首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
孙明良  廖永胜 《地球化学》1996,25(5):475-480
济阳坳是渤海湾盆地的一部分,位于我国东部超壳断裂,郯庐断裂带内,主要为中,新生代形成的沉积坳陷。在第三纪的喜山期岩浆活动较强烈,因此,坳陷内第三纪火成岩分布广泛。对于坳陷内的天然气氦同位素研究表明,济阳坳陷天然气中氦同位素组成,R/Ra值分布范围0.11-3.06。说明一些天然气中具有明显的幔源氦加入,将天然气中氦同位素组成与基地质背景结合可知,天然气中氦同位素组成与坳陷内第三纪火成岩分布有十分密  相似文献   

2.
史基安  王先彬 《沉积学报》1999,17(12):815-819
石羊河、黑河流域地下水氦同位素组成的研究表明,大部分样品的^3He/^4He具有大气降水特征,部分地区地下水^4He同位素的过剩是基岩裂隙水和卤水的混合作用所致,祁连山前深大断裂带附近地下水的氦同位素具有明显的幔源氦特征,说明该断层的活动仍未停止。  相似文献   

3.
同位素示踪技术在地质研究中的某些应用   总被引:7,自引:0,他引:7  
李延河 《地学前缘》1998,5(2):275-281
文中介绍了同位素示踪技术的基本原理,回顾了利用氢氧同位素示踪成矿溶液来源,研究水岩反应所取得的重要成果和最新进展;提出水岩相互作用是一个连续的演化过程,可分三个阶段,不同阶段的交换温度、水/岩比及体系的平衡、封闭情况是不一样的。以太古宙条带状硅铁建造为例,介绍了硅同位素示踪技术的新进展,证明了太古宙条带状硅铁建造为海底喷气成因,条带状构造与海底热液的周期性喷发有关。文中还介绍了氦同位素在示踪幔源组份方面的最新进展,指出我国东部油气区天然气中的氦、氩、二氧化碳等有相当一部分来自地幔;根据太平洋中部多金属结核的氦同位素组成和分布特征,提出成矿物质主要来源于海底热液活动,结核的一个圈层可能代表了一次大的海底热液活动。  相似文献   

4.
氦同位素地质研究进展   总被引:7,自引:0,他引:7  
综述了氦同位素研究在地球物质的循环、地震预报,环境监测、年代学、矿床成因、地质流体及大地构造等方面的进展。近来不断发现具有接近于幔源氦同位素比值的地质注以体、天然气及火成岩等,它们起源于地壳深部及地幔,对应的构造活动(包括地震)可能涉及到幔源深度。异常的氦同位素组成还可用于监测核试验、环境污染等新领域。并概念了我国氦同位素的研究在天然气的起源、火山喷气等方面取得重要进展。  相似文献   

5.
深部物质运动的气体地球化学特征   总被引:10,自引:0,他引:10  
根据氦同位素地球化学资料讨论了中国东部和云南腾冲地区上地幔的脱气。尽管地球脱气作用主要发生在地球形成时的十亿年间,但是后期的脱气作用仍是影响大气圈演化的主要因素。在两种力学性质不同的构造带──中国东部大陆裂谷和位于欧亚板块与印度板块缝合带的腾冲火山区,采集了天然气样,并分析了气体组分和氦同位素组成,较高的3He/4He值和地质、地球物理资料表明天然气和温泉气中的氦相当一部分是来自上地幔。来自上地幔的氦和其他气体自第三纪以来不断在气藏中聚集或向大气中逃逸。伴有源于上地幔的岩浆活动的地幔脱气是深部物质运动的具体表现形式,它对新生代气候演变可能有直接影响。  相似文献   

6.
徐永昌 《沉积学报》1993,11(3):52-56
七、八十年代地学研究的热点和前沿领域之一是关于地幔的研究,氦是地幔挥发分的重要组成。其同位素3He/4He的丰度比是判识含氦地质体来源于幔、壳和大气的重要指标,其相应的表征值为1.1×10-5,10-6和1.4×10-6,在研究我国东部含油气区的工业气井天然气组分和同位素组成时,发现一批沿郯庐大断裂两侧分布的工业气井,其氦浓度为0.05~0.1%,达到了氦气资源所要求的品位.其3He/4He比值达3.7×10-6~6.36×104,由于工业气井中大气氦的组分可忽略不计,可用壳-幔二元混合模式计算氦气中幔源氦所占份额,结果表明幔源氦达33.7~57.3%,从而在我国领土上第一次发现了幔源氦在沉积壳层形成工业储集。为了解这一发现在国际上的意义位置,请中科院兰州文献情报中心科技文献检索室进行了国际联机检索,证明从1967年到1991年3月(从可能出现有关文献及1990年我所论文发表分别作了相应时间的前后延伸)国际上无有关报导,证明这一发现在世界范围也是首次。此项发现对我们更深入认识地球、地幔形成演化,对于进一步了解幔源挥发份的脱气、运移乃至成藏有重大理论意义,从而对指导有关矿产的勘查也具有实践意义。  相似文献   

