首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The intrinsic dissipation and scattering attenuation in southwestern (SW) Anatolia, which is a tectonically active region, is studied using the coda waves. First the coda quality factor (Qc) assuming single scattering is estimated from the slope of the coda-wave amplitude decay. Then the Multiple Lapse Time Window (MLTW) analysis is performed with a uniform earth model. Three non-overlapping temporal data windows are used to calculate the scattered seismic energy densities against the source-receiver distances, which, in turn, are used to calculate separate estimates of the intrinsic and scattering factors. In order to explore the frequency dependency, the observed seismograms are band pass-filtered at the center frequencies of 0.75, 1.5, 3.0, 6.0 and 12.0. The scattering attenuation (Qs−1) is found lower than the intrinsic attenuation (Qi−1) at all frequencies except at 0.75 Hz where the opposite is observed. Overall the intrinsic attenuation dominates over the scattering attenuation in the SW Anatolia region. The integrated energy curves obtained for the first energy window (i.e., 0–15 s) are somewhat irregular with distance while the second (i.e., 15–30 s) and third (i.e., 30–45 s) data windows exhibit more regular change with distance at most frequencies. The seismic albedo B0 is determined as 0.61 at 0.75 Hz and 0.34 at 12.0 Hz while the total attenuation factor denoted by Le−1 changes in the range 0.034–0.017. For the source-station range 20–180 km considered the scattering attenuation is found strongly frequency dependent given by the power law Qs−1 = 0.010*f−1.508. The same relations for Qi−1, Qt−1 (total), Qc−1 and (expected) hold as Qi−1 = 0.0090*f−1.17, Qt−1 = 0.019*f−1.31, Qc−1 = 0.008*f−0.84 and respectively. Compared to the other attenuation factors Qc−1 and are less dependent on the frequency.  相似文献   

2.
The dependence of coda attenuationQ c on frequency and lapse time was studied. Data from small local earthquakes, recorded at three stations (VMR, VSI and VFI) of the VOLNET network operating in central Greece, were used.Q c was estimated by applying the single scattering model to bandpass-filtered seismograms, over a frequency range of 1 to 12 Hz. Analysis was performed every 10 s until the end on overlapping time windows.Q c is found to depend on frequencyf in Hz according to a power law,Q c =Q 0 f n . ObservedQ 0 ranges from 30 to 100 and the powern ranges from 0.90 to 0.70.Q 0 increases andn decreases with lapse time increasing. A strong dependence ofQ c on lapse time was also found. In the frequency range of 1 to 8 Hz and at a short lapse time,Q c values were found to be similar for all three stations. On the other hand, at the longest analyzed time window (50 s), the estimatedQ c values show a discrepancy which is more obvious at a higher frequency band. The scattering coefficient around the central station VSI is found to range from 0.029 to 0.0041 km–1.Q c from the single scattering model andQ s from the amplitude ratio of directS to coda waves for the VSI station are similar. We believe dependence of coda attenuationQ c on frequency and lapse time is caused by a combination of geotectonic features and depth variation asQ s .  相似文献   

3.
Attenuation of seismic waves is very essential for the study of earthquake source parameters and also for ground-motion simulations, and this is important for the seismic hazard estimation of a region. The digital data acquired by 16 short-period seismic stations of the Delhi Telemetric Network for 55 earthquakes of magnitude 1.5 to 4.2, which occurred within an epicentral distance of 100 km in an area around Delhi, have been used to estimate the coda attenuation Qc. Using the Single Backscattering Model, the seismograms have been analyzed at 10 central frequencies. The frequency dependence average attenuation relationship Qc = 142f 1.04 has been attained. Four Lapse-Time windows from 20 to 50 seconds duration with a difference of 10 seconds have been analyzed to study the lapse time dependence of Qc. The Qc values show that frequency dependence (exponent n) remains similar at all the lapse time window lengths. While the change in Q0 values is significant, change in Q0 with larger lapsetime reflects the rate of homogeneity at the depth. The variation of Qc indicates a definitive trend from west to east in accordance with the geology of the region.  相似文献   

