as major basin‐scale discharge zones—the Michigan and Saginaw Lowlands—were further analyzed with regional‐ and local‐scale SWL models. Groundwater valleys (“discharge” zones) and mounds (“recharge” zones) were identified for all models, and the proportions of wells with elevated Cl? concentrations in each zone were calculated, visualized, and compared. Concentrations in discharge zones, where groundwater is expected to flow primarily upwards, are consistently and significantly higher than those in recharge zones. A synoptic sampling campaign in the Michigan Lowlands revealed concentrations generally increase with depth, a trend noted in previous studies of the Saginaw Lowlands. These strong, consistent SWL and Cl? distribution patterns across multiple scales suggest that a deep source (i.e., Michigan brines) is the primary cause for the elevated chloride concentrations observed in discharge areas across the peninsula.  相似文献   

18.
Sensitivity analysis of the hydrological behaviour of basins has mainly focused on the correlation between streamflow and climate, ignoring the uncertainty of future climate and not utilizing complex hydrological models. However, groundwater storage is affected by climatic change and human activities. The streamflow of many basins is primarily sourced from the natural discharge of aquifers in upstream regions. The correlation between streamflow and groundwater storage has not been thoroughly discussed. In this study, the storage–discharge sensitivity of 22 basins in Taiwan was investigated by means of daily streamflow and rainfall data obtained over more than 30 years. The relationship between storage and discharge variance was evaluated using low‐flow recession analysis and a water balance equation that ignores the influence of rainfall and evapotranspiration. Based on the obtained storage–discharge sensitivity, this study explored whether the water storage and discharge behaviour of the studied basins is susceptible to climate change or human activities and discusses the regional differences in storage–discharge sensitivity. The results showed that the average storage–discharge sensitivities were 0.056 and 0.162 mm?1 in the northern and southern regions of Taiwan, respectively. In the central and eastern regions, the values were both 0.020 mm?1. The storage–discharge sensitivity was very high in the southern region. The regional differences in storage–discharge sensitivity with similar climate conditions are primarily due to differences in aquifer properties. Based on the recession curve, other factors responsible for these differences include land utilization, land coverage, and rainfall patterns during dry and wet seasons. These factors lead to differences in groundwater recharge and thus to regional differences in storage–discharge sensitivity.  相似文献   

19.
The dominance of ‘old’ pre‐event water in headwater storm runoff has been recorded in numerous upland catchment studies; however, the mechanisms by which this pre‐event water enters the stream channel are poorly understood. Understanding these processes is fundamental to determining the controls on surface water quality and associated impacts on stream ecology. Previous studies in the upland forested catchment of the Afon Hafren (River Severn) at Plynlimon, mid‐Wales, identified an active bedrock groundwater system that was discharging into the stream channel during storm response. Detailed analysis showed that these discharges were small and could not account for the majority of pre‐event storm water response identified at this site; pre‐event storm runoff had to be sourced predominantly from further upstream. An intensive stream survey was used to determine the spatial nature of groundwater–surface water (GW–SW) interactions in the Hafren Catchment. Detailed physico‐chemical in‐stream profiling identified a marked change in water quality indicating a significant discrete point of bedrock groundwater discharge upstream of the Hafren Transect study site. The in‐stream profiling showed the importance of high spatial resolution sampling as a key to understanding processes of GW–SW interaction and how quick and cost‐effective measurements of specific electrical conductance of stream waters could be used to highlight in‐stream heterogeneity. This approach is recommended for use in headwater catchments for initial characterisation of the stream channel in order to better locate instrumentation and to determine more effective targeted sampling protocols in upland catchment research. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Land‐use/cover change (LUCC), and more specifically deforestation and multidecadal agriculture, is one of the various controlling factors of water fluxes at the hillslope or catchment scale. We investigated the impact of LUCC on water pathways and stream stormflow generation processes in a subtropical region in southern Brazil. We monitored, sampled and analysed stream water, pore water, subsurface water, and rainwater for dissolved silicon concentration (DSi) and 18O/16O (δ18O) signature to identify contributing sources to the streamflow under forest and under agriculture. Both forested and agricultural catchments were highly responsive to rainfall events in terms of discharge and shallow groundwater level. DSi versus δ18O scatter plots indicated that for both land‐use types, two run‐off components contributed to the stream discharge. The presence of a dense macropore network, combined with the presence of a compact and impeding B‐horizon, led to rapid subsurface flow in the forested catchment. In the agricultural catchment, the rapid response to rainfall was mostly due to surface run‐off. A 2‐component isotopic hydrograph separation indicated a larger contribution of rainfall water to run‐off during rainfall event in the agricultural catchments. We attributed this higher contribution to a decrease in topsoil hydraulic conductivity associated with agricultural practices. The chemical signature of the old water component in the forested catchment was very similar to that of the shallow groundwater and the pore soil water: It is therefore likely that the shallow groundwater was the main source of old water. This is not the case in the agricultural catchments where the old water component had a much higher DSi concentration than the shallow groundwater and the soil pore water. As the agricultural catchments were larger, this may to some extent simply be a scale effect. However, the higher water yields under agriculture and the high DSi concentration observed in the old water under agriculture suggest a significant contribution of deep groundwater to catchment run‐off under agriculture, suggesting that LUCC may have significant effects on weathering rates and patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号