首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The focus of this study is to document the possible role of the southern subtropical Indian Ocean in the transitions of the monsoon-ENSO system during recent decades. Composite analyses of sea surface temperature (SST) fields prior to El Niño-Southern Oscillation (ENSO), Indian summer monsoon (ISM), Australian summer monsoon (AUSM), tropical Indian Ocean dipole (TIOD) and Maritime Continent rainfall (MCR) indices reveal the southeast Indian Ocean (SEIO) SSTs during late boreal winter as the unique common SST precursor of these various phenomena after the 1976–1977 regime shift. Weak (strong) ISMs and AUSMs, El Niños (La Niñas) and positive (negative) TIOD events are preceded by significant negative (positive) SST anomalies in the SEIO, off Australia during boreal winter. These SST anomalies are mainly linked to subtropical Indian Ocean dipole events, recently studied by Behera and Yamagata (Geophys Res Lett 28:327–330, 2001). A wavelet analysis of a February–March SEIO SST time series shows significant spectral peaks at 2 and 4–8 years time scales as for ENSO, ISM or AUSM indices. A composite analysis with respect to February–March SEIO SSTs shows that cold (warm) SEIO SST anomalies are highly persistent and affect the westward translation of the Mascarene high from austral to boreal summer, inducing a weakening (strengthening) of the whole ISM circulation through a modulation of the local Hadley cell during late boreal summer. At the same time, these subtropical SST anomalies and the associated SEIO anomalous anticyclone may be a trigger for both the wind-evaporation-SST and wind-thermocline-SST positive feedbacks between Australia and Sumatra during boreal spring and early summer. These positive feedbacks explain the extraordinary persistence of the SEIO anomalous anticyclone from boreal spring to fall. Meanwhile, the SEIO anomalous anticyclone favors persistent southeasterly wind anomalies along the west coast of Sumatra and westerly wind anomalies over the western Pacific, which are well-known key factors for the evolution of positive TIOD and El Niño events, respectively. A correlation analysis supports these results and shows that SEIO SSTs in February–March has higher predictive skill than other well-established ENSO predictors for forecasting Niño3.4 SST at the end of the year. This suggests again that SEIO SST anomalies exert a fundamental influence on the transitions of the whole monsoon-ENSO system during recent decades.  相似文献   

2.
Sea surface temperature associations with the late Indian summer monsoon   总被引:1,自引:1,他引:0  
Recent gridded and historical data are used in order to assess the relationships between interannual variability of the Indian summer monsoon (ISM) and sea surface temperature (SST) anomaly patterns over the Indian and Pacific oceans. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June–September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the late Indian summer monsoon (LISM). Anomalous monsoons are linked to well-defined LISM rainfall and large-scale circulation anomalies. The east-west Walker and local Hadley circulations fluctuate during the LISM of anomalous ISM years. LISM circulation is weakened and shifted eastward during weak ISM years. Therefore, we focus on the predictability of the LISM. Strong (weak) (L)ISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia, during boreal winter. These SST anomalies are mainly linked to south Indian Ocean dipole events, studied by Besera and Yamagata (2001) and to the El Niño-Southern Oscillation (ENSO) phenomenon. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene High from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene High interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Our results also explain why a strong ISM is preceded by a transition in boreal spring from an El Niño to a La Niña state in the Pacific and vice versa. An El Niño event and the associated warm SST anomalies over the southeastern Indian Ocean during boreal winter may play a key role in the development of a strong ISM by strengthening the local Hadley circulation during the LISM. On the other hand, a developing La Niña event in boreal spring and summer may also enhance the east–west Walker circulation and the monsoon as demonstrated in many previous studies.  相似文献   

