首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary  In subtropical Argentina, Paraguay and southern Brazil, precipitation is most abundant during summer but its interannual variability is large. At this time a zone of low-level convergence, upper-level divergence, and intense convection is developed to the north of this area. This feature is known as the South Atlantic convergence zone (SACZ) and seems to be related to the interannual variability of summer rainfall to its south. The aim of this work is to document this relationship. Reduced (increased) precipitation in southern Brazil, most of Uruguay and northeastern Argentina is associated with a strong (weak) SACZ and a northward (southward) displacement of it, while increased (reduced) rainfall occurs further south in subtropical Argentina. Also, warm (cold) SST in the region 20° S–40° S and west of 30° W is likely accompanied by a southward (northward) shift of the SACZ. Aside of this relation with the SACZ that affect on the precipitation field of Southeastern South America, the proximate Atlantic Ocean SST seems to force the precipitation over this region by other mechanisms as well. The result of this additional SST forcing is to enhance the signal of the SACZ in northeastern Argentina, Uruguay and southern Brazil and to oppose the SACZ effect in southern subtropical Argentina. Received July 24, 1999 Revised July 5, 2000  相似文献   

2.
S. B. Cerne  C. S. Vera 《Climate Dynamics》2011,36(11-12):2265-2277
The influence of the intraseasonal variability on heat wave development over subtropical South America during austral summer is analyzed. The role of the South Atlantic Convergence Zone (SACZ) on this development is documented. Results show that intraseasonal variability can explain on average at least 32% of summer temperature variance. Moreover, 73% of the heat waves in subtropical South America develop in association with an active SACZ. The analysis of pentad maps shows that warm conditions in the region under study develop in association with the strengthening of an anticyclonic anomaly, which is discernible over the subtropical regions at least 15?days before temperature peak occurrence. That circulation anomaly is embedded in a large-scale Rossby wave train extending along the South Pacific Ocean that is linked to convection anomalies at the equatorial western and central Pacific Ocean. In addition, the development of the anticyclonic circulation over subtropical South America appears to be strengthened by the subsidence conditions promoted by the active SACZ, which result in temperature rise in the subtropical region under relatively dry conditions. On the other hand, during the last 2?days of evolution, SACZ activity weakens and the progressive temperature rise in the region is dominated by warmer and moister air being anomalously advected from the north. Results confirm the important role that SACZ activity on intraseasonal time scales has in inducing persistent circulation anomalies at the subtropical regions that can result in the development of persistent heat waves, and very extreme daily temperature.  相似文献   

3.
The dominant mode of coupled variability over the South Atlantic Ocean is known as “South Atlantic Dipole” (SAD) and is characterized by a dipole in sea surface temperature (SST) anomalies with centers over the tropical and the extratropical South Atlantic. Previous studies have shown that variations in SST related to SAD modulate large-scale patterns of precipitation over the Atlantic Ocean. Here we show that variations in the South Atlantic SST are associated with changes in daily precipitation over eastern South America. Rain gauge precipitation, satellite derived sea surface temperature and reanalysis data are used to investigate the variability of the subtropical and tropical South Atlantic and impacts on precipitation. SAD phases are assessed by performing Singular value decomposition analysis of sea level pressure and SST anomalies. We show that during neutral El Niño Southern Oscillation events, SAD plays an important role in modulating cyclogenesis and the characteristics of the South Atlantic Convergence Zone. Positive SST anomalies over the extratropical South Atlantic (SAD negative phase) are related to increased cyclogenesis near southeast Brazil as well as the migration of extratropical cyclones further north. As a consequence, these systems organize convection and increase precipitation over eastern South America.  相似文献   

