首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The principle and method for solving three types of satellite gravity gradient boundary value problems by least-squares are discussed in detail. Also, kernel function expressions of the least-squares solution of three geodetic boundary value problems with the observations {Гzz}, {Гxz, Гyz} and {Гxx ? Гyy, 2Гxy} are presented. From the results of recovering gravity field using simulated gravity gradient tensor data, we can draw a conclusion that satellite gravity gradient integral formulas derived from least-squares are valid and rigorous for recovering the gravity field.  相似文献   

2.
Least-squares by observation equations is applied to the solution of geodetic boundary value problems (g.b.v.p.). The procedure is explained solving the vectorial Stokes problem in spherical and constant radius approximation. The results are Stokes and Vening-Meinesz integrals and, in addition, the respective a posteriori variance-covariances. Employing the same procedure the overdeterminedg.b.v.p. has been solved for observable functions potential, scalar gravity, astronomical latitude and longitude, gravity gradients Гxz, Гyz, and Гzz and three-dimensional geocentric positions. The solutions of a large variety of uniquely and overdeterminedg.b.v.p.'s can be obtained from it by specializing weights. Interesting is that the anomalous potential can be determined—up to a constant—from astronomical latitude and longitude in combination with either {Гxzyz} or horizontal coordinate corrections Δx and Δy, or both. Dual to the formulation in terms of observation equations the overdeterminedg.b.v.p.'s can as well be solved by condition equations. Constant radius approximation can be overcome in an iterative approach. For the Stokes problem this results in the solution of the “simple” Molodenskii problem. Finally defining an error covariance model with a Krarup-type kernel first results were obtained for a posteriori variance-covariance and reliability analysis.  相似文献   

3.
研究了最小二乘法求解3类卫星重力梯度边值问题的理论和方法,给出了3类梯度观测值{Гzz}、{Гxz、Гyz}和{Гxx-Гyy,2Гxy}对应边值问题解的核函数严密表达式。模拟试算结果表明,最小二乘法求解的卫星重力梯度积分公式用于恢复地球重力场是有效而严密的。  相似文献   

4.
World Geodetic Datum 2000   总被引:7,自引:1,他引:6  
 Based on the current best estimates of fundamental geodetic parameters {W 0,GM,J 2,Ω} the form parameters of a Somigliana-Pizzetti level ellipsoid, namely the semi-major axis a and semi-minor axis b (or equivalently the linear eccentricity ) are computed and proposed as a new World Geodetic Datum 2000. There are six parameters namely the four fundamental geodetic parameters {W 0,GM,J 2,Ω} and the two form parameters {a,b} or {a,ɛ}, which determine the ellipsoidal reference gravity field of Somigliana-Pizzetti type constraint to two nonlinear condition equations. Their iterative solution leads to best estimates a=(6 378 136.572±0.053)m, b=(6 356 751.920 ± 0.052)m, ɛ=(521 853.580±0.013)m for the tide-free geoide of reference and a=(6 378 136.602±0.053)m, b=(6 356 751.860±0.052)m, ɛ=(521 854.674 ± 0.015)m for the zero-frequency tide geoid of reference. The best estimates of the form parameters of a Somigliana-Pizzetti level ellipsoid, {a,b}, differ significantly by −0.39 m, −0.454 m, respectively, from the data of the Geodetic Reference System 1980. Received: 1 February 1999 / Accepted: 31 August 1999  相似文献   

5.
Green's function solution to spherical gradiometric boundary-value problems   总被引:1,自引:1,他引:1  
 Three independent gradiometric boundary-value problems (BVPs) with three types of gradiometric data, {Γ rr }, {Γ r θ r λ} and {Γθθ−Γλλθλ}, prescribed on a sphere are solved to determine the gravitational potential on and outside the sphere. The existence and uniqueness conditions on the solutions are formulated showing that the zero- and the first-degree spherical harmonics are to be removed from {Γ r θ r λ} and {Γθθ−Γλλθλ}, respectively. The solutions to the gradiometric BVPs are presented in terms of Green's functions, which are expressed in both spectral and closed spatial forms. The logarithmic singularity of the Green's function at the point ψ=0 is investigated for the component Γ rr . The other two Green's functions are finite at this point. Comparisons to the paper by van Gelderen and Rummel [Journal of Geodesy (2001) 75: 1–11] show that the presented solution refines the former solution. Received: 3 October 2001 / Accepted: 4 October 2002  相似文献   