3.
Summary The transition from a cold to a warm state of the E1 Niño-Southern Oscillation (ENSO) cycle is studied using Comprehensive Ocean-Atmosphere Data Sets (COADS) for the period 1950–1992.The onset of El Niño (November to December of the year preceding the El Niño) is characterized by an occurrence of minimum sea-level pressure anomalies in the subtropics around the node line of the Southern Oscillation. This pressure fall favors the formation of the anomalous cyclonic circulations over the western Pacific and leads to the establishment of anomalous westerlies in the western equatorial Pacific during the boreal spring of the El Niño year. The westerly anomalies then intensify and propagate into the central Pacific by the end of the El Niño year. This is an essential feature of the development of a basin-wide warming.It is argued that the development of the equatorial westerly anomalies over the western Pacific may result from the thermodynamic coupling between the atmosphere and ocean. In boreal winter and spring the mean zonal winds change from westerly to casterly over the western equatorial Pacific. A moderate equatorial westerly anomaly initially imposed on such a mean state may create eastward SST gradients via changing rates of evaporational cooling and turbulent mixing. The equatorial SST gradients would, in turn, induce differential heating and zonal pressure gradients which reinforce the westerly anomalies. The feedback between the eastward SST gradients and westerly anomalies promotes the eastward propagation of the westerly anomalies.With 9 Figures  相似文献   

4.
薛峰  段欣妤  苏同华 《大气科学》2018,42(6):1407-1420
本文对比分析了1998年和2016年这两个强El Ni?o衰减年东亚夏季风的季节内变化。结果表明,在6~7月期间,由于热带印度洋海温偏高、对流偏强,造成西太平洋暖池对流偏弱,西太平洋副热带高压(副高)偏西偏强,长江流域降水偏多,华南偏少,东亚夏季风异常具有典型的El Ni?o衰减年特征。但两年的8月份有很大差异,虽然1998年8月与6~7月相似,但2016年8月份则完全不同。受乌拉尔地区异常反气旋的影响,源自西伯利亚东部的北风异常穿越东亚并直抵暖池地区,造成副高分裂并减弱东退,同时激发暖池对流发展,而对流的发展则进一步促使副高减弱。因此,2016年8月东亚夏季风异常与1998年8月相反,中国北方夏季降水异常也呈现很大差异。另外,1998年热带大西洋偏暖,并通过热带环流变化影响到东亚夏季风异常,其强迫作用与热带印度洋类似。而2016年大西洋海温异常较弱,对东亚夏季风影响也较弱。因此,El Ni?o对东亚夏季风的影响不仅与其强度有关,还与El Ni?o衰减之后造成的印度洋和大西洋海温异常有关。本文的分析结果表明,即使在强El Ni?o衰减年夏季,由于El Ni?o之间的个性差异以及其他因子的影响,东亚夏季风季节内变化仍然能呈现出显著差异,特别是在8月份。因此,在预测东亚夏季风异常时,宜将6~7月和8月分别考虑。此外,为进一步提高东亚夏季风预测水平,除传统的季度预测外,还需要进一步加强季节内尺度的预测。  相似文献   

5.
Pascal Terray 《Climate Dynamics》2011,36(11-12):2171-2199
The main goal of this paper is to shed additional light on the reciprocal dynamical linkages between mid-latitude Southern Hemisphere climate and the El Ni?o-Southern Oscillation (ENSO) signal. While our analysis confirms that ENSO is a dominant source of interannual variability in the Southern Hemisphere, it is also suggested here that subtropical dipole variability in both the Southern Indian and Atlantic Oceans triggered by Southern Hemisphere mid-latitude variability may also provide a controlling influence on ENSO in the equatorial Pacific. This subtropical forcing operates through various coupled air?Csea feedbacks involving the propagation of subtropical sea surface temperature (SST) anomalies into the deep tropics of the Atlantic and Indian Oceans from boreal winter to boreal spring and a subsequent dynamical atmospheric response to these SST anomalies linking the three tropical basins at the beginning of the boreal spring. This atmospheric response is characterized by a significant weakening of the equatorial Atlantic and Indian Inter-Tropical Convergence Zone (ITCZ). This weakened ITCZ forces an equatorial ??cold Kelvin wave?? response in the middle to upper troposphere that extends eastward from the heat sink regions into the western Pacific. By modulating the vertical temperature gradient and the stability of the atmosphere over the equatorial western Pacific Ocean, this Kelvin wave response promotes persistent zonal wind and convective anomalies over the western equatorial Pacific, which may trigger El Ni?o onset at the end of the boreal winter. These different processes explain why South Atlantic and Indian subtropical dipole time series indices are highly significant precursors of the Ni?o34 SST index several months in advance before the El Ni?o onset in the equatorial Pacific. This study illustrates that the atmospheric internal variability in the mid-latitudes of the Southern Hemisphere may significantly influence ENSO variability. However, this surprising relationship is observed only during recent decades, after the so-called 1976/1977 climate regime shift, suggesting a possible linkage with global warming or decadal fluctuations of the climate system.  相似文献   