7.
近年来西藏地质找矿工作取得了重大突破,多不杂铜矿床的发现使得多龙矿集区在地质界里家喻户晓。前人对该矿床的成矿流体做了大量的研究工作,但在成矿流体来源认识上存在着三种不同的看法,这也从侧面反映了多不杂铜矿床的成矿作用具有复杂性。稀有气体同位素长期以来多用于示踪陨石成因、大洋岩石圈地幔演化等方面的研究,成矿热液中的碳、氢、氧同位素组成及变化特征常用于分析流体性质及来源等。在此基础上,本次研究补充分析了成矿流体的氦氩同位素组成和碳氢氧同位素组成,指出了前人在多不杂铜矿床成因机制认识中存在的问题,解释了含矿母岩具有壳幔混染特征的原因,并认为该矿床的成矿流体主要来源于地幔,成矿动力主要来自深部地质过程,矿床的形成与地幔流体作用有关。  相似文献   

8.
金沙江-红河断裂带温泉气体地球化学特征   总被引:3,自引:2,他引:1  
金沙江-红河断裂带是青藏高原东南缘地热活动强烈、地震活动水平高、各种矿产丰富的深大断裂带。为了探索该断裂带的温泉气体地球化学时空变化特征,2015年3月~2019年7月,经过5次野外考察,采集了54个温泉逸出气体样品,对其化学组分和氦、氖与碳的同位素变化的测试结果表明:(1)金沙江-红河断裂带内温泉气体氦同位素比值(3He/4He)变化范围是0.04~0.62Ra(Ra=空气3He/4He=1.39×10-6),计算获得的幔源氦最大比例达到7.5%,揭示该断裂带内的地质流体主要来自于壳源,幔源氦有从北向南呈现增加的趋势。以CO2为主要组分的温泉,其δ13CCO2值变化范围是-23.6‰~-1.9‰(vs. PDB)。结合区域地质条件分析,这些CO2主要来自三叠系灰岩,所占比例范围是70.1%~89.7%,而幔源CO2的比例最高可以达到4.2%。(2)金沙江-红河断裂带温泉气体的氢气浓度和氦同位素在三处断裂交汇区都出现高峰值,分别是金沙江断裂与巴塘断裂、中甸断裂与红河断裂、红河断裂与小江断裂和奠边府断裂的交汇处。与区域地震活动性的对比分析结果表明,金沙江-红河断裂带内深部流体上涌相对强烈的区域,深部流体对区域地震活动性具有重要的控制作用。  相似文献   

9.
对该地区新生代玄武岩中幔源包体和高压巨晶的氦同位素进行了初步研究。幔源包体中橄榄石的3 He 4 He值为 (0 .15~ 7.4)× 10 - 6,较MORB值明显偏低 ,甚至低于大气的值 ,说明该地区曾发生过强烈的地幔交代作用。高压巨晶辉石和石榴子石的氦同位素组成与此明显不同 ,其3 He 4 He值为 (5 .7~ 2 4.3)× 10 - 6。提出幔源包体和高压巨晶不是同源的 ,二者可能与寄主玄武岩均无必然成因联系。在汉诺坝地区一件石榴子石巨晶中还发现了异常高的3 He 4 He值。  相似文献   

