首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
一次连续性暴雨中双雨带的成因分析   总被引:3,自引:1,他引:2  
利用NCEP/ NCAR 1 ?×1 ?再分析资料,对2005年6月17—22日发生在长江以南的一次连续性暴雨过程分析发现,在连续性暴雨过程中,长江以南有两支雨带存在,北雨带与冷锋降水以及副热带西风急流右后方的非地转场引起的质量调整有关。南雨带的形成与东、西风急流和南亚高压的共同作用有关:东风急流中心右后部的非地转场可形成反环流,有利于南雨带形成;南亚高压脊线附近以及东风急流的右后方的du/dt<0,可导致雨区附近及南部强的v-vg<0场出现;当西风急流南压,在雨区的北部即西风中心的后部可形成强的v-vg>0,三者共同作用的质量调整使雨区上空出现强辐散场导致暖区强降水出现。分析发现南雨带中层有θe锋区存在,该锋区有利于不稳定能量的释放,使暴雨加强,当南北锋区接近时雨带合并。  相似文献   

2.
广西前汛期锋前暖区暴雨过程的模拟与分析   总被引:10,自引:5,他引:5  
利用中尺度数值模式MM5对2005年5月8-9日广西的暖区暴雨过程进行了数值模拟,并对暖区暴雨形成和发展的机制进行了分析研究.结果表明:高空急流稳定维持与低空急流持续加强是这次暖区暴雨发生发展的动力机制;在暖区暴雨形成与发展的过程中,低空各层自上而下均有急流核向东传播的现象;低空急流核以接力振荡的形式快速东传,而不是向北面的锋区运动,有利于暖区累积充沛的水汽和不稳定能量,造成不稳定能量和水汽在锋区和暖区的不均匀分布,也有利于有组织的对流活动在暖区反复生成和发展,从而导致了暖区不仅降雨量大,而且雨强比锋区降水强.  相似文献   

3.
一次黄河暴雨的不同尺度系统相互作用的数值试验   总被引:2,自引:1,他引:2  
利用张玉玲等人的10层有限区域细网络模式,模拟了1982年7月30日黄河三花间的暴雨过程,并用该模式作了减弱大尺度高低空急流的数值试验,结果发现高低空急流在暴雨区耦合得很好,但在同一暴雨过程中的不同区域,高低空急流对暴雨有各自不同的主导作用,对这次暴雨过程而言,低空急流更重要,天气尺度低空急流与冷空气的相互作用激发了次天气尺度能量锋区的发展与暴雨的发生,次天气尺度扰动又通过暴雨的凝结反馈,促使天气  相似文献   

4.
“070304”东北特大暴雪的分析   总被引:12,自引:3,他引:9  
孙欣  蔡芗宁  陈传雷  贾旭轩  乔小湜 《气象》2011,37(7):863-870
对2007年3月3—6日东北地区百年不遇的暴雪及暴雨过程进行了天气学背景分析,并对非地转湿Q矢量的贡献、降水相态变化的条件进行了分析。结果表明:范围广、强度强的偏南急流不仅是水汽的强劲输送带,而且是低层锋区和低值系统加强、移动的必要条件;次级环流的强迫作用在暴雨发生发展中起重要作用,其强弱与降水强度有直接关系。云系的高低与下落过程中的层结状态、低层锋区位置一定程度上决定了地面降水的相态。深厚强锋区、北上江淮气旋、低空急流、非地转湿Q矢量辐合上升支的强弱和位置与降水的强度、落区关系密切。  相似文献   

5.
2009年6月28-30日湖北区域性大暴雨诊断分析   总被引:1,自引:0,他引:1  
王海燕  张文  王珏  孟英杰  徐明 《湖北气象》2009,28(3):215-221
利用NCEP资料、LAPS产品、地面自动站资料及卫星资料和多普勒雷达拼图资料,对2009年6月28—30日湖北区域性大暴雨过程的环流背景与动力、热力、水汽条件等进行了诊断分析。结果表明:此次过程是在贝加尔湖低槽东移、副热带高压加强西伸北抬、西南急流发展、低层切变线南压和低涡东移的条件下发生的;低空急流的发展使大气强烈转暖,低层辐合与正涡度、高层辐散与负涡度及其相互配合,为暴雨发生发展提供了有利的热力和动力条件;冷空气南下在高温高湿的长江流域形成锋区以及西南急流加强,不仅向暴雨区提供了充沛水汽,还与切变加强、低涡东移共同造成能量锋区锋生,沿低层θse能量锋区及切变线有多个对流云团和强回波生成引发区域性强降水。  相似文献   

6.
远距离台风影响西风带特大暴雨的过程模式   总被引:17,自引:4,他引:17  
蒋尚城 《气象学报》1983,41(2):147-158
本文对于中低纬系统相互作用的过程之一,即远距离台风与西风槽的作用在北方产生的特大暴雨过程进行了分析,概括了这种过程模式。着重指出台风与太平洋副热带高压之间的东南低空急流的特征和作用,尤其是与中高纬度高空西风急流之间的联系。讨论了这支低空急流和梅雨锋低空急流的不同,分析了台风东侧的低空急流与西风带冷空气的相互作用而形成的暴雨锋区的三层特殊结构,强调指出这种特殊结构可能是这种特大暴雨系统的一种重要特征。  相似文献   