6.
In this paper we seek to identify inter-annual sea surface temperature anomalies (SSTA) patterns outside the tropical Pacific that may influence El Niño/Southern Oscillation (ENSO) through atmospheric teleconnections. We assume that a linear ENSO hindcast based on tropical Pacific warm water volume and Niño3.4 SSTA indices captures tropical Pacific intrinsic predictability inherent to recharge oscillator dynamics. This simple hindcast model displays statistically significant skill at the 95 % confidence level at leads of up to seven seasons ahead of the ENSO peak. Our results reveal that ENSO-independent equatorial wind stress anomalies only significantly improve the skill of that linear hindcast at the 95 % level in boreal spring and summer before the ENSO peak and in boreal fall, five seasons ahead of the ENSO peak. At those seasons, the robust large-scale SST patterns that provide a statistically significant enhancement of ENSO predictability are related to the Atlantic meridional mode and south Pacific subtropical dipole mode in spring, the Indian Ocean Dipole and the south Atlantic subtropical dipole mode in fall. While the first two regions display significant simultaneous correlations with western equatorial Pacific wind stress in three reanalyses (ERA-I, NCEP and NCEP2), the Indian Ocean Dipole and south Atlantic subtropical dipole mode correlation with Pacific winds is less robust amongst re-analyses. We discuss our results in view of other studies that suggest a remote influence of various regions on ENSO. Although modest, the sensitivity of our results to the dataset and to details of the analysis method illustrates that finding regions that influence ENSO from the statistical analysis of observations is a difficult task.  相似文献   

7.
The present study investigates the dependence of the northern tropical Atlantic (NTA) sea surface temperature (SST) response to El Niño and La Niña events on the decay time and amplitude of tropical Pacific SST anomalies. It is found that the NTA SST response to La Niña events displays a notable difference between late and early decaying events, similar to that in response to El Niño events, but with a weaker signal. Latent heat flux is a dominant term in the NTA SST change in preceding winter-early spring in both El Niño and La Niña events and in the difference of the NTA SST anomaly between late and early decaying El Niño and La Niña events. The zonal and meridional advections have an opposite effect on the NTA SST warming in late decaying El Niño events. Although the warming in the NTA region is similar in late decaying moderate and strong El Niño events, the distribution of the SST anomalies in the mid-latitude North Atlantic Ocean shows a notable difference between the two types of late decaying El Niño events. The SST anomalies also display difference in the early decaying weak and moderate El Niño events. Surface heat flux differences are largely attributed to wind differences.  相似文献   