10.
克因布拉克铜锌矿床赋存于二长花岗岩外接触带的上志留—下泥盆统康布铁堡组黑云石英片岩、变质石英砂岩中,矿体呈似层状、透镜状及脉状。本文对铜锌矿石中的黄铁矿流体包裹体氦和氩同位素组成进行了研究。黄铁矿中流体包裹体的4He含量为0.241×10-7~5.288×10-7cm3STP/g,Rc/Ra值为0.95~1.89,幔源He的含量为14.1%~28.8%,表明成矿流体中氦主要来源于地壳,存在幔源氦的加入。40Ar含量为4.345×10-8~7.752×10-8cm3STP/g,40Ar/36Ar比值变化于302.10~436.96,40Ar*含量为2.2%~32.4%,表明成矿流体中存在含有放射性成因氩的大气降水加入。结合矿床地质特征及氢、氧、碳、硫同位素特征,认为成矿流体来源于高温深源壳幔混合成因的岩浆流体,具大气氩同位素组成特征的低温大气降水。  相似文献   

11.
金翅岭金矿是位于胶东西北部招莱成矿带内的一个中型石英脉型金矿床,受招平断裂带下盘次级NE-NNE向密集构造裂隙带控制,成矿围岩为玲珑花岗岩和郭家岭花岗闪长岩。本文通过对成矿作用过程中的贯通性矿物石英H,O同位素及黄铁矿中流体包裹体He,Ar同位素进行研究,探讨了成矿流体的来源。研究表明:金翅岭金矿床成矿流体的氢、氧同位素组成存在明显的变化趋势,10件样品的氢氧同位素组成δD值变化于-74.80‰~-95.70‰之间,平均值-85.41‰;δ18 O值变化于+1.30‰~+11.12‰之间,平均值为+4.95‰。分析结果显示,成矿流体早期以岩浆水为主,晚期主要为岩浆水和大气降水的混合。黄铁矿流体包裹体3 He/4 He值为0.09R/Ra~1.51R/Ra,平均0.72R/Ra,位于地壳氦和地幔氦之间。根据成矿流体的壳幔二元混合模式进行计算:地幔流体参与成矿的比例为7.49%~11.85%,地壳流体占主导地位。40 Ar/36 Ar值为365.9~4 042.6,集中在地壳流体与地幔流体之间,大气饱和水的范围附近。结合H-O同位素的结果可知,金翅岭金矿床成矿流体是以地壳流体占主导地位的壳幔混合流体,而地壳流体端元又是岩浆水和大气降水的混合流体,并且大气降水参与成矿流体的比例随着成矿作用从早到晚,以及成矿流体由深到浅的运移而不断增多。  相似文献   

12.
幔源挥发性组分参与302铀矿床成矿作用的氦同位素证据   总被引:4,自引:0,他引:4  
对取自302铀矿床井下与沥青铀矿矿石共生的9件紫黑色萤石、肉红色方解石样品进行了流体包裹体的He同位素测定,3He/4He测定值为0.03~0.57Ra(绝大部分在0.11~0.25Ra之间),位于地幔与地壳的氦同位素值范围之间,显示成矿流体中的氦同位素具有壳、幔两个端元混合的特点,表明有大量幔源挥发性组分参与铀成矿作用。该矿床碳同位素值与流体包裹体证据均表明,地幔挥发性组分确实大规模参与了铀成矿作用。研究显示,几乎华南所有的热液铀矿床都形成于白垩纪-古近纪,且这些矿床的碳同位素组成均显示成矿流体中的矿化剂CO2来自地幔.暗示它们成矿时具有相似的成矿动力学背景:可能均与华南中,新生代岩石圈伸展作用所控制的幔源挥发性组分具有密切的关系。  相似文献   

13.
赣南横径地区碳酸温泉CO2成因研究   总被引:1,自引:0,他引:1  
本文在分析横径温泉区4个气样的气体组分、氦同位素以及CO2和CH4的碳同位素基础上,结合温泉区地质条件,研究了该区碳酸温泉中CO2的成因。研究结果表明:横径温泉区温泉气中CO2的含量很高(>96%),CO2气体中1δ3C较重(-5.53‰~-4.43‰),属于与深大断裂活动有关的深部幔源无机成因气;温泉气中CH4的含量很低(<1.86%),CH4气体中1δ3C较轻(-27.69‰~-59.31‰),其中39、和11号温泉气体中的CH4属于深部幔源无机CH4和源于地表生物成因CH4的混合,而2号温泉气体中的CH4属于深部幔源无机CH4。  相似文献   

