首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. Doglioni 《地学学报》1991,3(4):423-434
In W-dipping subduction zones there is a general eastward progression of the back-arc basin-accretionary wedge-foredeep complex. With the forward progression, early stages of the complex are revealed by slices of upper crust and sedimentary cover abandoned to the west left floating above a new section of mantle. A major shear zone should form at the new Moho separating upper crust slices of earlier accretionary stages and the eastward flowing mantle. The mantle wedging at the top of the subduction plane could be responsible for the uplift of the central parts of the belt. The retreating of the subduction hinge is interpreted as due to the push generated by the ‘eastward mantle flow detected in the hot spot reference frame. The foredeep depth is mainly a function of the radius of curvature of the subduction hinge. The frontal wedge is constructed from the stacking of the upper layers of the subducting plate and the syntectonic clastics that fill the foredeep which are progressively involved in thrusting and later by extension. In order to preserve volume balance, the lithosphere of the eastern plate before subduction has to be the same size as that which has been subducted: due to the longer length of the arc with respect to the original length of the linear margin between the two converging plates, laterally stretched subducted lithosphere is predicted at depth. W-dipping subductions usually have a short life probably due to their inherent capability to produce new lateral heterogeneities of the lithosphere (the thin back-arc) which are a key factor in controlling and generating new subductions (both E- and W-dipping). This model is applied to the Apennines-Tyrrhenian Sea system.  相似文献   

2.
《地学前缘(英文版)》2020,11(4):1219-1229
We investigate the effect of the westerly rotation of the lithosphere on the active margins that surround the Americas and find good correlations between the inferred easterly-directed mantle counterflow and the main structural grain and kinematics of the Andes and Sandwich arc slabs.In the Andes,the subduction zone is shallow and with low dip,because the mantle flow sustains the slab;the subduction hinge converges relative to the upper plate and generates an uplifting doubly verging orogen.The Sandwich Arc is generated by a westerly-directed SAM(South American) plate subduction where the eastward mantle flow is steepening and retreating the subduction zone.In this context,the slab hinge is retreating relative to the upper plate,generating the backarc basin and a low bathymetry single-verging accretionary prism.In Central America,the Caribbean plate presents a more complex scenario:(a) To the East,the Antilles Arc is generated by westerly directed subduction of the SAM plate,where the eastward mantle flow is steepening and retreating the subduction zone.(b) To the West,the Middle America Trench and Arc are generated by the easterly-directed subduction of the Cocos plate,where the shallow subduction caused by eastward mantle flow in its northern segment gradually steepens to the southern segment as it is infered by the preexisting westerly-directed subduction of the Caribbean Plateau.In the frame of the westerly lithospheric flow,the subduction of a divergent active ridge plays the role of introducing a change in the oceanic/continental plate's convergence angle,such as in NAM(North American)plate with the collision with the Pacific/Farallon active ridge in the Neogene(Cordilleran orogenic type scenario).The easterly mantle drift sustains strong plate coupling along NAM,showing at Juan de Fuca easterly subducting microplate that the subduction hinge advances relative to the upper plate.This lower/upper plate convergence coupling also applies along strike to the neighbor continental strike slip fault systems where subduction was terminated(San Andreas and Queen Charlotte).The lower/upper plate convergence coupling enables the capture of the continental plate ribbons of Baja California and Yakutat terrane by the Pacific oceanic plate,transporting them along the strike slip fault systems as para-autochthonous terranes.This Cordilleran orogenic type scenario,is also recorded in SAM following the collision with the Aluk/Farallon active ridge in the Paleogene,segmenting SAM margin into the eastwardly subducting Tupac Amaru microplate intercalated between the proto-LiquineOfqui and Atacama strike slip fault systems,where subduction was terminated and para-autochthonous terranes transported.In the Neogene,the convergence of Nazca plate with respect to SAM reinstalls subduction and the present Andean orogenic type scenario.  相似文献   