8.
The role of tropical Atlantic sea surface temperature (SST) anomalies during ENSO episodes over northeast Brazil (Nordeste) is investigated using the CPTEC/COLA Atmospheric General Circulation Model (AGCM). Four sets of integrations are performed using SST in El Niño and La Niña (ENSO) episodes, changing the SST of the Atlantic Ocean. A positive dipole (SST higher than normal in the tropical North Atlantic and below normal in the tropical South Atlantic) and a negative dipole (opposite conditions), are set as the boundary conditions of SST in the Atlantic Ocean. The four experiments are performed using El Niño or La Niña SST in all oceans, except in the tropical Atlantic where the two phases of the SST dipole are applied. Five initial conditions were integrated in each case in order to obtain four ensemble results. The positive SST dipole over the tropical Atlantic Ocean and El Niño conditions over the Pacific Ocean resulted in dry conditions over the Nordeste. When the negative dipole and El Niño conditions over the Pacific Ocean were applied, the results showed precipitation above normal over the north of Nordeste. When La Niña conditions over Pacific Ocean were tested together with a negative dipole, positive precipitation anomalies occurred over the whole Nordeste. Using the positive dipole over the tropical Atlantic, the precipitation over Nordeste was below average. During La Niña episodes, the Atlantic Ocean conditions have a larger effect on the precipitation of Nordeste than the Pacific Ocean. In El Niño conditions, only the north region of Nordeste is affected by the Atlantic SST. Other tropical areas of South America show a change only in the intensity of anomalies. Central and southeast regions of South America are affected by the Atlantic conditions only during La Niña conditions, whereas during El Niño these regions are influenced only by conditions in the Pacific Ocean.  相似文献   

9.
The main goal of this study is to determine the oceanic regions corresponding to variability in African rainfall and seasonal differences in the atmospheric teleconnections. Canonical correlation analysis (CCA) has been applied in order to extract the dominant patterns of linear covariability. An ensemble of six simulations with the global atmospheric general circulation model ECHAM4, forced with observed sea surface temperatures (SSTs) and sea ice boundary variability, is used in order to focus on the SST-related part of African rainfall variability. Our main finding is that the boreal summer rainfall (June–September mean) over Africa is more affected by SST changes than in boreal winter (December–March mean). In winter, there is a highly significant link between tropical African rainfall and Indian Ocean and eastern tropical Pacific SST anomalies, which is closely related to El Niño-Southern Oscillation (ENSO). However, long-term changes are found to be associated with SST changes in the Indian and tropical Atlantic Oceans, thus, showing that the tropical Atlantic plays a critical role in determining the position of the intertropical convergence zone (ITCZ). Since ENSO is less in summer, the tropical Pacific and the Indian Oceans are less important for African rainfall. The African summer monsoon is strongly influenced by SST variations in the Gulf of Guinea, with a response of opposite sign over the Sahelian zone and the Guinean coast region. SST changes in the subtropical and extratropical oceans mostly take place on decadal time scales and are responsible for low-frequency rainfall fluctuations over West Africa. The modelled teleconnections are highly consistent with the observations. The agreement for most of the teleconnection patterns is remarkable and suggests that the modelled rainfall anomalies serve as suitable predictors for the observed changes.  相似文献   

10.
An Atlantic influence on Amazon rainfall   总被引:2,自引:2,他引:0  
Rainfall variability over the Amazon basin has often been linked to variations in Pacific sea surface temperature (SST), and in particular, to the El Niño/Southern Oscillation (ENSO). However, only a fraction of Amazon rainfall variability can be explained by ENSO. Building upon the recent work of Zeng (Environ Res Lett 3:014002, 2008), here we provide further evidence for an influence on Amazon rainfall from the tropical Atlantic Ocean. The strength of the North Atlantic influence is found to be comparable to the better-known Pacific ENSO connection. The tropical South Atlantic Ocean also shows some influence during the wet-to-dry season transition period. The Atlantic influence is through changes in the north-south divergent circulation and the movement of the ITCZ following warm SST. Therefore, it is strongest in the southern part of the Amazon basin during the Amazon’s dry season (July–October). In contrast, the ENSO related teleconnection is through anomalous east-west Walker circulation with largely concentrated in the eastern (lower) Amazon. This ENSO connection is seasonally locked to boreal winter. A complication due to the influence of ENSO on Atlantic SST causes an apparent North Atlantic SST lag of Amazon rainfall. Removing ENSO from North Atlantic SST via linear regression resolves this causality problem in that the residual Atlantic variability correlates well and is in phase with the Amazon rainfall. A strong Atlantic influence during boreal summer and autumn is particularly significant in terms of the impact on the hydro-ecosystem which is most vulnerable during the dry season, as highlighted by the severe 2005 Amazon drought. Such findings have implications for both seasonal-interannual climate prediction and understanding the longer-term changes of the Amazon rainforest.  相似文献   

