首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GPT2模型的精度检验与分析   总被引:3,自引:1,他引:2  
GPT模型常被用于计算气温、气压等对流层延迟气象参数,针对其不足之处,Lagler提出了改进的全球经验模型GPT2,该模型不仅提高了GPT气温和气压模型的精度,而且可提供比湿、水汽压、映射函数等对流层参数。但是目前没有相关文献对GPT2的精度进行详尽的分析,本文利用ECWMF及NOAA提供的高精度气象数据,对GPT2气温、气压和水汽压模型进行精度检验及分析。结果表明,气温的Bias均值为-0.59°C,RMS均值为3.82°C左右;气压和水汽压的Bias均值绝对值在1mb以内,气压的RMS均值为7mb左右,水汽压则不超过3mb,不同纬度精度存在差异,三者均具有明显的季节性。总体而言,GPT2模型在全球范围内具有很高的精度和稳定性。  相似文献   

2.
全球温度气压湿度(global pressure and temperature 2 wet,GPT2w)模型常被用于计算某一位置的气温、加权平均温度、气压以及水汽压等各种气象参数,是目前公开的标称精度最高的对流层延迟经验模型。利用中国区域参与全球气象交换的86个测站2013-2015年的气象探空数据,对GPT2w得到的各种气象参数进行精度检验及分析。实验结果表明,气温平均偏差为1.31℃,均方根误差为3.62℃;加权平均温度的平均偏差为-1.58 K,均方根误差为4.07 K;气压和水汽压平均偏差的绝对值在1 hPa以内,其均方根误差分别为6.98 hPa与3.04 hPa。利用2006-2015年的数据分析了不同纬度模型精度的周期性特征,结果表明,气温、加权平均温度、气压和水汽压的均方根误差均具有一定的年周期特性,且在不同的纬度区域其周期特性不同。总体而言,GPT2w模型在中国地区范围内具有较高的精度和稳定性。  相似文献   

3.
对流层延迟是卫星导航定位最主要的误差来源之一,精确计算对流层延迟有助于模糊度的收敛及定位精度的提高。目前应用最广、精度最高的对流层经验模型是全球气压气温模型,为了验证GPT3模型计算中国区域地表至11 km大气剖面对流层延迟改正的精度,利用2011—2020年中国区域82个参与全球气象交换的测站的无线电探空数据,对GPT3的气压(P)、气温(T)、水汽压(E)以及加权平均温度(Tm)进行精度检验及分析,实验结果表明,GPT3模型精度受纬度和高程影响较大,其中GPT3-P和GPT3-Tm受纬度影响显著;GPT3-P在地表RMS为8.02 hPa,而在地表至11 km其RMS为20.01 hPa,说明模型地表精度要优于大气剖面精度,GPT3-Tm呈现同样的规律,而GPT3-T的地表以及地表至11 km的RMS分别为7.94 K、7.53 K,GPT3-E的RMS分别为2.42 hPa、1.97 hPa;模型在不同年积日的精度存在差异,呈现一定的季节特性,但其精度在长时间区间内没有明显变化。总体而言,GPT3模型在中国地区范围...  相似文献   

4.
周润杨  薛玫娇 《测绘工程》2018,(2):20-25,31
由于高纬度地区气温气压值及变化率与中低纬度地区有较大差异,因此目前发布的多种对流层延迟模型在高纬度地区使用的精度会不同。为了给高纬度地区BDS/GPS用户提供更好的对流层延迟模型选择,文中采用UNB3,EGNOS和GPT2模型,以IGS发布的ZPD产品和SINEX文件作为参考,对比基于这三种对流层延迟模型计算的天顶对流层总延迟量以及精密单点定位精度,可知GPT2较UNB3和EGNOS在高纬度地区定位中有更好的精度表现。  相似文献   

5.
针对目前全球气象模型受不同季节、纬度、高程等因素影响问题,该文利用全球分布的IGS站实测气象数据,对GPT、GPT2、GPT2w模型的精度进行对比,对模型的季节性特征以及纬度、高程因素对模型精度的影响进行分析,并对3种模型反演GPS大气可降水量(PWV)的精度进行比较。结果表明:(1)GPT2和GPT2w模型的精度相当,均优于GPT模型;(2)3种模型均具有明显的季节性特征,7月份(夏季)的模型精度最优;(3)纬度、高程因素对3种模型气压误差的影响较大,而对气温误差的影响相对较小;(4)GPT2、GPT2w模型解算的PWV估值精度相当,偏差均值和平均RMS分别小于1.2mm和1.8mm,均优于GPT模型计算结果。研究结果:可为全球或区域气象模型的改进和生产应用提供借鉴。  相似文献   

6.
针对目前全球气象模型受不同季节、纬度、高程等因素影响问题,该文利用全球分布的IGS站实测气象数据,对GPT、GPT2、GPT2w模型的精度进行对比,对模型的季节性特征以及纬度、高程因素对模型精度的影响进行分析,并对3种模型反演GPS大气可降水量(PWV)的精度进行比较。结果表明:(1)GPT2和GPT2w模型的精度相当,均优于GPT模型;(2)3种模型均具有明显的季节性特征,7月份(夏季)的模型精度最优;(3)纬度、高程因素对3种模型气压误差的影响较大,而对气温误差的影响相对较小;(4)GPT2、GPT2w模型解算的PWV估值精度相当,偏差均值和平均RMS分别小于1.2mm和1.8mm,均优于GPT模型计算结果。研究结果:可为全球或区域气象模型的改进和生产应用提供借鉴。  相似文献   