3.
It is useful to differentiate between thrust belts that are related to east(E)-dipping or west(W)-dipping subduction. More precisely, these either follow or resist the overall ‘eastward’ mantle flow detected by the hot-spot reference frame. Because of the overall ‘westward’ drift of the lithosphere we find in E-dipping subduction that the basal decollement underlying the eastern plate reaches the surface and involves deep crustal rocks. With W-dipping subduction, however, we find that the basal decollement of the eastern plate is warped as well as subducted. Consequently thrust belts related to E- (or NE-) dipping subduction show conspicuous structural and morphologic relief, involve deep crustal rocks, and are associated with shallow foredeeps. On the other hand, thrust belts related to W- (or SW-) dipping subduction show relatively low structural and morphological relief, involve only shallow upper crustal rocks and are associated with deep foredeeps as well as back-arc extension. The accretionary wedge-foredeep-back-arc basin association is visualized as an overall eastward propagating tectonic wave. The accretionary wedge forms in the frontal parts and generally below sea-level. This is followed by forward migrating extension that cuts the earlier accretionary wedge. Typically such a system occurs in the context of overall W-dipping subduction and is characterized by an arcuate shape (e.g. Carpathians, Apennines, Barbados, etc.). Along the branches of the arc external transpression and internal transtension co-exist but with different sense (i.e. sinistral transpression contrasting with dextral transtension). We also observe that with W-dipping subduction the tangent to a pre- deformation marker is descending into the foredeep at an angle in the range of 1–10° while with E-(or NE-)dipping subduction the same marker would rise towards the hinterland with typical angles of about 5–10°. Foredeep subsidence is mainly controlled by the load of the thrust sheets in thrust belts due to E-(or NE-)dipping subduction and by the roll-back of the subduction hinge in accretionary wedges due to W-dipping subduction. Subsidence or uplift rates in the foredeeps and accretionary wedges related to the two different types of subduction are very different, providing different P-T-t paths in the two geodynamic realms. The present shape and structure of the thrust belts belonging to one of these two general types may help us in reconstructing the location of thinned lithosphere and basin evolution in the past.  相似文献   

4.
Carlo Doglioni 《Tectonophysics》2009,463(1-4):208-213
The Schellart's [Schellart, W.P., 2007, The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle. Tectonophysics, 445, 363–372.] paper uses slab dip and upper plate extension for testing the westward drift. His analysis and discussion are misleading for the study of the net rotation of the lithosphere since the first 125 km of subduction zones are sensitive also to other parameters such upper plate thickness, geometry and obliquity of the subduction zone with respect to the convergence direction. The deeper (> 125 km) part cannot easily be compared as well because E- or NE-directed subduction zones have seismic gaps between 270–630 km. Moreover the velocity of subduction hinge cannot be precisely estimated and it does not equal to backarc spreading due to accretionary prism growth and asthenospheric intrusion at the subduction hinge. It is shown here that hinge migration in the upper plate or lower plate reference frames supports a general global polarization of the lithosphere in agreement with the westward drift of the lithosphere. The W-directed subduction zones appear controlled by the slab–mantle interaction with slab retreat imposed by the eastward mantle flow. The opposite E-NE-directed subduction zones seem rather mainly controlled by the convergence rate, plus density, thickness and viscosity of the upper and lower plates. Finally, the geological and geophysical asymmetries recorded along subduction and rift zones as a function of their polarity with respect to the tectonic mainstream are not questioned in the Schellart's paper, but they rather represent the basic evidence for the westward drift of the lithosphere.  相似文献   