6.
Résumé Une des techniques de détermination fine et globale du champ de gravitation terrestre U est la gradiométrie spatiale, dans laquelle on mesure à bord d'un satellite sur orbite basse certaines combinations linéaires des composantes du tenseur ∂2 U/∂xi ∂xj dans des axes {x i } liés au satellite. Un tel projet, appelé GRADIO, est actuellement à l'étude en France et pourrait aboutir à partir de 1990. Après avoir rappelé les objectifs scientifiques d'une telle mission, nous en donnons les spécifications—étayées par une série d'études analytiques; nous définissons ensuite le satellite porteur et ses caractères techniques, en insistant sur les points délicats de la faisabilité (facteurs d'échelle des micro-accéléromètres constituant l'appareil, connaissance de l'attitude...) et en présentant des idées de solution en cours d'approfondissement.
Summary Satellite gradiometry arises as one of the methods for improving our knowledge of the global Earth gravity field at high resolution: by means of micro-accelerometers on board a low orbiting spacecraft, linear combination of the gravity tensor components ∂2 U/∂xi ∂xj are measured in a satellite-fixed reference frame {x i }. Based on this technique, a project named GRADIO is presently under study in France and could fly in 1990 at the earliest. After the scientific objectives of that experiment have been reviewed, the measurement specifications are given as coming from various analytical studies. The platform and its characteristics are then defined: the critical realization problems (scale factors of the micro-accelerometers, spacecraft attitude control and restitution) are pointed out together with some ideas for their solution which are under analysis and require further study.
  相似文献   

7.
Summary Let S be the (regular) boundary-surface of an exterior regionE e in Euclidean space ℜ3 (for instance: sphere, ellipsoid, geoid, earth's surface). Denote by {φn} a countable, linearly independent system of trial functions (e.g., solid spherical harmonics or certain singularity functions) which are harmonic in some domain containingE e ∪ S. It is the purpose of this paper to show that the restrictions {ϕn} of the functions {φn} onS form a closed system in the spaceC (S), i.e. any functionf, defined and continuous onS, can be approximated uniformly by a linear combination of the functions ϕn. Consequences of this result are versions of Runge and Keldysh-Lavrentiev theorems adapted to the chosen system {φn} and the mathematical justification of the use of trial functions in numerical (especially: collocational) procedures.  相似文献   

8.
GOCE gravitational gradients along the orbit   总被引:6,自引:3,他引:3  
GOCE is ESA’s gravity field mission and the first satellite ever that measures gravitational gradients in space, that is, the second spatial derivatives of the Earth’s gravitational potential. The goal is to determine the Earth’s mean gravitational field with unprecedented accuracy at spatial resolutions down to 100 km. GOCE carries a gravity gradiometer that allows deriving the gravitational gradients with very high precision to achieve this goal. There are two types of GOCE Level 2 gravitational gradients (GGs) along the orbit: the gravitational gradients in the gradiometer reference frame (GRF) and the gravitational gradients in the local north oriented frame (LNOF) derived from the GGs in the GRF by point-wise rotation. Because the V XX , V YY , V ZZ and V XZ are much more accurate than V XY and V YZ , and because the error of the accurate GGs increases for low frequencies, the rotation requires that part of the measured GG signal is replaced by model signal. However, the actual quality of the gradients in GRF and LNOF needs to be assessed. We analysed the outliers in the GGs, validated the GGs in the GRF using independent gravity field information and compared their assessed error with the requirements. In addition, we compared the GGs in the LNOF with state-of-the-art global gravity field models and determined the model contribution to the rotated GGs. We found that the percentage of detected outliers is below 0.1% for all GGs, and external gravity data confirm that the GG scale factors do not differ from one down to the 10−3 level. Furthermore, we found that the error of V XX and V YY is approximately at the level of the requirement on the gravitational gradient trace, whereas the V ZZ error is a factor of 2–3 above the requirement for higher frequencies. We show that the model contribution in the rotated GGs is 2–35% dependent on the gravitational gradient. Finally, we found that GOCE gravitational gradients and gradients derived from EIGEN-5C and EGM2008 are consistent over the oceans, but that over the continents the consistency may be less, especially in areas with poor terrestrial gravity data. All in all, our analyses show that the quality of the GOCE gravitational gradients is good and that with this type of data valuable new gravity field information is obtained.  相似文献   

9.
One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To use these gravity gradients for application in Earth scienes and gravity field analysis, additional preprocessing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and nontidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection, the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low-degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10−3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10−2 level with this method.  相似文献   