11.
Maintaining a multi-model database over a generation or more of model development provides an important framework for assessing model improvement. Using control integrations, we compare the simulation of the El Niño/Southern Oscillation (ENSO), and its extratropical impact, in models developed for the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report with models developed in the late 1990s [the so-called Coupled Model Intercomparison Project-2 (CMIP2) models]. The IPCC models tend to be more realistic in representing the frequency with which ENSO occurs, and they are better at locating enhanced temperature variability over the eastern Pacific Ocean. When compared with reanalyses, the IPCC models have larger pattern correlations of tropical surface air temperature than do the CMIP2 models during the boreal winter peak phase of El Niño. However, for sea-level pressure and precipitation rate anomalies, a clear separation in performance between the two vintages of models is not as apparent. The strongest improvement occurs for the modelling groups whose CMIP2 model tended to have the lowest pattern correlations with observations. This has been checked by subsampling the multi-century IPCC simulations in a manner to be consistent with the single 80-year time segment available from CMIP2. Our results suggest that multi-century integrations may be required to statistically assess model improvement of ENSO. The quality of the El Niño precipitation composite is directly related to the fidelity of the boreal winter precipitation climatology, highlighting the importance of reducing systematic model error. Over North America distinct improvement of El Niño forced boreal winter surface air temperature, sea-level pressure, and precipitation rate anomalies to occur in the IPCC models. This improvement is directly proportional to the skill of the tropical El Niño forced precipitation anomalies.  相似文献   

12.
两类厄尔尼诺事件发展年秋季印度洋海温异常特征对比   总被引:6,自引:1,他引:5  
基于1951—2010年逐月海气多要素观测资料,对比分析了两类厄尔尼诺事件发展年秋季印度洋的海温异常及大气响应特征,探讨了印度洋偶极子的发生与两类厄尔尼诺事件特征的可能联系。结果表明,两类厄尔尼诺事件的发展年均会出现印度洋偶极子,但出现的概率不同:大多数东部型厄尔尼诺事件都会伴有正位相印度洋偶极子发生;而仅一半的中部型厄尔尼诺事件期间会出现正位相印度洋偶极子的异常海温型,且强度较弱。从印度洋偶极子与两类厄尔尼诺事件的物理联系上看,东部型厄尔尼诺事件期间,印度洋偶极子的发生与其强度联系密切:印度洋偶极子发生在东部型厄尔尼诺事件较强期间,两者通过海洋大陆的异常强下沉运动及大范围负异常降水相联系;东部型厄尔尼诺事件偏弱时并无印度洋偶极子出现,海洋大陆异常下沉运动及负异常降水很弱。然而,中部型厄尔尼诺事件期间印度洋偶极子的发生与其强度并无显著的关系,而与太平洋高海温区的位置存在一定的可能联系:在有印度洋偶极子发生的中部型厄尔尼诺事件发展年秋季,热带太平洋异常高海温区的位置相对偏东,海洋大陆出现显著下沉运动和大范围负异常降水,热带东印度洋为大范围强异常东风控制;但无印度洋偶极子发生的中部型厄尔尼诺事件时,热带太平洋高海温区位置相对偏西,极弱的海洋大陆下沉支对热带印度洋异常海温作用非常有限。  相似文献   