5.
根据大别-苏鲁造山带北缘和吉林-黑龙江东部的三叠纪浅变质加积杂岩特征标志,认为大别地区的板块缝合线为信阳-舒城断裂,苏鲁地区的为郯庐-鸭绿江断裂,且苏鲁造山带向北延入东北的吉林-黑龙江东部地区,而华北与扬子板块之间构造缝合线的东延部分则为郯庐-鸭绿江-图们江-延吉断裂。在此基础上,提出了亚洲东部三叠纪以来连续的俯冲-加积模型:(1)三叠纪扬子板块在华北板块向南突出部位(大别-苏鲁一带)发生点碰撞形成超高压变质岩,之后扬子板块由点碰撞逐渐向两侧旋转拼贴形成加积杂岩;(2)侏罗纪-新生代在三叠纪碰撞基础上,太平洋板块向欧亚大陆连续俯冲和加积,进而形成由三叠纪-新生代杂岩组成的欧亚大陆东部地区的巨大加积杂岩带。  相似文献   

6.
ABSTRACT We propose a thermo-mechanical model and a new interpretation of heat flux data for the Ligurian basin that may be a key to understanding the evolution of the NW Mediterranean. The model incorporates the removal of a portion of mantle lithosphere to explain the heat-flux and subsidence anomaly of the eastern (Corsican) margin of the basin. This process is envisaged as a result of eastward asthenosphere flow induced by the Apennines subduction system. After a heating phase, time-dependent conductive cooling and re-thickening of the lithosphere result in re-equilibrium of the thermal gradient to its initial value. Such a rifting mode can account for the asymmetric heat-flux and subsidence pattern observed across the basin and the present-day lithospheric thickness.  相似文献   

7.
玛里雅蛇绿岩位于新疆准噶尔西缘达拉布特断裂东侧的弧前增生楔内,形成于石炭纪,出露岩石类型齐全,其中硅质岩与火山岩相间出露,多表现为非构造接触。地球化学特征表明,它们大致可以分为四个系列:(1)A系列为岛弧英安岩,Th强烈富集,可能有洋壳沉积物参与,高场强元素Nb亏损,与洋壳的俯冲有关;(2)M系列与典型洋中脊玄武岩的稀土元素配分模式一致,不过Ba强烈富集,可能受到俯冲流体的影响;(3)E系列位于地幔序列N-MORB和E-MORB之间,表明它可能是地幔岩浆的混合产物,未受到地幔岩浆源区之外物质的影响;(4)O系列与典型的洋岛玄武岩基本一致,只是Ta、La和Th含量略偏低,但都处于地幔序列范围内,可能与其他岩浆源有轻微的混合。这种岩浆特征与智利洋中脊俯冲环境下所产生的岩浆特征一致;由于西准噶尔晚古生代仍然发生俯冲消减,因此推测玛里雅蛇绿岩可能形成于洋中脊俯冲环境。  相似文献   

8.
We report here, for the first time, on the new finding of extrusive calciocarbonatite (alvikite) rocks from the Pleistocene Mt. Vulture volcano (southern Italy). These volcanic rocks, which represent an outstanding occurrence in the wider scenario of the Italian potassic magmatism, form lavas, pyroclastic deposits, and feeder dikes exposed on the northern slope of the volcano. The petrography, mineralogy and whole-rock chemistry attest the genuine carbonatitic nature of these rocks, that are characterized by high to very high contents of Sr, Ba, U, LREE, Nb, P, F, Th, high Nb/Ta and LREE/HREE ratios, and low contents of Ti, Zr, K, Rb, Na and Cs. The O–C isotope compositions are close to the “primary igneous carbonatite” field and, thus, are compatible with an ultimate mantle origin for these rocks. The Sr–Nd–Pb–B isotope compositions, measured both in the alvikites and in the silicate volcanic rocks, indicate a close genetic relationship between the alvikites and the associated melilitite/nephelinite rocks. Furthermore, these latter products are geochemically distinct from the main foiditic-phonolitic association of Mt. Vulture. We propose a petrogenetic/geodynamic interpretation which has important implications for understanding the relationships between carbonatites and orogenic activity. In particular, we propose that the studied alvikites are generated through liquid unmixing at crustal levels, starting from nephelinitic or melilititic parent liquids. These latter were produced in a hybrid mantle resulting from the interaction through a vertical slab window, between a metasomatized mantle wedge, moving eastward from the Tyrrhenian/Campanian region, and the local Adriatic mantle. The occurrence of carbonatite rocks at Mt. Vulture, that lies on the leading edge of the Southern Apennines accretionary prism, is taken as an evidence for the carbonatation of the mantle sources of this volcano. We speculate that mantle carbonatation is related to the introduction of sedimentary carbon from the Adriatic lithosphere during Tertiary subduction.  相似文献   