4.
Coda wave data from California microearthquakes were studied in order to delineate regional fluctuations of apparent crustal attenuation in the band 1.5 to 24 Hz. Apparent attenuation was estimated using a single back scattering model of coda waves. The coda wave data were restricted to 30 s following the origin time; this insures that crustal effects dominate the results as the backscattered shear waves thought to form the coda would not have had time to penetrate much deeper. Results indicate a strong variation in apparent crustal attenuation at high frequencies between the Franciscan and Salinian regions of central California and the Long Valley area of the Sierra Nevada. Although the codaQ measurements coincide at 1.5 Hz (Q c =100), at 24 Hz there is a factor of four difference between the measurements made in Franciscan (Q c =525) and Long Valley (Q c =2100) with the Salinian midway between (Q c =900). These are extremely large variations compared to measures of seismic velocities of comparable resolution, demonstrating the exceptional sensitivity of the high frequency codaQ measurement to regional geology. In addition, the frequency trend of the results is opposite to that seen in a compilation of codaQ measurements made worldwide by other authors which tend to converge at high and diverge at low frequencies, however, the worldwide results generally were obtained without limiting the coda lengths and probably reflect upper mantle rather than crustal properties. Our results match those expected due to scattering in random media represented by Von Karman autocorrelation functions of orders 1/2 to 1/3. The Von Karman medium of order 1/3 corresponding to the Franciscan codaQ measurement contains greater amounts of high wavenumber fluctuations. This indicates relatively large medium fluctuations with wavelengths on the order of 100 m in the highly deformed crust associated with the Franciscan, however, the influence of scattering on the codaQ measurement is currently a matter of controversy.  相似文献   

5.
We analyzed the local earthquakes waveform recorded on a broadband seismic network in the northwestern Himalayan Region to compute lapse time and frequency dependence of coda Q (Q c). The observed Q c values increase with increasing lapse time at all frequency bands. The increase in Q c values with lapse time is attributed to an increase in Q c with depth. This implies that attenuation decreases with increasing depth. The approximate radius of medium contributing to coda generation varies from 55 to 130 km. By comparing the Q c values with those from other regions of the world, we find that they are similar to those obtained from tectonically active regions. The estimated Q c values show a frequency-dependent relationship, Q c = Q 0 f n , where Q 0 is Q c at 1 Hz and n represents degree of frequency dependence. They represent the level of heterogeneity and tectonic activity in an area. Our results show that northwest Himalayas are highly heterogeneous and tectonically very active. Q 0 increases from 113 ± 7 to 243 ± 10 and n decreases from 1.01 ± 0.05 to 0.85 ± 0.03 when lapse time increases from 30 to 70 s. As larger time window sees the effect of deeper part of the Earth, it is concluded that Q 0 increases and n decreases with increasing depth; i.e., heterogeneity decreases with depth in the study area.  相似文献   

6.
Estimation of seismic wave attenuation in the shallow crust in terms of coda wave Q structure previously investigated in the vicinity of Cairo Metropolitan Area was improved using seismograms of local earthquakes recorded by the Egyptian National Seismic Network. The seismic wave attenuation was measured from the time decay of coda wave amplitudes on narrow bandpass filtered seismograms based on the single scattering theory. The frequency bands of interest are from 1.5 to 18 Hz. In general, the values obtained for various events recorded at El-Fayoum and Wadi Hagul stations are very similar for all frequency bands. A regional attenuation law Q c = 85.66 f 0.79 was obtained.  相似文献   