4.
The regional influence of the Madden–Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler–Hendon real-time multivariate MJO (RMM) index and with the OLR MJO Index. The accompanying surface air temperature and circulation anomalies were also calculated. The influence of the MJO on regional scales along with their marked seasonal variations was documented. During December–February when the South American monsoon system is active, chances of enhanced rainfall are observed in southeastern South America (SESA) region mainly during RMM phases 3 and 4, accompanied by cold anomalies in the extratropics, while enhanced rainfall in the South Atlantic Convergence Zone (SACZ) region is observed in phases 8 and 1. The SESA (SACZ) signal is characterized by upper-level convergence (divergence) over tropical South America and a cyclonic (anticyclonic) anomaly near the southern tip of the continent. Impacts during March–May are similar, but attenuated in the extratropics. Conversely, in June–November, reduced rainfall and cold anomalies are observed near the coast of the SACZ region during phases 4 and 5, favored by upper-level convergence over tropical South America and an anticyclonic anomaly over southern South America. In September–November, enhanced rainfall and upper-level divergence are observed in the SACZ region during phases 7 and 8. These signals are generated primarily through the propagation of Rossby wave energy generated in the region of anomalous heating associated with the MJO.  相似文献   

5.
This paper examines the mean annual cycle, interannual variability, and leading patterns of the tropical Atlantic Ocean simulated in a long-term integration of the climate forecast system (CFS), a state-of-the-art coupled general circulation model presently used for operational climate prediction at the National Centers for Environmental Prediction. By comparing the CFS simulation with corresponding observation-based analyses or reanalyses, it is shown that the CFS captures the seasonal mean climate, including the zonal gradients of sea surface temperature (SST) in the equatorial Atlantic Ocean, even though the CFS produces warm mean biases and underestimates the variability over the southeastern ocean. The seasonal transition from warm to cold phase along the equator is delayed 1 month in the CFS compared with the observations. This delay might be related to the failure of the model to simulate the cross-equatorial meridional wind associated with the African monsoon. The CFS also realistically simulates both the spatial structure and spectral distributions of the three major leading patterns of the SST anomalies in the tropical Atlantic Ocean: the south tropical Atlantic pattern (STA), the North tropical Atlantic pattern (NTA), and the southern subtropical Atlantic pattern (SSA). The CFS simulates the seasonal dependence of these patterns and partially reproduces their association with the El Niño-Southern Oscillation. The dynamical and thermodynamical processes associated with these patterns in the simulation and the observations are similar. The air-sea interaction processes associated with the STA pattern are well simulated in the CFS. The primary feature of the anomalous circulation in the Northern Hemisphere (NH) associated with the NTA pattern resembles that in the Southern Hemisphere (SH) linked with the SSA pattern, implying a similarity of the mechanisms in the evolution of these patterns and their connection with the tropical and extratropical anomalies in their respective hemispheres. The anomalies associated with both the SSA and NTA patterns are dominated by atmospheric fluctuations of equivalent-barotropic structure in the extratropics including zonally symmetric and asymmetric components. The zonally symmetric variability is associated with the annular modes, the Arctic Oscillation in the NH and the Antarctic Oscillation in the SH. The zonally asymmetric part of the anomalies in the Atlantic is teleconnected with the anomalies over the tropical Pacific. The misplaced teleconnection center over the southern subtropical ocean may be one of the reasons for the deformation of the SSA pattern in the CFS.  相似文献   

6.
This study investigates relationships between Atlantic sea surface temperature (SST) and the variability of the characteristics of the South American Monsoon System (SAMS), such as the onset dates and total precipitation over central eastern Brazil. The observed onset and total summer monsoon precipitation are estimated for the period 1979?C2007. SST patterns are obtained from the Empirical Orthogonal Function. It is shown that variations in SST on interannual timescales over the South Atlantic Ocean play an important role in the total summer monsoon precipitation. Negative (positive) SST anomalies over the topical South Atlantic along with positive (negative) SST anomalies over the extratropical South Atlantic are associated with early (late) onsets and wet (dry) summers over southeastern Brazil and late (early) onset and dry (wet) summers over northeastern Brazil. Simulations from Phase 3 of the World Climate Research Programme Coupled Model Intercomparison Project (CMIP-3) are assessed for the 20th century climate scenario (1971?C2000). Most CMIP3 coupled models reproduce the main modes of variability of the South Atlantic Ocean. GFDL2.0 and MIROC-M are the models that best represent the SST variability over the South Atlantic. On the other hand, these models do not succeed in representing the relationship between SST and SAMS variability.  相似文献   

