首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
针对GPS、SLR和DORIS三种不同手段的各自定轨精度问题,本文基于不同的轨道评估方法进行了深入分析。以JASON-2卫星为例,分析了姿态模型误差及其对定轨精度的影响,分别讨论了GPS、SLR和DORIS的定轨策略和定轨精度,并基于轨道评估结果进行了轨道叠加。基于实测数据进行了试验,试验结果表明,JASON-2卫星姿态模型误差对DORIS、GPS和SLR轨道影响分别为0.040、0.036和0.033m;DORIS定轨结果优于GPS和SLR,SLR定轨精度最差;基于SLR验证和轨道重叠结果加权,对GPS、SLR和DORIS轨道进行轨道叠加,其精度一致,通过与JPL轨道比较,其径向精度为2cm。  相似文献   

2.
系统研究了基于海洋二号A(HY2A)与资源三号(ZY3)卫星国产星载GPS接收机双频数据的自主定轨问题,模拟在轨实时处理的结果表明,HY2A与ZY3卫星伪距自主定轨的位置精度可达1.3 m,速度精度可达1.2 mm/s;而HY2A卫星相位自主定轨位置精度可达38 cm,其中径向精度约10 cm,速度精度可达0.36 mm/s;ZY3卫星相位定轨位置精度可达54 cm,速度精度可达0.54 mm/s。自主定轨的相关成果可以应用于我国后续对地观测计划的实时服务。  相似文献   

3.
目前,BDS-3卫星上已全部搭载星间链路设备,可利用星间双向测量数据分离卫星相对钟差和相对几何距离解耦卫星轨道和钟差,再把星间距离作为观测量结合地面测量数据进行星地星间联合定轨。人卫激光测距(SLR)技术不受载波相位模糊度、钟差等因素的影响,数据处理过程相对于GNSS技术的数据处理更简单,可以作为一种独立于GNSS观测技术的测量手段。所有BDS卫星上已搭载激光角反射器,因此本文利用2020年1月北斗星间链路数据及少量SLR数据对11颗BDS-3卫星(MEO/IGSO/GEO)进行联合精密定轨试验。分析结果表明,基于SLR和星间链路的3类轨道类型的BDS-3卫星定轨精度相当,轨道精度径向为4.2 cm,三维精度为30.2 cm;卫星轨道预报12 h和24 h MEO卫星三维精度约40.0 cm,IGSO三维精度优于60.0 cm;GEO卫星三维精度约1.0 m。在精密定轨的同时解算地球自转参数(ERP),由于激光数据量少,极移精度约3.0 mas,日长变化精度为0.35 ms。利用少量SLR观测数据和星间链路测量数据联合可以实现导航卫星的高精度定轨,如果能够对BDS卫星加强激光观测,有助于提升轨道精度,为BDS自主可控空间基准参数解算提供参考。  相似文献   

4.
采用星载GPS双频观测数据,低轨卫星定轨的精度可以达到厘米级。采用GRACE A卫星的星载GPS观测数据,分别基于单频数据(C/A和L1)的半合组合观测量和双频数据的消电离层组合观测量,采用动力学低轨卫星定轨方法,解算了7d的GRACE A卫星轨道,解算结果与德国地学中心发布的快速科学轨道进行对比分析,并通过卫星激光测距观测数据进行检核。结果表明,通过半合组合观测量定轨得到的结果,在径向R、切向T、法向N方向的均方根误差平均值分别为7.9cm、20.1cm和5.5cm,三维定轨精度平均为22.8cm,利用卫星激光测距数据进行检核,残差平均值为-1.8cm,均方根误差为8.6cm。证明了采用单频观测数据进行定轨的可行性,并且定轨精度可以达到一般低轨卫星定轨精度的要求。  相似文献   

5.
为了实现cm级HY-2卫星精密定轨,提出了基于DORIS和SLR的HY-2卫星综合定轨方法。模拟了DORIS信标站与SLR跟踪站的观测数据,确定了定轨方法和流程,探讨了分别赋予不同观测精度时各定轨精度,并分别分析了不同的信标站分布以及两种观测技术综合精密定轨中权对定轨精度的影响。实验表明,观测精度的高低直接影响着单一技术的定轨精度;优化信标站的分布,可明显提高定轨精度并节约计算时间;多种技术综合定轨时,合理分配各观测量的权可使定轨精度达到最佳;分别赋予DORIS和SLR观测量0.3mm/s和10mm的权,则使HY-2卫星定轨精度达到cm级。  相似文献   