14.
在柴达木盆地北缘全吉山、团鱼山地区的煤炭钻孔和泥页岩解吸气中发现了体积分数较高的氦气显示。对2个地区的6件样品进行甲烷C同位素和He同位素分析,其中2个样品的δ13C1值分别为-38.4‰和-39.9‰,属于有机成因。4个样品的3He/4He同位素测试结果在0.03×10-6~1.3×10-6之间,表明氦气来源以壳源氦为主,个别样品有少量幔源氦加入。通过区域背景资料和物探资料分析认为,柴北缘壳源成因的氦可能主要来源于基底富U、Th花岗岩体的放射性衰变,而柴北缘的山前深大断裂则可为氦的运移提供良好通道。氦气产生后,在垂向运移过程中结合其他烃类或非烃类气体,在侏罗系、古近系—新近系良好的储盖条件下,有可能形成独特的富氦天然气富集。  相似文献   

15.
地球上氦同位素的起源及3He/4He比值变化特征   总被引:3,自引:1,他引:3  
地球上氦同位素在地球化学和同位素示踪等方面深受关注。研究地球内部3 He与4 He同位素比值大小的分布有助于解决地球科学中的某些基本问题 ,例如地球增长物的详情 ,地球内部流体的历史和起源 ,以及地热的演化和起源。此外 ,3 He 4He值也有助于解决有些实际应用问题 ,例如铀矿的探测 ,地震预报等。研究上述诸方面同氦同位素的起源密切相关 ,有些问题目前也并不十分清楚。本文着重论述地球上氦同位素起源以及3 He 4He值变化特征。氦在太阳系中的元素丰度仅次于氢 ,属最高丰度元素之一。在地球上氦元素却成为一种稀有元素 ,He…  相似文献   

16.
Helix SFT惰性气体质谱仪分析矿物包裹体中氦同位素组成   总被引:3,自引:0,他引:3  
李军杰  李剑  刘汉彬  张佳  金贵善  张建锋  韩娟 《地质学报》2015,89(10):1826-1831
氦同位素组成在地球大气圈、地壳及地幔各圈层具有不同的元素丰度和同位素比值,变化范围达数个量级,而且氦作为惰性气体中质量最轻的元素,其稳定性好,迁移能力强,因此将其同位素作为地质过程和物质来源的天然示踪剂倍受重视,被广泛地应用于地学研究的各个领域,而能否对于岩石样品中氦同位素组成进行准确分析,成为了氦同位素作为示踪剂的一个关键问题。本文利用Helix SFT惰性气体质谱仪对岩石矿物包裹体内的氦同位素组成测定方法进行了研究,建立了样品的压碎及气体提取纯化装置,通过进一定体积的标准氦气,计算出仪器的灵敏度,在此基础上对整套系统的静态本底进行了测定。对仪器本身的离子倍增器的接收效率进行了探讨,使其可以准确对3 He进行准确测定。以大气中氦同位素为标准并进行多次测定,获得了氦同位素测量的质量歧视校正因子。通过对实际样品黄铁矿包裹体中氦同位素组成的测定,获得了稳定性很好的同位素比值数据,其精度可达99%。通过建立合理的压碎装置,利用该仪器对氦同位素组成分析的独特优势,可以满足对于岩石矿物包裹体中氦同位素组成的精确测定,满足其在地质科研领域的应用研究需要,进而对基础科学研究起到支撑作用。  相似文献   

17.
长白山天池火山区深部流体成分及其稳定同位素组成   总被引:17,自引:1,他引:17       下载免费PDF全文
天池火山区深部流体成分和稳定同位素组成特征指示,该区地下有相对独立的四个含水层。2.2km以上为冷水层,2.2-3.4km、3.5-3.9km、4km以下分别为上部、中部和深部热水层。现代水热活动均伴随强烈的深源气体释放,碳和氦同位素比值揭示,这些气体属幔源气体,其中仅混入少量大气,壳源物质混染不明显。大规模幔源气体释放主要集中在天池火山湖周围,这表明该区地壳浅部可能存在一定规模的热的幔源岩浆体。据碳同位素地质测温估算,该岩浆体的热变质带顶部距地面约5km.气体动态变化显示该岩浆体目前处在不稳定期,值得引起重视。  相似文献   

18.
从赣中马鞍坪地区采集了 11个水样分析了温泉及冷泉的氢、氧同位素组成 ,得出温泉水起源于大气降水补给。在此基础上 ,对 4个温泉采集了气样 ,测定了气体组成的含量和氦同位素组成 ,以及二氧化碳的碳同位素 ,结果表明 :马鞍坪地区地热气体为二氧化碳型 ,温泉气的二氧化碳含量很高 ,占总体积的 97%以上 ,二氧化碳气体的δ1 3C值变化于 -4 18‰~ -7 0‰ ,平均为 -5 .63‰ ,为变质无机成因和幔源无机成因的混合物 ;其3He/4He比值变化于 (1.72± 0 .15 )×10 7~ (2 .5 5± 0 .19)× 10 - 7之间 ,R/Ra值均小于 1,属壳源成因  相似文献   