7.
用合成和相关分析方法及SVD技术研究了南海夏季风爆发早、晚年份4~6月季风建立时期季风环流的异常及其与热带太平洋-印度洋海温的关系。结果表明,南海夏季风爆发与热带大气环流和海温变异密切相关。(1)当热带中、东太平洋—印度洋(主要在西南部)及南海海温低(高),西太平洋—澳洲邻近海域海温高(低)时,南海夏季风爆发早(晚)。不同区域海温对季风的影响有明显的季节差异,印度洋主要为晚春至初夏(4~6月),南海为5~6月,而热带太平洋从前冬一直持续到夏季。(2)不同的海温异常产生不同的季风环流型,南海夏季风爆发早、晚年大气环流的异常变化基本相反。南海夏季风的活动主要受印度季风环流变化的影响,与前期冬春季西太副高的强弱及位置变化密切相关。西太副高弱时,南海夏季风爆发早;反之,爆发晚。(3)热带太平洋—印度洋海温异常引起季风环流和Walker环流的异常变化可能是影响南海夏季风爆发早、晚的物理过程。  相似文献   

8.
The role of tropical Atlantic sea surface temperature (SST) anomalies during ENSO episodes over northeast Brazil (Nordeste) is investigated using the CPTEC/COLA Atmospheric General Circulation Model (AGCM). Four sets of integrations are performed using SST in El Niño and La Niña (ENSO) episodes, changing the SST of the Atlantic Ocean. A positive dipole (SST higher than normal in the tropical North Atlantic and below normal in the tropical South Atlantic) and a negative dipole (opposite conditions), are set as the boundary conditions of SST in the Atlantic Ocean. The four experiments are performed using El Niño or La Niña SST in all oceans, except in the tropical Atlantic where the two phases of the SST dipole are applied. Five initial conditions were integrated in each case in order to obtain four ensemble results. The positive SST dipole over the tropical Atlantic Ocean and El Niño conditions over the Pacific Ocean resulted in dry conditions over the Nordeste. When the negative dipole and El Niño conditions over the Pacific Ocean were applied, the results showed precipitation above normal over the north of Nordeste. When La Niña conditions over Pacific Ocean were tested together with a negative dipole, positive precipitation anomalies occurred over the whole Nordeste. Using the positive dipole over the tropical Atlantic, the precipitation over Nordeste was below average. During La Niña episodes, the Atlantic Ocean conditions have a larger effect on the precipitation of Nordeste than the Pacific Ocean. In El Niño conditions, only the north region of Nordeste is affected by the Atlantic SST. Other tropical areas of South America show a change only in the intensity of anomalies. Central and southeast regions of South America are affected by the Atlantic conditions only during La Niña conditions, whereas during El Niño these regions are influenced only by conditions in the Pacific Ocean.  相似文献   

9.
Remotely forced variability in the tropical Atlantic Ocean   总被引:1,自引:1,他引:1  
An ensemble of eight hindcasts has been conducted using an ocean-atmosphere general circulation model fully coupled only within the Atlantic basin, with prescribed observational sea surface temperature (SST) for 1950–1998 in the global ocean outside the Atlantic basin. The purpose of these experiments is to understand the influence of the external SST anomalies on the interannual variability in the tropical Atlantic Ocean. Statistical methods, including empirical orthogonal function analysis with maximized signal-to-noise ratio, have been used to extract the remotely forced Atlantic signals from the ensemble of simulations. It is found that the leading external source on the interannual time scales is the El Niño/Southern Oscillation (ENSO) in the Pacific Ocean. The ENSO signal in the tropical Atlantic shows a distinct progression from season to season. During the boreal winter of a maturing El Niño event, the model shows a major warm center in the southern subtropical Atlantic together with warm anomalies in the northern subtropical Atlantic. The southern subtropical SST anomalies is caused by a weakening of the southeast trade winds, which are partly associated with the influence of an atmospheric wave train generated in the western Pacific Ocean and propagating into the Atlantic basin in the Southern Hemisphere during boreal fall. In the boreal spring, the northern tropical Atlantic Ocean is warmed up by a weakening of the northeast trade winds, which is also associated with a wave train generated in the central tropical Pacific during the winter season of an El Niño event. Apart from the atmospheric planetary waves, these SST anomalies are also related to the sea level pressure (SLP) increase in the eastern tropical Atlantic due to the global adjustment to the maturing El Niño in the tropical Pacific. The tropical SLP anomalies are further enhanced in boreal spring, which induce anomalous easterlies on and to the south of the equator and lead to a dynamical oceanic response that causes cold SST anomalies in the eastern and equatorial Atlantic from boreal spring to summer. Most of these SST anomalies persist into the boreal fall season.
B. HuangEmail:
  相似文献   