13.
利用HadiSST资料、CMAP降水资料和NCEP/NCAR再分析资料,分析了热带北大西洋(Northern Tropical Atlantic,NTA)海表温度异常(Sea Surface Temperature Anomaly,SSTA)与南海夏季风(South China Sea Summer Monsoon,SCSSM)的联系及可能机制。观测分析表明,夏季NTA海温异常与SCSSM存在显著的负相关关系;NTA海温正异常时,北半球副热带东太平洋至大西洋区域存在气旋式环流异常,有利于热带大西洋(热带中太平洋)地区产生异常上升(下沉)运动,使得西北太平洋地区出现反气旋环流异常,该反气旋环流异常西侧的南风异常使得SCSSM增强。利用春季NTA指数、东南印度洋海温异常指数、北太平洋海温异常指数、南太平洋经向模(South Pacific Ocean Meridional Dipole,SPOMD)及Niňo3.4指数构建了SCSSM季节预测模型,预测模型后报与观测的SCSSM指数的相关系数为0.81,表明该模型可较好预测SCSSM。  相似文献   

14.
During El Niño events when positive sea surface temperature (SST) anomalies form in the equatorial Pacific, SST anomalies also tend to develop in the North Pacific. This study attempts to model and explain the large-scale features of the observed SST anomaly field in the North Pacific during the fall and winter of the El Niño year. The experiment design consists of a mixed layer ocean model of the North Pacific which is forced by atmospheric surface fields from two sets of Community Climate Model (CCM) integrations: the El Niño set with prescribed positive SST anomalies in the tropical Pacific; and the control set which is obtained from an extended CCM integration with prescribed climatological SSTs. The response of the midlatitude ocean to atmospheric surface fields associated with El Niño is obtained by compositing each set of model integrations (El Niño and Control) and then taking the difference between the composites. The ocean model is able to reproduce the general features of the observed midlatitude SST anomaly pattern: warm water in the northeast Pacific and an elliptically shaped cold pool in the central Pacific. In these regions, a large fraction of the temperature anomalies are significant at the 95% level as indicated by a two tailed t-test. The ocean temperature anomalies simulated by the model are primarily caused by changes in the sensible and latent heat flux and to a lesser extent the longwave radiation flux. Entrainment of cold water from below the mixed layer also influences ocean temperatures. However, the entrainment anomaly pattern has a complex spatial structure which does not always coincide with the simulated mixed layer temperature anomalies.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

15.
张雯  董啸  薛峰 《大气科学》2020,44(2):390-406
基于1957~2017年观测和再分析资料,合成分析了北太平洋年代际振荡(Pacific decadal oscillation,PDO)不同位相下El Ni?o发展年和La Nina年东亚夏季风的环流、降水特征及季节内变化。结果表明,PDO正、负位相作为背景场,分别对El Ni?o发展年、La Nina年东亚夏季风及夏季降水具有加强作用。PDO正位相一方面可增强El Ni?o发展年夏季热带中东太平洋暖海温异常信号,另一方面通过冷海温状态加强中高纬东亚大陆与西北太平洋的环流异常,从而在一定程度上增强了东亚夏季风环流的异常程度;反之,PDO负位相则增强了La Nina年热带海气相互作用以及中高纬环流(如东北亚反气旋)的异常。在季节内变化方面,El Ni?o发展年6月贝湖以东反气旋性环流为东亚地区带来稳定的北风异常,东北亚位势高度减弱;7月开始,环流形势发生调整,日本以东洋面出现气旋性异常,东亚大陆偏北风及位势高度负异常均得到加强;8月,随着东亚夏季风季节进程和El Ni?o发展,西太平洋出现气旋性环流异常,东亚副热带位势高度进一步降低,西北太平洋副热带高压(简称副高)明显东退。La Nina年6月异常较弱,主要环流差异自7月西北太平洋为大范围气旋性异常控制开始,东亚-太平洋遥相关型显著,副高于季节内始终偏弱偏东。上述两种情况下,均造成东亚地区夏季降水总体上偏少,尤其是中国北方降水显著偏少。  相似文献   