6.
利用Jason-3星载GPS观测数据,采用简化动力学方法和运动学方法对Jason-3卫星进行精密定轨研究. 通过载波相位残差、重叠轨道对比、参考轨道对比和卫星激光测距(SLR)轨道检核四种方式评定轨道精度. 计算相位残差均方根(RMS)值,简化动力学轨道的RMS值在0.7~0.8 cm,运动学轨道的RMS值在0.50~0.55 cm;简化动力学轨道重叠部分径向RMS值达到0.32 cm,运动学轨道重叠部分径向RMS值达到1.12 cm;与国际DORIS服务(IDS)官方提供的参考轨道对比,简化动力学轨道径向精度达到1.47 cm,运动学轨道径向精度达到4.36 cm;利用SLR观测数据进行核验,简化动力学轨道精度整体优于2.1 cm,运动学轨道精度整体优于3.3 cm. 通过实验证明:Jason-3卫星的简化动力学轨道和运动学轨道的精度均达到cm级.   相似文献   

7.
利用星载GPS观测数据确定海洋2A卫星cm级精密轨道   总被引:2,自引:0,他引:2  
系统研究了基于国产星载双频GPS接收机的海洋2A(HY2A)卫星精密定轨问题,并对星载双频GPS接收机天线相位中心进行了校正.结果显示,HY2A卫星径向定轨精度可达1~2 cm,天线相位中心标定精度为mm级.相关成果可应用于我国后续所有搭载双频GPS接收机的对地观测卫星计划.  相似文献   

8.
Jason-2卫星星载GPS数据cm级精密定轨   总被引:1,自引:0,他引:1  
Jason-2卫星为测高卫星,需要cm级的轨道精度。利用Jason-2星载GPS数据,采用简化动力学法进行了Jason-2卫星精密定轨。对简化动力学轨道进行重叠轨道对比,径向精度达到1.19cm;与CLASS提供的POE结果对比,径向精度达到5.54cm;与SLR数据进行对比,整体精度达到6.63cm。因此,简化动力学轨道达到了cm级要求,定轨精度良好。  相似文献   

9.
采用2015年5月24日—30日的Swarm星载GPS双频观测数据,基于Melbourne-Wübbena(MW)和消电离层线性组合,在精密单点定位技术的基础上,采用批处理最小二乘估计法对不同轨道高度的Swarm系列卫星进行非差运动学精密定轨。利用星载GPS相位观测值残差、与欧空局发布的简化动力学轨道对比,以及SLR检核3种方法对Swarm系列卫星非差运动学定轨结果进行精度评估。结果表明:①Swarm系列卫星星载GPS相位观测值残差RMS为6~7 mm;②与欧空局发布的简化动力学轨道进行求差,径向、切向及法向轨道差值RMS为2~4 cm;③与欧空局发布的运动学轨道进行求差,径向、切向及法向轨道差值RMS为1~2 cm;④SLR检核结果表明Swarm-A/B/C卫星轨道精度为3~4 cm。因此,采用非差运动学定轨方法与本文提供的定轨策略进行Swarm系列卫星精密定轨是切实可行的,定轨精度为厘米级。  相似文献   

10.
《测绘科学》2020,(1):42-47
针对JASON-3卫星精密定轨方法和轨道精度检核的关键问题,该文利用4d的星载GPS观测数据,基于简化动力学定轨方法实现JASON-3精密定轨,并提出采用内部符合和外部符合两种方法对解算轨道进行检核。通过重叠轨道对比,径向、切向和法向轨道精度均在0.5cm左右;将解算的简化动力学轨道与DORIS国际服务组织(IDS)的多任务精密卫星测高、卫星定轨和定位地面部分提供的SSA精密轨道进行对比,4d的轨道精度在径向、切向和法向分别达1.57~2.18cm、2.22~3.55cm和2.60~2.89cm。实验结果表明,JASON-3测高卫星的简化动力学轨道精度达厘米级,满足该卫星对轨道精度的要求。  相似文献   

11.
12.
The development of the COMPASS satellite system is introduced, and the regional tracking network and data availability are described. The precise orbit determination strategy of COMPASS satellites is presented. Data of June 2012 are processed. The obtained orbits are evaluated by analysis of post-fit residuals, orbit overlap comparison and SLR (satellite laser ranging) validation. The RMS (root mean square) values of post-fit residuals for one month’s data are smaller than 2.0 cm for ionosphere-free phase measurements and 2.6 m for ionosphere-free code observations. The 48-h orbit overlap comparison shows that the RMS values of differences in the radial component are much smaller than 10 cm and those of the cross-track component are smaller than 20 cm. The SLR validation shows that the overall RMS of observed minus computed residuals is 68.5 cm for G01 and 10.8 cm for I03. The static and kinematic PPP solutions are produced to further evaluate the accuracy of COMPASS orbit and clock products. The static daily COMPASS PPP solutions achieve an accuracy of better than 1 cm in horizontal and 3 cm in vertical. The accuracy of the COMPASS kinematic PPP solutions is within 1–2 cm in the horizontal and 4–7 cm in the vertical. In addition, we find that the COMPASS kinematic solutions are generally better than the GPS ones for the selected location. Furthermore, the COMPASS/GPS combinations significantly improve the accuracy of GPS only PPP solutions. The RMS values are basically smaller than 1 cm in the horizontal components and 3–4 cm in the vertical component.  相似文献   