10.
A maximum of easterly zonal wind at 925 hPa in the Caribbean region is called the Caribbean Low-Level Jet (CLLJ). Observations show that the easterly CLLJ varies semi-annually, with two maxima in the summer and winter and two minima in the fall and spring. Associated with the summertime strong CLLJ are a maximum of sea level pressure (SLP), a relative minimum of rainfall (the mid-summer drought), and a minimum of tropical cyclogenesis in July in the Caribbean Sea. It is found that both the meridional gradients of sea surface temperature (SST) and SLP show a semi-annual feature, consistent with the semi-annual variation of the CLLJ. The CLLJ anomalies vary with the Caribbean SLP anomalies that are connected to the variation of the North Atlantic Subtropical High (NASH). In association with the cold (warm) Caribbean SST anomalies, the atmosphere shows the high (low) SLP anomalies near the Caribbean region that are consistent with the anomalously strong (weak) easterly CLLJ. The CLLJ is also remotely related to the SST anomalies in the Pacific and Atlantic, reflecting that these SST variations affect the NASH. During the winter, warm (cold) SST anomalies in the tropical Pacific correspond to a weak (strong) easterly CLLJ. However, this relationship is reversed during the summer. This is because the effects of ENSO on the NASH are opposite during the winter and summer. The CLLJ varies in phase with the North Atlantic Oscillation (NAO) since a strong (weak) NASH is associated with a strengthening (weakening) of both the CLLJ and the NAO. The CLLJ is positively correlated with the 925-hPa meridional wind anomalies from the ocean to the United States via the Gulf of Mexico. Thus, the CLLJ and the meridional wind carry moisture from the ocean to the central United States, usually resulting in an opposite (or dipole) rainfall pattern in the tropical North Atlantic Ocean and Atlantic warm pool versus the central United States.  相似文献   

11.
Summary Previous studies on precipitation over South America that strongly support the existence of links between precipitation and SST anomalies in the Pacific Ocean have identified specific regions where the ENSO signal is particularly stronger. Northeast of Brazil and some parts of southern South America are examples of these regions. However, the same attention was not taken to identify which regions in the Central and East Pacific ocean are better correlated with the South America precipitation during extreme ENSO events, and also which are the transition regions of the precipitation signal over South America during these events. Coincident periods of ENSO events for both SST over the tropical Pacific ocean and monthly precipitation sums from many observational stations over South America were selected and analyzed. Two statistical methods were used for the data analysis: Singular Value Decomposition (SVD) and Simple Linear Correlation (SLC). The SVD results for warmer events in the Pacific corroborate previous ones and also clearly identified a transition region between the drier conditions in the Northeast of Brazil and the wetter conditions in the Southeast/South of Brazil. Transition regions were also determined over Peru and central Amazon. The SLC results indicated that the SST anomalies in the tropical east Pacific ocean has the strongest influence in the South American precipitation during El Ni?o events. During La Ni?a events the central area of the Pacific, around 180°, has shown a more significant influence. Received August 10, 2000 Revised August 22, 2001  相似文献   

12.
我国南方盛夏气温主模态特征及其与海温异常的联系   总被引:1,自引:0,他引:1  
袁媛  丁婷  高辉  李维京 《大气科学》2018,42(6):1245-1262
利用NCEP/NCAR大气环流资料、HadISST海温数据以及中国160站气温数据等,通过EOF分解、线性相关等统计方法,分析了我国南方盛夏气温异常的主导模态及其所对应的关键环流系统和可能的海洋外强迫信号。结果表明:我国南方盛夏气温偏高有两种不同的分布模态,一是以江淮地区为中心的江淮型高温,二是以江南和华南为中心的江南型高温,导致这两种高温型发生的环流影响系统和海温外强迫因子均有显著差异。影响江淮型高温的关键环流系统是高低空正压结构的高度场正距平和偏弱的东亚副热带西风急流。而影响这两个关键环流系统的海洋外强迫因子包括热带印度洋至东太平洋的"-+-"海温异常分布型及北大西洋中纬度的暖海温异常。2016年盛夏江淮型高温的大气环流和海温异常均表现出典型江淮型高温年的特征,更好的证明了统计分析的结论。而江南型高温的关键环流系统主要是加强西伸的西太平洋副热带高压。其海洋外强迫因子包括前冬赤道中东太平洋的暖海温异常和春季-盛夏热带印度洋全区一致型暖海温异常,其中热带印度洋海温的影响更为持续和显著。  相似文献   