16.
Summary This paper presents the results of the Florida State University atmospheric general circulation model that addresses the impact of sea surface temperature anomalies on an El Niño year. Northern Hemisphere winter season simulation. Specifically, our interest is in the simulation of seasonal winter monsoonal rainfall, the planetary scale divergent motions and the westerly wind anomalies of an El Niño year.The El Niño episode of 1982–1983 was interesting due to its higher than average amplitude and its overall evolution. By late 1982 the anomalous circulations associated with the sea surface temperature forcing had begun to take shape even though the anomalies did not attain their peak amplitude until February 1983. The atmosphere-ocean teleconnections set up a strong pattern of geopotential height anomalies during the Northern Hemisphere winter that coincides with El Niño conditions in the tropical Pacific Ocean.Wallace and Gutzler (1981) defined a Pacific North American (PNA) teleconnection pattern index based on data from within this region. The El Niño episode of 1982–1983 has been shown to be strong via the PNA Index and illustrates an importance for climate models to correctly simulate these teleconnections. The importance of the forced anomalies can be seen in the long-range forecasting of conditions over North America as well as the winter monsoon intensity and location.In this study, we utilize a general circulation model with a resolution of triangular truncation at 42 waves to investigate the effects of prescribed sea surface temperature anomalies. We are able to simulate the majority of the large-scale atmospheric response although on regional climatic scales some phase shifts seem apparent.With 7 Figures  相似文献   

17.
利用逐月台站观测降水、HadISST1.1海温和ERA5大气再分析资料,研究了前冬印度洋海盆一致模(Indian Ocean Basin,IOB)对华南春季降水(SCSR)与ENSO关系的影响,并分析了IOB通过调控ENSO环流异常进而影响SCSR的可能机制。结果表明:当前冬El Ni?o(La Ni?a)与IOB暖(冷)位相同时发生时,SCSR显著增多(减少);而当El Ni?o或La Ni?a单独发生而IOB处于中性时,SCSR并无明显多寡倾向。其原因在于,当El Ni?o与IOB暖相位并存时,前冬热带印度洋和赤道中东太平洋均为正海温异常(Sea-Surface Temperature Anomaly,SSTA),且印度洋SSTA强度可一直维持至春季。在对流层低层,春季赤道中东太平洋的正SSTA激发出异常西北太平洋反气旋(Western North Pacific Anticyclone,WNPAC)。而热带印度洋的正SSTA在副热带印度洋激发出赤道南北反对称环流,赤道以北的东风异常有利于异常WNPAC西伸;赤道以南的西风异常与来自赤道西太平洋的东风异常在东印度洋辐合上升,气流至西北太平洋下沉,形成经向垂直环流,有利于春季WNPAC维持。在对流层高层,印度洋的正SSTA在热带印度洋上空激发出位势高度正异常,随之形成的气压经向梯度加强了东亚高空副热带西风急流,进而在华南上空形成异常辐散环流。WNPAC的西伸和加强可为华南提供充足的水汽,同时高空辐散在华南引发水汽上升运动,共同导致SCSR正异常。而若El Ni?o发生时IOB处于中性状态,El Ni?o相关的SSTA衰减较快,春季WNPAC不显著,SCSR无明显多寡趋势。   相似文献   

18.
In this modelling study, the teleconnections of ENSO are studied using an atmospheric general circulation model (AGCM), HadAM3. The influence of sea surface temperature anomalies (SSTAs) remote from the tropical Pacific but teleconnected with ENSO is investigated. Composite cycles of El Niño and La Niña SSTs are created and imposed on HadAM3. These SSTs are imposed in different areas, with climatological SSTs elsewhere, in order to find the influences of SSTs in different regions. It is found that most of the reproducible response to ENSO is forced directly from the tropical Pacific before the peak of the event. However, during the peak and decay of ENSO, remote SSTs become increasingly influential throughout the tropics (at the 98% significance level). This could lead to extended ENSO-related predictability due to the memory of the remote oceans. The Indian Ocean and Maritime Continent SSTs are found to be particularly influential. Indian Ocean SSTAs dampen the teleconnections from the tropical Pacific and force the atmosphere above the tropical Atlantic. More generally, when a tropical SSTA is imposed, atmospheric anomalies are forced locally with anomalies of the opposite sign to the west. Some of the reproducible response to ENSO in the tropical Atlantic is forced, not directly from the tropical Pacific but from the Indian ocean, which in turn is forced by the tropical Pacific. Subsequently, delayed SSTAs in the tropical Atlantic damp the local response and force the atmosphere above the tropical Pacific in the opposite manner.  相似文献   