7.
In the light of the single scattering model of coda originating from local earthquakes, and based on the aftershock coda registered respectively at the 4 short period stations installed near the foci shortly after theM7.6 Lancang andM7.2 Gengma earthquakes, this paper has tentatively calculated the rate of amplitude attenuation and theQ c-value of the coda in the Lancang and Gengma areas using a newly-founded synthetic determination method. Result of the study shows the rate of coda amplitude attenuation demonstrates remarkable regional differences respectively in the southern and northern areas. The southern area presents a faster attenuation (Q c=114), whereas the northern area shows a slower attenuation (Q c=231). The paper also discusses the reasons causing such differences. Result of the study also suggests a fairly good linear relation between the coda source factorA o(f) and the seismic moment and the magnitude. Using the earthquake scaling law, the following formulas can be derived: lgM 0=lgA 0(f)+17.6,M D=0.67lgA 0(f)+1.21 and logM 0=1.5M D+15.79. In addition, the rates of amplitude attenuationβ s andβ m are respectively calculated using the single scattering and multiple scattering models, and the ratioβ sm=1.20−1.50 is found for the results respectively from the two models. Finally, the mean free pathL of the S-wave scattering in the southern and northern areas are determined to be 54 km and 122 km respectively by the relations which can distinguish between the inherentQ i and scatteringQ s, testify to this areas having lowQ-values correspond to stronger scatterings. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 71–82, 1992. This study is partly supported by the Seismological Science Foundation of the State Seismological Bureau of China, and the present English version of the paper is translated from its Chinese original by Wenyi Xia, Seismological Bureau of Yunnan Province.  相似文献   

8.
The characteristic of seismic coda wave attenuation in Yunnan area in 7 frequency-bands range from 1 Hz to 20 Hz was estimated by using the local earthquake's waveform data recorded from 22 Yunnan digital seismic stations.Coda attenuation Q-c1 of each station was firstly calculated by single scattering method. Then, mean free path Le and seismic albedo Bo of each station were calculated, and scattering attenuation Q-1s and intrinsic attenuation Q-1i were separated from total attenuation Q-1t by multiple lapse time window analysis based on the multiple scattering model in uniform random isotropic scattering medium. The attenuating characteristics in Yunnan show that most value of Le are in 10~30 km, with maximal within 2~6 Hz;Bo are about 0.5 at 1~2 Hz, but less than 0.5at other frequency-bands, which means Q-1i is comparable with Q-1s at 1~2 Hz, and after 1~2 Hz, Q-1i is greater than Q-1s and dominates the attenuation process. Q-1c is close to Q-1i at other frequency bands except 1~2 Hz.Results show that Q-1 especially Qs-1 varies spatially, Q-1 in eastern Yunnan zone is a bit higher than in northwestern Yunnan zone;northwestern Yunnan zone higher than southwestern Yunnan zone. Comparing with other results in global, Qs-1 in Yunnan is lower than the global average value among these results, Q-1i is higher than the global average value, and Q-1t lies the middle among these results.  相似文献   

9.
For short-period near-earthquake records in eastern China, from the empirical attenuation formula of coda ground motion amplitudeA with timeτ: lgA=G−2. 235 lgτ, using the single scattering theory modified with epicentral distance, we obtain the curve family of corrected coda amplitudeA c(r,t), andω/2Q c values for each time interval of coda. From this,Q c(f,h) values, which correspond to each observational average frequency and sampling depth, are calculated. The results substantially agree with those observationalQ c values in Yunnan, Beijing and central Asia.  相似文献   

10.
The relative contribution of scattering (Q s –1 ) and intrinsic (Q i –1 ) attenuation to the totalS-wave attenuation for the frequencies of 1.5, 3.0, 6.0 and 12.0 Hz has been studied by applying the radiative energy transfer theory, Data of local earthquakes which occurred in northern Greece and were recorded by the permanent telementered network of the Geophysical Laboratory of the University of Thessaloniki have been used. The results show that in this area the scattering attenuation is dominant over all frequencies while intrinsic attenuation is significantly lower. The estimatedQ s –1 andQ i –1 values have frequency dependences off –0.72 andf –0.45, respectively. The frequency dependence ofQ s –1 is the same as that of the codaQ c –1 , obtained by applying the single scattering model, which probably implies that the frequency dependence of the coda wave attenuation is attributed to the frequency dependence of the scattering attenuation.Q c –1 values are very close to scattering attenuation for short lapse times, (10–20 sec), and intermediate between scattering and intrinsic attenuation for the longer lapse times, (50–100 sec). This difference is explained as the result of the depth-dependent attenuation properties and the multiple scattering effects.  相似文献   