9.
吉林-黑龙江高压变质带的初步厘定:证据和意义   总被引:14,自引:11,他引:3  
本文定义的吉林-黑龙江高压变质带是指我国东北地区佳木斯-兴凯地块西缘和南缘共同发育的呈弧形展布的高压变质带,具体包括佳木斯-兴凯地块西缘增生杂岩带(黑龙江蓝片岩带和张广才-小兴安岭增生杂岩带)和佳木斯-兴凯地块南缘的长春-延吉增生杂岩带.其中佳木斯-兴凯地块西缘增生杂岩带形成于晚三叠-早侏罗世(180 ~ 210Ma),为佳木斯-兴凯地块向西冲增生而形成的高压变质带;而长春-延吉增生杂岩带由一系列特征性俯冲-增生杂岩组成,包括石头口门-烟筒山红帘石片岩带、呼兰群变质杂岩、色洛河群变质杂岩、青龙村群变质杂岩和开山屯变质杂岩等,形成时代为187~230Ma,峰期为220~230Ma.长春-延吉增生杂岩带曾被认为是西拉木伦河断裂带的东延部分,但是区域构造分析表明,它们形成的动力学背景与佳木斯-兴凯地块西缘增生杂岩带相同,均为太平洋板块三叠纪-早侏罗世的西向俯冲导致佳木斯-兴凯地块自东向西的“剪刀式”闭合过程.我们将佳木斯-兴凯地块西缘和南缘发育的三叠纪-早侏罗世增生杂岩带作为统一的构造单元来考虑,结合该区发育有典型的高压变质带,因此命名为“吉林-黑龙江高压变质带,简称吉黑高压带”.吉黑高压带形成于太平洋板块三叠纪-早侏罗世的西向俯冲导致佳木斯-兴凯地块自东向西的“剪刀式”闭合的过程,同时该带记录了古亚洲构造域的结束和太平洋俯冲开始的关键时期,为两大构造域叠加与转换的关键性地质证据.  相似文献   

10.
Within the metamorphic basement of the Coastal Cordillera of central Chile, the Western Series constitutes the high-pressure (HP)/low-temperature (LT) part (accretionary prism) of a fossil-paired metamorphic belt dominated by metagreywackes. In its eastern part, blocks derived from small lenses of garnet amphibolite with a blueschist facies overprint are locally intercalated and associated with serpentinite and garnet mica-schist. Continuously developed local equilibria were evaluated applying various independent geothermobarometric approaches. An overall anticlockwise PT path results. The prograde path evolved along a geothermal gradient of 15 °C/km, passing the high-pressure end of greenschist facies until a transient assemblage developed within albite-epidote amphibolite facies transitional to eclogite facies at peak metamorphic conditions (600–760 °C, 11–16.5 kbar; stage I). This peak assemblage was overprinted during an external fluid infiltration by an epidote blueschist facies assemblage at 350–500 °C, 10–14 kbar (stage II) indicating nearly isobaric cooling. The retrograde equilibration stage was dated with a Rb–Sr mineral isochron at 305.3±3.2 Ma, somewhat younger (296.6±4.7 Ma) in an adjacent garnet mica-schist. Localized retrograde equilibration continued during decompression down to 300 °C, 5 kbar. The retrograde evolution is identical in the garnet amphibolite and the garnet mica-schist.