13.
位于东亚中纬度上空的东亚高空副热带西风急流是东亚季风环流系统中的重要成员,我国夏季降水雨带的季节内变化受东亚高空副热带西风急流位置季节内异常变化影响。根据1979~2008年中国降水资料、NCEP/NCAR再分析资料以及NOAA ERSST V3月平均海表温度资料,利用统计分析和物理量诊断方法对夏季东亚高空副热带西风急流位置季节内异常的东亚大气环流特征及外强迫信号的物理过程进行了探讨。研究指出:6月东亚高空副热带西风急流位置异常主要受欧亚大陆中高纬东传的Rossby波列位相变化影响,春季北大西洋海温异常是欧亚大陆中高纬度Rossby波列位相变化的最显著的外强迫信号;7月东亚高空副热带西风急流位置异常主要受西太平洋热带向副热带传播的Rossby波列位相变化影响,春季西太平洋热带海温异常是西太平洋热带向副热带传播的Rossby波列位相变化的最显著的外强迫信号;8月东亚高空副热带西风急流位置异常主要受南亚大陆向东亚大陆热带、副热带传播的Rossby波列位相变化影响,春季印度洋海温异常是南亚大陆向东亚大陆热带、副热带传播的Rossby波列位相变化的最显著的外强迫信号。  相似文献   

14.
This paper examines moisture transport on intraseasonal timescales over the continent and over the South Atlantic convergence zone (SACZ) during the South America (SA) summer monsoon. Combined Empirical Orthogonal Function analysis (EOFc) of Global Precipitation Climatology Project pentad precipitation, specific humidity, air temperature, zonal and meridional winds at 850?hPa (NCEP/NCAR reanalysis) are performed to identify the large-scale variability of the South America monsoon system and the SACZ. The first EOFc was used as a large-scale index for the South American monsoon (LISAM), whereas the second EOFc characterized the SACZ. LISAM (SACZ) index showed spectral variance on 30?C90 (15?C20) days and were both band filtered (10?C100?days). Intraseasonal wet anomalies were defined when LISAM and SACZ anomalies were above the 75th percentile of their respective distribution. LISAM and SACZ wet events were examined independently of each other and when they occur simultaneously. LISAM wet events were observed with the amplification of wave activity in the Northern Hemisphere and the enhancement of northwesterly cross-equatorial moisture transport over tropical continental SA. Enhanced SACZ was observed with moisture transport from the extratropics of the Southern Hemisphere. Simultaneous LISAM and SACZ wet events are associated with cross-equatorial moisture transport along with moisture transport from Subtropical Southwestern Atlantic.  相似文献   

15.
利用逐月台站观测降水、HadISST1.1海温和ERA5大气再分析资料,研究了前冬印度洋海盆一致模(Indian Ocean Basin,IOB)对华南春季降水(SCSR)与ENSO关系的影响,并分析了IOB通过调控ENSO环流异常进而影响SCSR的可能机制。结果表明:当前冬El Ni?o(La Ni?a)与IOB暖(冷)位相同时发生时,SCSR显著增多(减少);而当El Ni?o或La Ni?a单独发生而IOB处于中性时,SCSR并无明显多寡倾向。其原因在于,当El Ni?o与IOB暖相位并存时,前冬热带印度洋和赤道中东太平洋均为正海温异常(Sea-Surface Temperature Anomaly,SSTA),且印度洋SSTA强度可一直维持至春季。在对流层低层,春季赤道中东太平洋的正SSTA激发出异常西北太平洋反气旋(Western North Pacific Anticyclone,WNPAC)。而热带印度洋的正SSTA在副热带印度洋激发出赤道南北反对称环流,赤道以北的东风异常有利于异常WNPAC西伸;赤道以南的西风异常与来自赤道西太平洋的东风异常在东印度洋辐合上升,气流至西北太平洋下沉,形成经向垂直环流,有利于春季WNPAC维持。在对流层高层,印度洋的正SSTA在热带印度洋上空激发出位势高度正异常,随之形成的气压经向梯度加强了东亚高空副热带西风急流,进而在华南上空形成异常辐散环流。WNPAC的西伸和加强可为华南提供充足的水汽,同时高空辐散在华南引发水汽上升运动,共同导致SCSR正异常。而若El Ni?o发生时IOB处于中性状态,El Ni?o相关的SSTA衰减较快,春季WNPAC不显著,SCSR无明显多寡趋势。   相似文献   