10.
Calibration of satellite gradiometer data aided by ground gravity data   总被引:1,自引:0,他引:1  
Parametric least squares collocation was used in order to study the detection of systematic errors of satellite gradiometer data. For this purpose, simulated data sets with a priori known systematic errors were produced using ground gravity data in the very smooth gravity field of the Canadian plains. Experiments carried out at different satellite altitudes showed that the recovery of bias parameters from the gradiometer “measurements” is possible with high accuracy, especially in the case of crossing tracks. The mean value of the differences (original minus estimated bias parameters) was relatively large compared to the standard deviation of the corresponding second-order derivative component at the corresponding height. This mean value almost vanished when gravity data at ground level were combined with the second-order derivative data set at satellite altitude. In the case of simultaneous estimation of bias and tilt parameters from ∂2 T/∂z 2“measurements”, the recovery of both parameters agreed very well with the collocation error estimation. Received: 10 October 1996 / Accepted 25 May 1998  相似文献   

11.
The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.  相似文献   

12.
GOCE采用的高低卫-卫跟踪和卫星重力梯度测量技术在恢复重力场方面各有所长并互为补充,如何有效利用这两类观测数据最优确定地球重力场是GOCE重力场反演的关键问题。本文研究了联合高低卫-卫跟踪和卫星重力梯度数据恢复地球重力场的最小二乘谱组合法,基于球谐分析方法推导并建立了卫星轨道面扰动位T和径向重力梯度Tzz、以及扰动位T和重力梯度分量组合{Tzz-Txx-Tyy}的谱组合计算模型与误差估计公式。数值模拟结果表明,谱组合计算模型可以有效顾及各类数据的精度和频谱特性进行最优联合求解。采用61天GOCE实测数据反演的两个180阶次地球重力场模型WHU_GOCE_SC01S(扰动位和径向重力梯度数据求解)和WHU_GOCE_SC02S(扰动位和重力梯度分量组合数据求解),结果显示后者精度优于前者,并且它们的整体精度优于GOCE时域解,而与GOCE空域解的精度接近,验证了谱组合法的可行性与有效性。  相似文献   

13.
Summary The geopotential on and outside the earth is represented as a series in surface harmonics. The principal terms in it correspond to the solid harmonics of the external potential expansion with the coefficients being Stokes’ constantsC nm andS nm . The additional terms which occur near the earth’s surface due to its non-sphericity and topography are expressed in terms of Stokes’ constants too. This allows performing downward continuation of the potential derived from satellite observations. In the boundary condition which correlates Stokes’ constants and the surface gravity anomalies there occur additional terms due to the earth’s non-sphericity and topography. They are expressed in terms of Stokes’ constants as well. This improved boundary condition can be used for upward and downward continuations of the gravity field. Simple expressions are found representingC nm andS nm as explicit functions of the surface anomalies and its derivatives. The formula for the disturbing potential on the surface is derived in terms of the surface anomalies. All the formulas do not involve the earth’s surface in clinations.  相似文献   

14.
Given the second radial derivative Vrr(P) |δs of the Earth's gravitational potential V(P) on the surface δS corresponding to the satellite altitude, by using the fictitious compress recovery method, a fictitious regular harmonic field rrVrr(P)^* and a fictitious second radial gradient field V:(P) in the domain outside an inner sphere Ki can be determined, which coincides with the real field V(P) in the domain outside the Earth. Vrr^*(P)could be further expressed as a uniformly convergent expansion series in the domain outside the inner sphere, because rrV(P)^* could be expressed as a uniformly convergent spherical harmonic expansion series due to its regularity and harmony in that domain. In another aspect, the fictitious field V^*(P) defined in the domain outside the inner sphere, which coincides with the real field V(P) in the domain outside the Earth, could be also expressed as a spherical harmonic expansion series. Then, the harmonic coefficients contained in the series expressing V^*(P) can be determined, and consequently the real field V(P) is recovered. Preliminary simulation calculations show that the second radial gradient field Vrr(P) could be recovered based only on the second radial derivative V(P)|δs given on the satellite boundary. Concerning the final recovery of the potential field V(P) based only on the boundary value Vrr (P)|δs, the simulation tests are still in process.  相似文献   

15.
Starlette was launched in 1975 in order to study temporal variations in the Earth’s gravity field; in particular, tidal and Earth rotation effects. For the period April 1983 to April 1984 over12,700 normal points of laser ranging data to Starlette have been sub-divided into49 near consecutive 5–6 day arcs. Normal equations for each arc as obtained from a least-squares data reduction procedure, were solved for ocean tidal parameters along with other geodetic and geodynamic parameters. The tidal parameters are defined relative to Wahr’s body tides and Wahr’s nutation model and show fair agreement with other satellite derived results and those obtained from spherical harmonic decomposition of global ocean tidal models.  相似文献   