7.
基于地面、高空常规气象观测资料及风廓线雷达资料和WRF模式资料,分析江西一次低空急流加强下暴雨过程的环境场及成因。结果表明:(1)暴雨发生在副热带高压(简称"副高")北抬、西南急流加强的天气背景下,此次暴雨是副高、西风带短波槽、中尺度辐合系统、低层切变、季风等多系统作用的结果。(2)低层增湿、增暖和对流层中层冷平流的侵入以及异常的各项热力不稳定指数,使江西北部成为高能、高湿、高不稳定区,并在江西东北部形成中尺度假相当位温θ_(se)能量锋区和露点锋区,而锋生正是此次暴雨过程原因之一。(3)低空急流加强一方面带来了充沛水汽,另一方面,中尺度辐合系统沿着急流发展形成中尺度能量、温度锋区,而对流性降水释放的凝结潜热反馈又促使中尺度对流系统进一步加强,利于强降水发生。1.5~3 km 16 m·s~(-1)以上急流可提前1~3 h指示西南风下风方向地区有强降水。(4)500 hPa正涡度平流的发展使得对流层中层气旋性涡度增加,导致正涡度柱发展,并与涡度柱北侧下沉运动构成次级环流。同时高位涡中心向下发展,有利于低层气旋性涡度加强、锋生加剧,促进上升运动,有利于暴雨维持。  相似文献   

8.
梅雨锋结构的数值模拟   总被引:5,自引:3,他引:5  
陈丽芳  高坤 《气象学报》2006,64(2):164-179
利用1999年6月下旬持续性梅雨锋降水过程的全程四维同化模拟结果,深入分析梅雨锋结构的时空不均匀变化特征及其与低涡降水强度的密切关系。结果表明,梅雨锋呈现明显的中层锋和边界层锋两段锋的特征,中层梅雨锋区对降水的影响比边界层锋更为关键,中层锋的加强、锋坡增大趋于垂直、锋区垂直环流的加强和与高空急流锋区的上下贯通,有利于梅雨锋降水的加强,强降水并不出现于中层锋区最强的时段,而是发生于大范围锋区强度达峰值之后约16—24 h。中低层总变形加强与梅雨锋的加强有密切关系。组成低空急流的中低层u,v分量呈现不同的分布和演变特征,强南风中心位于900—800 hPa,呈明显的低空急流状特征,贴近暴雨区还可能出现较小尺度的急流;而强西风中心出现于中层锋前700—500 hPa,表现为高空强西风区沿锋区上界的向下延伸;低空南风急流通常与总变形同时加强。强锋段的锋前饱和高湿高能气柱、锋前中低层急流状南风区和中层西风均匀大值区等要素场呈现高度组织化的特征。梅雨锋的低层特性,如辐合、锋区强度、总变形和南风分量及降水强度等要素呈现显著的中尺度扰动特征,有明显的日变化且受长江中下游中尺度地形影响,扰动特征有随时间上传的趋势。  相似文献   

9.
利用浙江省逐日降水量资料、自动站雨量及FNL 1°×1°再分析资料对2017年6月19—25日浙江省梅雨期暴雨过程的高低空环流形势和中尺度对流系统及其物理量特征进行了分析和诊断。结果表明:此次暴雨过程为典型的梅雨天气系统背景下低空急流的加强和低层切变线的北抬或南压造成的具有明显的中尺度特征的一次降水过程。强降水分为3个阶段,前两个阶段均发生在低层暖湿空气北抬的过程中:低层切变线北抬过程中,伴随着西南和东南急流增强,使得中尺度辐合抬升运动增强,暴雨过程具有明显的暖区暴雨的中尺度特征。第3个阶段则为冷空气南下过程中:中低层的切变线和急流东移南压,锋区内垂直风切变增大,不稳定能量得以增强,中尺度对流系统沿着锋区不断的产生和发展。  相似文献   

10.
使用常规观测资料和NCEP FNL的1.0°×1.0°气象再分析资料,对2016年第10号(简称1610号)台风"狮子山"北上与中纬度系统相互作用在中国东北地区引发暴雨过程进行追踪和诊断分析,探究此次暴雨天气发生、发展的动力学、热力学和不稳定机制。分析结果表明:东北地区的强降水先后由西风带低涡和台风"狮子山"2个系统活动造成。在2个气旋逐渐接近过程中,台风东北侧的东南急流把海上的热量和水汽向低涡环流输送,在倒槽切变处辐合抬升,产生暴雨。大暴雨区位于倾斜锋区附近,对流稳定,中层存在湿对称不稳定,有利于加强降水强度。东北地区东部处于高空急流核右后方和低空急流核前方,高、低空急流耦合的区域,使高层强辐散和低层强辐合叠置,加强了暴雨区的上升运动,从而加强了降水强度。地形对暴雨有增幅作用。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

17.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

18.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

19.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号