The counterclockwise PT path contrasts the usual clockwise PT paths derived from rocks of the Western Series. In addition, their ages related to stage II are the oldest recorded within the fossil wedge at the given latitude. Its “exotic” occurrence is interpreted by the path of the earliest and deepest subducted material that was heated in contact with a still hot mantle. Later accreted and dehydrated material caused hydration and cooling of the earliest accreted material and the neighbouring mantle. After this change also related to rheological conditions, effective exhumation of the early subducted material followed at the base of the hydrated mantle wedge within a cooler environment (geothermal gradient around 10–15 °C/km) than during its burial. The exotic blocks thus provide important time markers for the onset of subduction mass circulation in the Coastal Cordillera accretionary prism during the Late Carboniferous. Continuous subduction mass flow lasted for nearly 100 Ma until the Late Triassic.  相似文献   


11.
古特提斯洋向北俯冲形成增生杂岩,它们向南增生构成了南羌塘增生地体,且增生期内发育的岩浆岩可以用来研究南羌塘的增生过程。在南羌塘增生杂岩带内,由北向南,发育有玛依岗日(MG)辉长岩墙、角木日(JM)辉长辉绿岩墙。锆石U-Pb测年结果显示,两者分别形成于237. 1±2. 3Ma和230. 7±1. 8Ma,为南羌塘增生期内岩浆岩。它们的岩石地球化学特征均介于OIB与E-MORB之间,富集Ti、Nb,以及LREE和LILE。Nd-Pb同位素结果显示两者均起源于富集地幔源区。Sm/YbLa/Yb图解显示,两者均起源于尖晶石-石榴石二辉橄榄岩源区,相对于JM辉长辉绿岩MG辉长岩部分熔融程度较高。两者Mg#和Ni、Cr特征表明,MG辉长岩分异程度高于JM辉长辉绿岩。Th/Nb-La/Nb图解显示,相对于JM辉长辉绿岩MG辉长岩经历了一定程度的地壳混染。综合研究认为,MG辉长岩和JM辉长辉绿岩为古特提斯洋壳俯冲过程中软流圈上涌的两次岩浆活动的产物,并受俯冲洋壳和地幔楔影响。MG辉长岩和JM辉长辉绿岩记录了南羌塘的增生过程,它们为相关研究提供了岩浆岩证据。  相似文献   

12.
The continental growth mechanism of the Altaids in Central Asia is still in controversy between models of continuous subduction–accretion versus punctuated accretion by closure of multiple oceanic basins. The Beishan orogenic belt, located in the southern Altaids, is a natural laboratory to address this controversy. Key questions that are heavily debated are: the closure time and subduction polarity of former oceans, the emplacement time of ophiolites, and the styles of accretion and collision. This paper reports new structural data, U- Pb and Ar–Ar ages from the eastern Beishan orogen that provide information on the accretion process and tectonic affiliation of various terranes. Our geochronological and structural results show that the younging direction of accretion was northwards and the subduction zone dipped southwards under the northern margin of the Shuangyingshan micro-continent. This long-lived and continuous accretion process formed the Hanshan accretionary prism. Our field investigations show that the emplacement of the Xiaohuangshan ophiolite was controlled by oceanic crust subduction beneath the forearc accretionary prism of the Shuangyingshan–Mazongshan composite arc to the south. Moreover, we address the age and terrane affiliation of lithologies in the eastern Beishan orogen through detrital zircon geochronology of meta-sedimentary rocks. We provide new information on the ages, subduction polarities, and affiliation of constituent structural units, as well as a new model of tectonic evolution of the eastern Beishan orogen. The accretionary processes and crustal growth of Central Asia were the result of multiple sequences of accretion and collision of manifold terranes.  相似文献   