16.
The sensitivity of the precipitation response in the South Atlantic convergence zone (SACZ) to sea surface temperature (SST) anomaly is investigated by an inter-model comparison study of ensembles of multidecadal integrations of two atmospheric general circulation models (AGCMs)—version 1 of the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) model, and the NCAR community climate model (CCM3) version 3.6.6. Despite the different physical parameterizations, the two models consistently show an SST-forced signal located mainly over the oceanic portion of the SACZ. The signal has interannual-to-decadal timescales, and consists of a shift and strengthening of the SACZ toward anomalous warm waters. A potential predictability analysis reveals that the maximum predictable variance is about 50% of the total SACZ variance over the ocean, but the signal attenuates rapidly toward the South American continent. This result implies that the land portion of the SACZ is primarily dominated by the internal variability, thereby having a limited potential predictability at seasonal timescales.  相似文献   

17.
The present paper selects the northern winter of December 1995–February 1996 for a case study on the impact of sea surface temperature (SST) anomalies on the atmospheric circulation over the North Atlantic and Western Europe. In the Atlantic, the selected winter was characterized by positive SST anomalies over the northern subtropics and east of Newfoundland, and negative anomalies along the US coast. A weak La Niña event developed in the Pacific. The North Atlantic Oscillation (NAO) index was low, precipitation over the Iberian Peninsula and northern Africa was anomalously high, and precipitation over northern Europe was anomalously low. The method of study consists of assessing the sensitivity of ensemble simulations by the UCLA atmospheric general circulation model (UCLA AGCM) to SST anomalies from the observation, which are prescribed either in the World Oceans, the Atlantic Ocean only, or the subtropical North Atlantic only. The results obtained are compared with a control run that uses global, time-varying climatological SST. The ensemble simulations with global and Atlantic-only SST anomalies both produce results that resemble the observations over the North Atlantic and Western Europe. It is suggested that the anomalous behavior of the atmosphere in the selected winter over those regions, therefore, was primarily determined by conditions within the Atlantic basin. The simulated fields in the tropical North Atlantic show anomalous upward motion and lower (upper) level convergence (divergence) in the atmosphere overlying the positive SST anomalies. Consistently, the subtropical jet intensifies and its core moves equatorward, and precipitation increases over northern Africa and southern Europe. The results also suggest that the SST anomalies in the tropical North Atlantic only do not suffice to produce the atmospheric anomalies observed in the basin during the selected winter. The extratropical SST anomalies would provide a key contribution through increased transient eddy activity, which causes an extension of the subtropical jet eastward from the coast of North America.  相似文献   

18.
金祖辉  陈隽 《大气科学》2002,26(1):57-68
对夏季热带西太平洋暖池区海表水温暖异常年的东亚大气环流做了合成分析,然后用奇异值分解(SVD)方法做了进一步统计检验,揭示了东亚夏季风变异与暖池区海表水温异常的密切关系和它们间最佳耦合模态.结果发现当夏季暖池区暖异常时,在对流层低层西太平洋地区可产生一个强的反气旋偏差环流,使得副热带高压南侧东风气流大大加强,并向西伸展到中南半岛南部,从而影响了东南亚热带和副热带地区西南季风的变化(强/弱).中南半岛至中国东部大陆夏季风增强,赤道东印度洋、南海南部和中部、西太平洋热带地区夏季风减弱.SVD分析还发现经向风和纬向风与海表水温之间各存在两个最佳耦合模态,结果表明,不仅整个暖池海表水温暖/冷异常对东亚大气环流异常有重要影响,而且暖池区内海表水温有显著的暖和冷异常差异时,对东亚大气环流的影响也很明显(耦合总体平方协方差约占总体协方差的0.20),尤其是在南海至长江以南地区.  相似文献   