19.
大别山地区榴辉岩全岩的3He/4 He值分布在0 .0 13×10 - 6 ~0 .76 0×10 - 6 之间,平均0 .2 0 0×10 - 6 ,榴辉岩中石榴子石单矿物的3He/4 He值与其全岩的3He/4 He值基本一致。在3He—4 He分布图上榴辉岩的氦同位素数据点远离地幔氦的分布范围,而位于大气氦与地壳氦的过渡部位。采用真空压碎方法对榴辉岩中石榴子石和绿辉石的氦同位素组成进行了分析,也未找到地幔氦的明显踪迹。结合大别—苏鲁地区榴辉岩中极低的δ1 8O值、εNd(0 )值等地球化学特征,提出大别—苏鲁地区超高压变质榴辉岩可能是在地壳中形成的,并未曾俯冲至10 0多千米的地幔深度。榴辉岩的3He/4 He值与围岩类型密切相关,榴辉岩的δ1 8O值与围岩的δ1 8O值同步变化,以及含柯石英大理岩、片麻岩和硬玉石英岩等非基性超高压变质岩和脉状榴辉岩的发现,均证明榴辉岩与其围岩一起经历了超高压变质过程,榴辉岩及其围岩在变质过程中未发生明显的位移,即榴辉岩是原地成因的。  相似文献   

20.
腾冲火山区的现代幔源氦释放:构造和岩浆活动意义   总被引:6,自引:3,他引:3  
赵慈平  冉华  王云 《岩石学报》2012,28(4):1189-1204
深地震测深(DSS)和大地电磁测深(MT)都表明腾冲火山区现今仍存在壳内岩浆囊,但对其数量和空间分布还存在分歧并缺乏全貌性认识。MT探测认为腾冲火山区是一个软流圈上涌和岩石圈减薄区,但对这一减薄区的空间范围还缺乏充分的约束。通过对腾冲火山区及外围大范围温泉逸出气体的分析测试,我们共获得了75个温泉逸出气体的氦同位素3He/4He比值数据(部分为前人资料)。利用氦同位素示踪原理,我们研究了腾冲火山区幔源氦释放强度空间分布和时间变化特征,结果发现:腾冲火山区的幔源挥发份释放呈1带3区分布。以3He/4He≥1 Ra,幔源氦比例≥15%为界,腾冲火山区的幔源挥发份释放异常区呈整片分布,为一南北走向的条带,南北长100km,东西宽50km。在整片异常区的内部,腾冲火山区的幔源挥发份释放又有强度不同的3个区域:① 中部腾冲县城-热海一带,3He/4He比值达到5.5 Ra以上,幔源氦比例达到70%以上,释放强度最强。② 北部曲石一带,3He/4He比值达4.5 Ra以上,幔源氦比例达到50%以上,释放强度次之。③ 南部五合-蒲川-新华一带,3He/4He比值达2Ra以上,幔源氦比例达到25%以上,释放强度最弱;腾冲火山区幔源挥发份释放强度在不断升高,其中第3个释放区的3He/4He比值(Ra)升高速率比前两者明显要大。我们认为:腾冲火山区现今幔源挥发份释放强度的空间分布图象就是该地区软流圈上涌和岩石圈减薄区空间尺度和上涌强度的最直接反映,上涌区(减薄区)的大小大致为南北长100km,东西宽50km;腾冲火山区现今存在3个壳内岩浆囊。第1个岩浆囊位于腾冲县城-热海一带,第2个岩浆囊位于马站-曲石一带,第3个岩浆囊位于五合-龙江-团田-蒲川-新华一带;腾冲火山区3个岩浆囊都在不断受到幔源岩浆的持续补充;第1个岩浆囊集幔源挥发份释放、相对地热梯度、地壳形变和地震活动等异常于一身,活动性最强,是未来腾冲火山最可能喷发的地点,需重点监视。第2个岩浆囊的幔源挥发份释放强度也引人注目,需加强监测。第3个岩浆囊规模大,埋深较浅,幔源挥发份释放增加较快,需引起注意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号