13.
Ophiolites of the Afrika Mys Block of the Kamchatsky Mys Peninsula, eastern Kamchatka, are a fragment of an accretionary prism that formed in the Late Cretaceous-Eocene on the southern side of the Kronotsky island arc as a result of its collision with the Smagino volcanic uplift that arose at the post-Neocomian time on the subducting plate. On the basis of the geologic, geochemical, and paleomagnetic data available to date, it is established that ophiolites are heterogeneous in their origin and were formed in different geodynamic settings that changed progressively with time. The heterogeneous structure of ophiolites displays the evolution of a fragment of the oceanic lithosphere, which was not submerged into subduction zone, from its origination in the spreading center via transformation under conditions of the plume-related volcanic uplift to the involvement in the structure of the Kronotsky island arc, which is currently a constituent of the accretionary system of Kamchatka. The reconstruction of ophiolites tectonically fragmented in the accretionary prism allows recognition of (1) derivatives of an ocean ridge (ultramafic-gabbro-basaltic complex of the Mount Olen’ya Massif) conjugated with a transform fault and volcanosedimentary rocks of the Smagino volcanic uplift (cover of the oceanic crust) and (2) a fragment of the lithospheric mantle (ultramafic rocks of the Lake Stolbovoe Massif) exhumed in the process of collision and genetically related to the evolution of the volcanic uplift. In the course of evolution of the Kronotsky island arc, all these elements were overlapped by tephrogenic turbidites (Pikezh Formation) and quartz-feldspar graywackes (Pikezh Sandstone) that were involved in the accretionary prism as well. The paleotectonic reconstructions broadly support the petrologic conclusions about the complementary nature of different igneous complexes and ascertain the temporal sequence of events.  相似文献   

14.
We propose a model of the geodynamic evolution of the Dzhida island-arc system of the Paleoasian Ocean margin which records transformation of an oceanic basin into an accretion-collision orogenic belt. The system includes several Vendian-Paleozoic complexes that represent a mature oceanic island arc with an accretionary prism, oceanic islands, marginal and remnant seas, and Early Ordovician collisional granitoids. We have revealed a number of subunits (sedimentary sequences and igneous complexes) in the complexes and reconstructed their geodynamic settings. The tectonic evolution of the Dzhida island-arc system comprises five stages: (1) ocean opening (Late Riphean); (2) subduction and initiation of an island arc (Vendian-Early Cambrian); (3) subduction and development of a mature island arc (Middle-Late Cambrian); (4) accretion and formation of local collision zones and remnant basins (Early Ordovician-Devonian); and (5) postcollisional strike-slip faulting (Carboniferous-Permian).  相似文献   

15.
《China Geology》2022,5(3):457-474
The A-type granites with highly positive εNd(t) values in the West Junggar, Central Asian Orogenic Belt (CAOB), have long been perceived as a group formed under the same tectonic and geodynamic setting, magmatic sourceq and petrogenetic model. Geological evidence shows that these granites occurred at two different tectonic units related to the southeastern subduction of Junggar oceanic plate: the Hongshan and Karamay granites emplaced in the southeast of West Junggar in the Baogutu continental arc; whereas the Akebasitao and Miaoergou granites formed in the accretionary prism. Here the authors present new bulk-rock geochemistry and Sr-Nd isotopes, zircon U-Pb ages and Hf-O isotopes data on these granites. The granites in the Baogutu continental arc and accretionary prism contain similar zircon εHf(t) values (+10.9 to +16.2) and bulk-rock geochemical characteristics (high SiO2 and K2O contents, enriched LILEs (except Sr), depleted Sr, Ta and Ti, and negative anomalies in Ce and Eu). The Hongshan and Karamay granites in the Baogutu continental arc have older zircon U-Pb ages (315–305 Ma) and moderate 18O enrichments (δ18Ozircon=+6.41‰–+7.96‰); whereas the Akebasitao and Miaoergou granites in the accretionary prism have younger zircon U-Pb ages (305–301 Ma) with higher 18O enrichments (δ18Ozircon=+8.72‰–+9.89‰). The authors deduce that the elevated 18O enrichments of the Akebasitao and Miaoergou granites were probably inherited from low-temperature altered oceanic crusts. The Akebasitao and Miaoergou granites were originated from partial melting of low-temperature altered oceanic crusts with juvenile oceanic sediments below the accretionary prism. The Hongshan and Karamay granites were mainly derived from partial melting of basaltic juvenile lower crust with mixtures of potentially chemical weathered ancient crustal residues and mantle basaltic melt (induced by hot intruding mantle basaltic magma at the bottom of the Baogutu continental arc). On the other hand, the Miaoergou charnockite might be sourced from a deeper partial melting reservoir under the accretionary prism, consisting of the low-temperature altered oceanic crust, juvenile oceanic sediments, and mantle basaltic melt. These granites could be related to the asthenosphere’s counterflow and upwelling, caused by the break-off and delamination of the subducted oceanic plate beneath the accretionary prism Baogutu continental arc in a post-collisional tectonic setting.©2022 China Geology Editorial Office.  相似文献   