19.
Xin Wang  Chunzai Wang 《Climate Dynamics》2014,42(3-4):991-1005
Our early work (Wang and Wang in J Clim 26:1322–1338, 2013) separates El Niño Modoki events into El Niño Modoki I and II because they show different impacts on rainfall in southern China and typhoon landfall activity. The warm SST anomalies originate in the equatorial central Pacific and subtropical northeastern Pacific for El Niño Modoki I and II, respectively. El Niño Modoki I features a symmetric SST anomaly distribution about the equator with the maximum warming in the equatorial central Pacific, whereas El Niño Modoki II shows an asymmetric distribution with the warm SST anomalies extending from the northeastern Pacific to the equatorial central Pacific. The present paper investigates the influence of the various groups of El Niño events on the Indian Ocean Dipole (IOD). Similar to canonical El Niño, El Niño Modoki I is associated with a weakening of the Walker circulation in the Indo-Pacific region which decreases precipitation in the eastern tropical Indian Ocean and maritime continent and thus results in the surface easterly wind anomalies off Java-Sumatra. Under the Bjerknes feedback, the easterly wind anomalies induce cold SST anomalies off Java- Sumatra, and thus a positive IOD tends to occur in the Indian Ocean during canonical El Niño and El Niño Modoki I. However, El Niño Modoki II has an opposite impact on the Walker circulation, resulting in more precipitation and surface westerly wind anomalies off Java-Sumatra. Thus, El Niño Modoki II is favorable for the onset and development of a negative IOD on the frame of the Bjerknes feedback.  相似文献   

20.
Summary A general circulation model is used to study the response of the atmosphere to an idealised sea surface temperature (SST) anomaly pattern (warm throughout the southern midlatitudes, cool in the tropics) in the South Indian Ocean region. The anomaly imposed on monthly SST climatology captures the essence of patterns observed in the South Indian Ocean during both ENSO events and multidecadal epochs, and facilitates diagnosis of the model response. A previous study with this anomaly imposed in the model examined differences in the response between that on the seasonal scale (favours enhancement of the original SST anomaly) and that on the decadal scale (favours damping of the anomaly). The current study extends that work firstly by comparing the response on the intraseasonal, seasonal and interannual scales, and secondly, by assessing the changes in the circulation and rainfall over the adjoining African landmass.It is found that the atmospheric response is favourable for enhancement of the original SST anomaly on scales up to, and including, annual. However, as the scale becomes interannual (i.e., 15–21 months after imposition of the anomaly), the model response suggests that damping of the original SST anomaly becomes likely. Compared to the shorter scale response, the perturbation pressure and wind distribution on the interannual scale is shifted poleward, and is more reminiscent of the decadal response. Winds are now stronger over the warm anomaly in the southern midlatitudes suggesting enhanced surface fluxes, upper ocean mixing, and consequently, a damping of the anomaly.Examination of the circulation and rainfall patterns indicates that there are significant anomalies over large parts of southern Africa during the spring, summer and autumn seasons for both short (intraseasonal to interannual) and decadal scales. It appears that rainfall anomalies are associated with changes in the advection of moist tropical air from the Indian Ocean and its related convergence over southern Africa. Over eastern equatorial Africa, the austral autumn season (the main wet season) showed rainfall increases on all time scales, while parts of central to eastern subtropical southern Africa were dry. The signals during summer were more varied. Spring showed generally dry conditions over the eastern half of southern Africa on both short and decadal time scales, with wet areas confined to the west. In all cases, the magnitude of the rainfall anomalies accumulated over a 90 day season were of the order of 90–180 mm, and therefore represent a significant fraction of the annual total of many areas. It appears that relatively modest SST anomalies in the South Indian Ocean can lead to sizeable rainfall anomalies in the model. Although precipitation in general circulation models tends to be less accurately simulated than many other variables, the model results, together with previous observational work, emphasize the need for ongoing monitoring of SST in this region.With 14 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号