11.
21 earthquakes recorded by a temporary seismic network in the Changbaishan Tianchi volcanic area in Northeast China operated during the summer of 2002 and 2003 were analyzed to estimate the S coda attenuation. The attenuation quality factor Qc was estimated using the single scattering attenuation model of Sato (1977) in the frequency band from 4 to 24 Hz. All the events studied in this paper occurred at depths from 2 to 6 km with ML of 1.4–2.8. The epicentral distances are less than 25 km. For all events which occurred near the Tianchi Lake (caldera), the Qc patterns obtained at the stations near the lake are similar, and the Qc values are relatively small. At the stations located about 15 km east of the Tianchi Lake, however, the average Qc is significantly higher. For an event which occurred 25km from the lake to the west, Qc patterns derived at the stations near the lake are quite similar to the above mentioned Qc for stations located in the east. Further study shows that Qc value in the north and central areas of the volcano is relatively lower than that in the surrounding area. Compared to other volcanic areas in the world, the average Qc of the Changbaishan Tianchi volcanic area is obviously lower. The deep seismic sounding and teleseismic receiver function studies indicated more than one lower velocity layer in the crust. The MT studies suggested the presence of high conductive bodies beneath the area. We interpret the strong attenuation of coda waves near the Changbaishan Tianchi volcano as being possibly related to high temperature medium caused by shallow magma chambers.  相似文献   

12.
The single backscattering model was used to estimate total attenuation of coda waves (Qc) of local earthquakes recorded on eight seismological stations in the complex area of the western continental Croatia. We estimated Q0 and n, parameters of the frequency dependent coda-Q using the relation Qc = Q0fn. Lapse time dependence of these parameters was studied using a constant 30 s long time window that was slid along the coda of seismograms. Obtained Qc were distributed into classes according to their lapse time, tL. For tL = 20–50 s we estimated Q0 = 45–184 and n = 0.49–0.94, and for tL = 60–100 s we obtained Q0 = 119–316 and n = 0.37–0.82. There is a tendency of decrease of parameter n with increasing Q0, and vice versa. The rates of change of both Q0 and n seem to decrease for lapse times larger than 50–80 s, indicating an alteration in rock properties controlling coda attenuation at depths of about 100–160 km. A very good correlation was found between the frequency dependence parameter n and the Moho depths for lapse times of 50, 60 and 70 s.  相似文献   

13.
The attenuation of coda waves is analysed for nine seismic stations in the area of convergent motion of the Adriatic microplate and the Dinarides. The frequency dependent coda quality factor of the form Qc = Q0 fn is estimated for up to seven central frequencies (1.5, 3, 6, 9, 12, 18 and 24 Hz) and for 21 successive 30 s long time windows. Q0 was found to increase from 68–353 for short lapse times of 20–50 s, to 158–373 for lapse times of 90–100 s. Parameter n is observed to vary between 0.46 and 0.89, with a pronounced tendency to decrease with increasing Q0, and vice versa. Both Q0 and n seem to stabilize for lapse times larger than 50–80 s, indicating that a change in rock properties controlling coda attenuation occurs at depths of about 100–160 km. The spatial distribution of observed Q0 is well correlated with observed seismicity and inferred tectonic activity. In particular, we observe significant negative correlation of Q0 with the peak ground acceleration (PGA) estimate for the return period of 475 years. The degree of frequency dependence n, is the smallest for stations on the islands, where the crust is the thinnest. The largest n is observed over the thickest crust in the region, where the Moho lies at depths of over 55 km.  相似文献   

14.
Coda of local earthquakes that occurred during 2006–2007 are used to study the attenuation characteristics of the Garhwal–Kumaun Himalayas. The coda attenuation characteristics are represented in terms of coda Q or Q c . It is observed that Q c increases with frequency. Q c also varies with increase in lapse time of coda waves. Q c increases up to an 85-s average lapse time. This is similar to observations around the world reported by many workers who have interpreted this as a manifestation of the fact that heterogeneity decreases with depth. However, around a 90-s average lapse time Q c is lower than its values for lower and higher average lapse times. This is interpreted as an indication of possible presence of a fluid-filled medium or a medium having partial melts at around a 160-km depth. Q 0, i.e., Q c at 1 Hz, increases, and frequency parameter n decreases with increasing lapse time, barring around a 90-s lapse time. This again shows that in general, heterogeneity decreases with increasing depth. The Q 0 and n values for smaller lapse times are similar to those for tectonically active areas. By comparing Q c values obtained in this study with those obtained by us using the 1999 Chamoli earthquake aftershocks, it is concluded that the crust is turbid and the mantle is more transparent. However, whether the variation in Q c values between 1999 and 2006–2007 is temporal or not cannot be definitely established from the available data set.  相似文献   