16.
混杂岩是古增生楔存在的标志之一,一般由枕状玄武岩、灰岩、放射虫硅质岩、硅质页岩、砂岩等混乱无序组成。目前"大洋板块地层"(OPS)运用放射虫地层学方法对混乱的增生楔断片进行重建取得了良好效果,并清晰地展示了大洋板块俯冲和洋底物质连续增生的历史。在西藏仲巴地区填图过程中,结合放射虫年代学分析鉴定结果,以OPS重建的思路和理论作为指导,重建了仲巴地区混杂岩的大洋板块地层,并恢复了该区域特提斯洋在洋中脊大洋板块增生至消亡的岩石序列,自下而上分别为侏罗纪海山玄武岩、海山覆盖物侏罗系—白垩系碳酸盐岩、海山周围沉积的侏罗系—白垩系放射虫硅质岩和硅质页岩,以及海沟附近的白垩系陆源碎屑岩等,为特提斯洋大洋板块俯冲的方向、持续时间和古大地构造环境提供了信息。  相似文献   

17.
增生型造山带形成于活动大陆边缘,以宽阔且延伸稳定的增生杂岩为代表,在大洋板块向大陆板块发生缓慢而复杂的俯冲、碰撞过程中,大洋板块、火山岛弧、海山、大陆碎块等沿逐渐后退的海沟拼贴,仰冲板块前端发生刮削作用、底垫作用和构造剥蚀等作用,使得洋壳物质在海沟内壁增生,具体表现为增生杂岩的形成、垂向和侧向的生长,最终实现陆壳的横向生长。陆陆碰撞期间,加入俯冲通道的被动陆缘也将遭受类似的构造作用,从而形成规模较大的陆缘增生杂岩。因此,造山带增生杂岩的物质组成与结构、形成机制和演化过程对解剖洋陆转换过程中的复杂地球动力学过程具有极为关键的作用。西藏南羌塘增生杂岩是近年来通过走廊性地质填图以及多学科交叉工作得到的研究认识。然而,该增生杂岩的物质组成和结构等关键内容还未得到系统的研究,严重阻碍了对其形成机制和演化过程的理解。因此,本文以时空演化为主线,解剖杂岩物质组成和结构,结合俯冲期和同碰撞期大地构造单元,洞察南羌塘增生杂岩的形成演化过程。本次研究显示:(1)南羌塘增生杂岩具有俯冲杂岩在下、褶皱-冲断带在上的双层结构,二者间为大规模的拆离断层系统;(2)俯冲杂岩内不只含有洋板块地层单元,还含有大量的南羌塘被动陆缘物质;(3)褶皱-冲断带虽主要由被动陆缘物质变形改造而来,也含有属于洋板块地层系统的海山和洋内岛弧等物质。结合同俯冲期弧前盆地和楔顶盆地、同碰撞期晚三叠世岩浆的时空分布,高压变质岩的形成与折返时限,南羌塘增生杂岩内的双层结构应主要是陆陆碰撞过程中被动陆缘俯冲的结果,少量形成于大洋俯冲期间的俯冲反向过程中。本文提出的陆缘俯冲导致南羌塘增生杂岩双层结构的研究认识,对理解南羌塘地壳结构、中生代盆地基底形成演化具有较为重要的意义。  相似文献   