19.
Xin Wang  Chunzai Wang 《Climate Dynamics》2014,42(3-4):991-1005
Our early work (Wang and Wang in J Clim 26:1322–1338, 2013) separates El Niño Modoki events into El Niño Modoki I and II because they show different impacts on rainfall in southern China and typhoon landfall activity. The warm SST anomalies originate in the equatorial central Pacific and subtropical northeastern Pacific for El Niño Modoki I and II, respectively. El Niño Modoki I features a symmetric SST anomaly distribution about the equator with the maximum warming in the equatorial central Pacific, whereas El Niño Modoki II shows an asymmetric distribution with the warm SST anomalies extending from the northeastern Pacific to the equatorial central Pacific. The present paper investigates the influence of the various groups of El Niño events on the Indian Ocean Dipole (IOD). Similar to canonical El Niño, El Niño Modoki I is associated with a weakening of the Walker circulation in the Indo-Pacific region which decreases precipitation in the eastern tropical Indian Ocean and maritime continent and thus results in the surface easterly wind anomalies off Java-Sumatra. Under the Bjerknes feedback, the easterly wind anomalies induce cold SST anomalies off Java- Sumatra, and thus a positive IOD tends to occur in the Indian Ocean during canonical El Niño and El Niño Modoki I. However, El Niño Modoki II has an opposite impact on the Walker circulation, resulting in more precipitation and surface westerly wind anomalies off Java-Sumatra. Thus, El Niño Modoki II is favorable for the onset and development of a negative IOD on the frame of the Bjerknes feedback.  相似文献   

20.
两类ENSO对中国北方冬季平均气温和极端低温的不同影响   总被引:2,自引:0,他引:2  
汪子琪  张文君  耿新 《气象学报》2017,75(4):564-580
利用1961-2012年观测、再分析资料以及全球大气环流模式数值试验,探讨了中国北方冬季平均气温对于不同类型(即东部型和中部型)ENSO事件的气候响应,并分析了不同类型ENSO对极端低温事件的可能影响,重点关注了北大西洋涛动(NAO)在其中的桥梁作用。结果表明,ENSO信号能通过调制北大西洋地区的大气环流改变欧亚中高纬度地区的纬向温度平流输送和西伯利亚高压的强度,进而影响中国北方冬季气温,由于不同类型ENSO事件海温分布的差异,这种影响具有明显的非线性特征。在两类厄尔尼诺和东部型拉尼娜事件冬季,北大西洋涛动均呈现负位相,不利于北大西洋的暖湿空气向欧亚大陆输送,西伯利亚高压偏强,因而中国北方地区较气候态偏冷。中部型厄尔尼诺和东部型拉尼娜事件冬季气温负异常的显著区域分别位于东北大范围地区、内蒙古河套附近;东部型厄尔尼诺事件冬季显著的冷异常信号仅局限于黑龙江北部与大兴安岭地区;而中部型拉尼娜事件冬季虽伴随北大西洋涛动正位相,但其空间结构向西偏移,对下游中国北方地区气温的直接影响并不显著,可能受局地信号干扰较大。数值试验再现了北大西洋涛动以及中国北方冬季气温对不同类型ENSO的响应,进一步佐证了上述结论。此外,两类厄尔尼诺事件冬季中国东北地区日平均气温容易偏低,极端低温事件的发生频次增多;而两类拉尼娜事件对极端低温的影响较弱。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号