15.
Coda Q Estimates in the Koyna Region, India   总被引:1,自引:0,他引:1  
—The coda Q, Q c ?, have been estimated for the Koyna region of India. The coda waves of 76 seismograms from thirteen local earthquakes, recorded digitally in the region during July–August, 1996, have been analyzed for this purpose at nine central frequencies viz., 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0, 16.0 and 24.0 Hz using a single backscattering model. All events with magnitude less than 3 fall in the epicentral distances less than 60 km and have focal depths which range from 0.86 to 9.43 km. For the 30 sec coda window length the estimated Q c values vary from 81 to 261 at 1.5 Hz and 2088 to 3234 at 24 Hz, whereas the mean values of Q c with the standard error vary from 148 ± 13.5 at 1.5 Hz to 2703 ± 38.8 at 24 Hz. Both the estimated Q c values and their mean values exhibit the clear dependence on frequency in the region and a frequency dependence average attenuation relationship, Q c = 96f 1.09, has been obtained for the region, covering an approximate area of 11500 km2 with the surfacial extent of about 120 km and depth of 60 km.¶Lapse time dependence of Q c has also been studied for the region, with the coda waves analyzed at five lapse time windows from 20 to 60 sec duration with the difference of 10 sec. The frequency dependence average Q c relationships obtained at these window lengths Q c = 66f 1.16 (20 sec), Q c = 96f 1.09 (30 sec), Q c =131f 1.04 (40 sec), Q c = 148f 1.04 (50 sec), Q c = 182f 1.02 (60 sec) show that the frequency dependence (exponentn) remains mostly stationary at all the lapse time window lengths, while the change in Q 0 value is significant. Lapse time dependence of Q c in the region is also interpreted as the function of depth.  相似文献   

16.
The attenuation in Southeastern Sicily has been investigated using 40aftershocks of the December 13 1990, earthquake. The quality factor ofcoda waves (Qc) was estimated in the frequency range 1.5–24 Hz,applying three different methods in time and frequency domains. On thewhole, a clear dependence of Qc on frequency was observed,according to the general law Q = Q0(f/f0)n . Thefrequency dependence relationships obtained from the analysis of codawaves at three lapse time windows (10, 20 and 30 seconds) show that, forall methods, Q0 (Qc at 1 Hz) significantly increases with lapsetime. In particular, Q0 is approximately 20 at short lapse time (10s) and increases to about 70 at longer lapse time (30 s). This is attributedto the fact that larger lapse times involve deeper parts of the crust andupper lithosphere which may be characterized by larger quality factors.Moreover, the value of the exponent n decreases with increasing codalengths from about 1.3 to 0.9, suggesting a decrease in heterogeneity ofthe medium with depth.Finally, Qc-values here found are of the same order as thosereported from other tectonic regions like the Anatolian Highlands orSouthern Spain, while significantly higher than in the neighboring volcanicarea of Mt. Etna.  相似文献   

17.
For short-period near-earthquake records in eastern China, from the empirical attenuation formula of coda ground motion amplitudeA with timeτ: lgA=G?2. 235 lgτ, using the single scattering theory modified with epicentral distance, we obtain the curve family of corrected coda amplitudeA c(r,t), andω/2Q c values for each time interval of coda. From this,Q c(f,h) values, which correspond to each observational average frequency and sampling depth, are calculated. The results substantially agree with those observationalQ c values in Yunnan, Beijing and central Asia.  相似文献   