18.
俯冲带作为板块构造最为重要的标志之一,是地球最大的物质循环系统,被称为“俯冲工厂”.俯冲作用是驱动和维持板块运动的重要动力引擎.一个完整的俯冲带发育海沟、增生楔、弧前盆地、岩浆弧、弧后盆地(或弧背前陆盆地)等基本构造单元.在一些特殊情况下(如洋脊俯冲、年轻洋壳俯冲、海山俯冲),则可形成一些特殊的俯冲带结构(如平板俯冲、俯冲侵蚀),导致岩浆弧、增生楔、弧前盆地等不发育甚至缺失.俯冲大洋板片可滞留于或穿越地幔过渡带进入下地幔甚至到达核幔边界,把地壳物质带入到地球深部,并通过地幔柱活动上升到浅部.俯冲带是构造活动强烈的区域,存在走滑、挤压、伸展等变形及其构造叠加.俯冲带海沟可向大洋或大陆方向迁移,岛弧及增生楔等也随之发生迁移,使俯冲带上盘发生周期性挤压和伸展,形成复杂的古地理格局.微陆块、岛弧、海山/洋底高原等地质体在俯冲带发生增生时,可阻塞先存的俯冲带,造成俯冲带跃迁或俯冲极性反转,在其外侧形成新的俯冲带.俯冲带深部精细结构、俯冲起始如何发生、板块俯冲与地幔柱的深部关联机制等是当前俯冲带研究中值得关注的前沿问题.开展俯冲带地球物理深部探测、古缝合带与现今俯冲带对比研究、俯冲带动力学数值模拟是解决上述科学问题的重要途径.   相似文献   

19.
Recent evidence indicates that beneath the Caribbean a tongue of sublithosphere mantle is flowing from the Pacific to the Atlantic, dragging the overlying lithosphere eastward: (i) Shear-wave splitting results from beneath the Andean subduction zone and Venezuela suggest mantle flow eastward through the Caribbean. (ii) Volcanic chemistry in Central America indicates a slab source beneath Nicaragua, but a different source in Costa Rica, above the proposed Pacific outflow. (iii) An extinct volcanic arc accreted to the margins of the Caribbean swept eastward through the Caribbean gap between North & South America. The 1982 'continental undertow' model requires shallow-mantle flow through the Caribbean gap from the Pacific to the Atlantic, if continents have deep roots and if shallow-mantle flow beneath oceans is decoupled from convection at deeper levels. The new evidence from the Caribbean is thus compatible with the continental undertow model, and perhaps with other models involving decoupled shallow flow.  相似文献   

20.
大别造山带浅变质岩的地质-地球化学特征及成因机制   总被引:1,自引:0,他引:1  
大别造山带超高压变质带内部及其北缘,出露仅经过绿片岩相变质作用的浅变质岩系。通过对部分浅变质岩的区域分布、地质特征及地球化学的综合研究表明,这些浅变质岩系形成于新元古代扬子板块北缘的裂陷盆地中,并遭受新元古代岩浆侵位和以寒冷气候位特征的大气降水热液蚀变,共同经历了与扬子大陆板块俯冲-碰撞过程中有关的构造热事件;因此认为这些浅变质为扬子板块俯冲过程中被“刮”下来的构造残片,为大陆板块俯冲过程中形成的加积杂岩,并为扬子板块与华北板块的俯冲和碰撞的动力学过程提供有力的科学佐证。在此基础上,厘定了大别造山带浅变质岩的形成及其与扬子大陆板块俯冲的构造模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号