16.
为实现大范围、高精度基准重力梯度数据库的构建,考虑到重力梯度场对地形质量的敏感效应,一般利用恒密度数字高程模型来求取重力梯度值,从而忽略了地形密度变化以及水准面以下密度异常对重力梯度的影响。根据重力位理论中求解边值问题的数值应用方法,直接利用重力异常数据求取重力梯度场,弥补了密度变化和密度异常在重力梯度上的反映。根据模型算例和实测重力异常数据求取了剖面重力梯度值,结果表明,限于重力数据空间分辨率的影响,利用重力异常数据可恢复中长波段重力梯度场。该方法与地形数据求取重力梯度和卫星重力梯度测量等方法技术相结合,对重力梯度数据库的建设具有实际应用价值。  相似文献   

17.
 The Somigliana–Pizzetti gravity field (the International gravity formula), namely the gravity field of the level ellipsoid (the International Reference Ellipsoid), is derived to the sub-nanoGal accuracy level in order to fulfil the demands of modern gravimetry (absolute gravimeters, super conducting gravimeters, atomic gravimeters). Equations (53), (54) and (59) summarise Somigliana–Pizzetti gravity Γ(φ,u) as a function of Jacobi spheroidal latitude φ and height u to the order ?(10−10 Gal), and Γ(B,H) as a function of Gauss (surface normal) ellipsoidal latitude B and height H to the order ?(10−10 Gal) as determined by GPS (`global problem solver'). Within the test area of the state of Baden-Württemberg, Somigliana–Pizzetti gravity disturbances of an average of 25.452 mGal were produced. Computer programs for an operational application of the new international gravity formula with (L,B,H) or (λ,φ,u) coordinate inputs to a sub-nanoGal level of accuracy are available on the Internet. Received: 23 June 2000 / Accepted: 2 January 2001  相似文献   

18.
Based on the gravity field models EGM96 and EIGEN-GL04C, the Earth's time-dependent principal moments of inertia A, B, C are obtained, and the variable rotation of the Earth is determined. Numerical results show that A, B, and C have increasing tendencies; the tilt of the rotation axis increases 2.1×10^ 8 mas/yr; the third component of the rotational angular velocity, ω3 , has a decrease of 1.0×10^ 22 rad/s^2, which is around 23% of the present observed value. Studies show in detail that both 0 and ω3 experience complex fluctuations at various time scales due to the variations of A, B and C.  相似文献   

19.
An intrresting variation on the familiar method of determining the earth's equatorial radius ae, from a knowledge of the earth's equatorial gravity is suggested. The value of equatorial radius thus found is 6378,142±5 meters. The associated parameters are GM=3.986005±.000004 × 1020 cm3 sec-−2 which excludes the relative mass of atmosphere ≅10−6 ξ GM, the equatorial gravity γe 978,030.9 milligals (constrained in this solution by the Potsdam Correction of 13.67 milligals as the Potsdam Correction is more directly, orless indirectly, measurable than the equatorial gravity) and an ellipsoidal flattening of f=1/298.255.  相似文献   

20.
 The recovery of a full set of gravity field parameters from satellite gravity gradiometry (SGG) is a huge numerical and computational task. In practice, parallel computing has to be applied to estimate the more than 90 000 harmonic coefficients parameterizing the Earth's gravity field up to a maximum spherical harmonic degree of 300. Three independent solution strategies (preconditioned conjugate gradient method, semi-analytic approach, and distributed non-approximative adjustment), which are based on different concepts, are assessed and compared both theoretically and on the basis of a realistic-as-possible numerical simulation regarding the accuracy of the results, as well as the computational effort. Special concern is given to the correct treatment of the coloured noise characteristics of the gradiometer. The numerical simulations show that the three methods deliver nearly identical results—even in the case of large data gaps in the observation time series. The newly proposed distributed non-approximative adjustment approach, which is the only one of the three methods that solves the inverse problem in a strict sense, also turns out to be a feasible method for practical applications. Received: 17 December 2001 / Accepted: 17 July 2002 Acknowledgments. We would like to thank Prof. W.-D. Schuh, Institute of Theoretical Geodesy, University of Bonn, for providing us with the serial version of the PCGMA algorithm, which forms the basis for the parallel PCGMA package developed at our institute. This study was partially performed in the course of the GOCE project `From E?tv?s to mGal+', funded by the European Space Agency (ESA) under contract No. 14287/00/NL/DC. Correspondence to: R. Pail  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号