13.
TOPEX/Poseidon orbit error assessment   总被引:1,自引:0,他引:1  
This paper discusses the accuracy of TOPEX/Poseidon orbits computed at Delft University, Section Space Research & Technology (DUT/SSR&T), from several types of tracking data,i.e. SLR, DORIS, and GPS. To quantify the orbit error, three schemes are presented. The first scheme relies on the direct altimeter observations and the covariance of the JGM-2 gravity field. The second scheme is based on crossover difference residuals while the third scheme uses the differences of dynamic orbit solutions with the GPS reduced-dynamic orbit. All three schemes give comparable results and indicate that the radial orbit error of TOPEX/Poseidon is 3–4 cm. From the orbit comparisons with GPS reduced dynamic, both the along-track and cross-track errors of the dynamic orbit solutions were found to be within 10–15 cm.  相似文献   

14.
Summary. In the framework of the GRIM series of gravity field models, the CNES/GRGS GINS precise orbit determination software has been adapted to dynamic GPS data processing. That is simultaneous processing of all available observables (i.e. GPS, DORIS, Laser) and all available satellite orbits (i.e. GPS, TOPEX/POSEIDON) can now be performed. The TOPEX/POSEIDON (T/P) mission satellite is equipped with a GPS receiver, a DORIS receiver and a laser reflector that represents an unprecedented opportunity to compare and combine these three tracking systems to estimate orbital parameters and gravity field coefficients. Different combinations including : GPS + DORIS, DORIS + LASER, GPS + DORIS + LASER, have been tested and have shown small but systematic improvement in T/P orbit accuracy when GPS and DORIS data were processed simultaneously. Five tuned gravity field models have been generated by accumulating different combinations of T/P normal equations associated to the GPS, DORIS and Laser data. GPS data have a greater dynamic impact on gravity field spherical harmonics coefficient determination than DORIS and Laser data. Furthermore, the results obtained with the solutions including and T/P normal equations suggest that indeed these different tracking systems are somehow complementary in a dynamic sense. Received 30 March 1995; Accepted 19 September 1996  相似文献   

15.
联合星载GPS双频观测值与简化的动力学模型,在卫星运动方程中引入适当的伪随机脉冲参数,对SWARM卫星进行精密定轨。采用星载GPS相位观测值残差、重叠轨道以及与外部轨道对比等3种方法对SWARM卫星简化动力学定轨结果进行检核。结果表明:SWARM星载GPS相位观测值残差RMS为7~10mm;径向、切向以及法向6h重叠轨道差值RMS均在1cm左右,3个方向均无明显的系统误差。通过与欧空局(ESA)发布的精密轨道进行对比分析,径向轨道差值RMS为2~5cm,切向轨道差值RMS为2~5cm,法向轨道差值RMS为2~4cm,3D轨道差值RMS为4~7cm;SWARM-B定轨精度优于SWARM-A与SWARM-C。因此,采用简化动力学法与本文提供的定轨策略进行SWARM卫星精密定轨是切实可行的,定轨结果良好且稳定,定轨精度达到厘米级。  相似文献   

16.
王跃  张德志  张帆 《北京测绘》2020,(4):556-560
利用GRACE和SWARM重力卫星星载GPS观测数据,基于简化动力学方法进行精密定轨,通过相位观测值残差分析、重叠轨道对比和科学轨道对比进行轨道精度检核。GRACE和SWARM卫星相位观测值残差RMS值稳定在6 mm左右,重叠轨道对比差值RMS在径向、切向和法向均优于1.24 cm;通过与GFZ和ESA提供的GRACE卫星与SWARM卫星精密轨道对比,GRACE卫星简化动力学轨道在R,T,N方向的轨道精度分别达到1.3 cm、2.1 cm和1.3 cm;SWARM卫星简化动力学轨道在径向、切向和法向的轨道精度分别达到0.8 cm、1.3 cm和1.6 cm。实验表明,基于简化动力学方法,GRACE和SWARM卫星定轨精度均到达厘米级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号