18.
We studied spatial and temporal characteristics of seismic attenuation inCentral Italy using S- and coda- waves recorded by the MarchesanSeismograph Network from earthquakes located in the epicentral area ofthe 1997 Umbria-Marche sequence. The amplitude decay of the S waveswith distance was defined calculating empirical attenuation functions at 15frequencies between 1 and 25 Hz. We analyzed separately foreshocks andaftershocks and we found the same attenuation functions, suggesting thatthe possible temporal variations could be confined in a small area. Thefrequency dependence of Q S was approximated by the equation Q S=18 · f 2.0between 1 and 10 Hz. At higher frequencies (10–25 Hz), the frequencydependence of Q s weakens, having an average value of Q S=990. We also estimated Q from coda waves (Q C) using the single-scattering models of Aki andChouet (1975) and Sato (1977). We found that Q C=77 · f 0.6, (between 2 and 20Hz) at the western side of the mountain chain, using either foreshocks oraftershocks. This relation is consistent with previous estimates of Q Creported for the Central Apennines. For a volume sampling the Colfioritobasin, the Apennines and the Marche region we found that Q C=55 · f 0.8,indicating highattenuation below the mountain belt. To detect small temporal changes ofQ, we calculated spectral ratios of 5 temporal doublets located in theepicentral area and recorded at the closest station. We found temporalchanges of Q that vary from 27% to 56%, depending on the locationof the doublets. This variability suggests that the temporal change ofattenuation may depend on the spatial variation of Q and perhaps on thespatial distribution of tectonic stress in the epicentral area.  相似文献   

19.
On 26 January, 2001 (03:46:55,UT) a devastating intraplate earthquake of Mw 7.7 occurred in a region about 5 km NW of Bhachau, Gujarat (23.42°N, 70.23°E). The epicentral distribution of aftershocks defines a marked concentration along an E-W trending and southerly dipping (45°) zone covering an area of (60 × 40) km2. The presence of high seismicity including two earthquakes of magnitudes exceeding 7.7 in the 200 years is presumed to have caused a higher level of shallow crustal heterogeneity in the Kutch area; a site lying in the seismic zone V (zone of the highest seismicity for potentially M8 earthquakes) on the seismic zoning map of India. Attenuation property of the medium around the epicentral area of the Bhuj earthquake covering a circular area of 61,500 km2 with a radius of 140 km is studied by estimating the coda-Qc from 200 local earthquakes of magnitudes varying from 3.0–4.6. The estimated Q0 values at locations in the aftershock zone (high seismicity) are found to be low in comparison to areas at a distance from it. This can be attributed to the fact that seismic waves are highly scattered for paths through the seismically active and fractured zone but they are well behaved outside the aftershock zone. Distribution of Q0 values suggests that the local variation in Q0 values is probably controlled by local geology. The estimated Q0 values at different stations suggest a low value of Q=(102 ± 0.80)*f(0.98 ± 0.02) indicating an attenuative crust beneath the entire region. The frequency-dependent relation indicates a relatively low Qc at lower frequencies (1–3 Hz) that can be attributed to the loss of energy due to scattering attenuation associated with heterogeneities and/or intrinsic attenuation due to fluid movement in the fault zone and fluid-filled cracks. The large Qc at higher frequencies may be related to the propagation of backscattered body waves through deeper parts of the lithosphere where less heterogeneity is expected. Based on the attenuation curve estimated for Q0=102, the ground acceleration at 240 km distance is 13% of 1 g i.e., 0.13 g agreeing well with the ground acceleration recorded by an accelerograph at Ahmedabad (0.11 g). Hence, it is inferred that the Q0 value obtained from this study seems to be apt for prediction of ground motion for the region.  相似文献   

20.
The seismic quality factor (Q c) and the attenuation coefficient (δ) in the earth’s crust in southwest (SW) Anatolia are estimated by using the coda wave method based on the decrease of coda wave amplitude by time on the seismogram. The quality factor Q o, the value of Q c at 1 Hz, and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves. δ is determined from the observations of amplitude variations of seismic waves. In applying the coda wave method, firstly, a type curve representing the average pattern of the individual coda decay curves for 0.75, 1.5, 3.0, 6.0, 12.0, and 24.0 Hz values was estimated. Secondly, lateral variation of coda Q and the attenuation coefficients for three main tectonic patterns are estimated. The shape of the type curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The Q o and η values vary from 30 to 180 and from 0.55 to 1.25, respectively for SW Anatolia. In SW Anatolia, coda Qf relation is described by and δ = 0.008 km−1. These results are expected to help in understanding the degree of tectonic complexity of the crust in SW Anatolia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号