7.
郑韵  王洪栋 《测绘通报》2018,(1):112-116
气象模型GPT和GPT2均可用于获取测站的气压、气温等气象要素,对计算对流层延迟具有重要作用并在高精度的GPS数据分析中被广泛使用。GPT2对GPT模型精度的改进在很多文献中已经得到验证,但是目前没有相关文献对采用这两种模型获得的坐标时间序列的差异进行详尽的分析。本文分别利用气象模型GPT和GPT2处理相同的连续观测站数据,发现气压值偏差的季节性变化导致测站垂向位置偏差也产生季节性变化,是测站垂向位置“伪”年周变化信号的来源之一;同时,模型之间的气压值偏差对垂向位置的影响与测站纬度相关,表现为先验天顶延迟偏差传递进垂向位置偏差的比例随测站纬度增加而增大。  相似文献   

8.
针对部分GNSS测站缺乏实测气象参数时无法实时计算可降水量(PWV)的问题,本文以长三角地区为例提出一种将GPT3模型参数与GNSS对流层总延迟(ZTD)融合获取高精度PWV的新方法。研究结果表明,GPT3模型的气象参数和各类对流层延迟参数在长三角地区具有较好的稳定性和精度,融合GPT3模型的干延迟(ZHD)、加权平均温度(Tm)和GNSS⁃ZTD所得PWV的RMS为3.56 mm,接近GNSS⁃PWV的3.74 mm,远优于GPT3⁃PWV的11.12 mm。  相似文献   

9.
对流层延迟是GNSS导航定位的重要误差源之一,主要受气温、气压以及水汽分压等气象参数的影响,具有变化迅速、随机的特点。本文利用分布在欧亚地区的72个IGS站提供的2015年全年的ZTD产品对UNB 3 m模型进行了详细的探讨,得出该模型在相应地区的平均偏差为0.017 m,高于北美地区0.005 m的平均偏差。本文选出了bsrt、chan、guug等8个IGS站,进一步分析比较,得出UNB 3 m模型误差在空间上的分布特性为:在高纬度地区UNB 3 m模型的适应性较好,在中低纬度地区、沿海区域精度明显低于内陆地区;模型误差的时间分布特性为:在夏季符合精度较差,但在春季和冬季符合精度较好;同时,模型的预测精度与高程并无明显的规律。本文研究还发现模型的bias与测站的水汽输送规律有明显的相关性,为进一步提高ZTD的模型预测精度提供了很好的思路和方向。  相似文献   

10.
各种对流层经验模型中,GPT2w模型是目前标称精度最高的对流层经验模型,其在模型化对流层延迟的同时,也提供具体的模型化气象元素。以USNO的ZTD产品检验模型ZTD精度;以IGRA发布的大气廓线数据,对模型加权平均温度Tm、水汽直减率λ的精度进行验证。计算发现,模型加权平均温度Tm具有-2.56K的系统偏差,改正该偏差后,模型ZTD对比USNO偏差从-1.38 mm提升至-0.3 mm;还验证了模型水汽直减率λ的两种获取方式具有很好的一致性。提出以测站气压P、测站温度t、测站相对湿度hr为实测气象元素,以校正后的Tm、高精度的λ为经验气象元素,作为对流层延迟模型输入参数的互融方法。该互融方法计算ZHD、ZWD经验模型分别采用目前最优的Saast静力学延迟模型和Askne & Nordius湿延迟模型。以USNO发布的340个IGS跟踪站的对流层延迟数据作为参考,该互融方法较直接气象元素法、校正后的GPT2w模型均有显著精度提升。在不可获取气象数据的前提下,校正后的GPT2w模型具有很高的先验精度;若可获取近实时气象数据(如自动气象站),则推荐采用新的参数互融模型。  相似文献   

11.
针对Global Pressure and Temperature2/Global Pressure and Temperature 2w(GPT2/2w)模型在亚洲区域对流层延迟估计中的适用性问题,该文基于GPT2/2w模型,结合Saastamoinen模型(分别用GPT2S、GPT2w-1S、GPT2w-5S表示)估计亚洲地区2007—2017年10年的天顶对流层延迟(ZTD)并分析其精度与时空分布。使用欧洲定轨中心(CODE)的ZTD产品来验证模型在亚洲地区的精度。分析结果表明GPT2w-1S模型精度最高,偏差(Bias)为0.88 cm,均方根误差(RMSE)为4.63 cm,GPT2w-5S模型精度次之,GPT2S模型最差。受水汽分布影响,时间上,3种模型精度表现出季节特性,冬季精度最好,夏季精度最差;空间上,3种模型在高海拔地区精度较好,模型精度对纬度的依赖性不明显且纬度对3种模型的影响程度差别不大。  相似文献   

12.
GPT2w模型在南极地区精度分析   总被引:1,自引:0,他引:1  
孔建  姚宜斌  单路路  王泽民 《测绘学报》2018,47(10):1316-1325
GPT2w(global pressure and temperature 2 wet)是目前应用较为广泛的对流层延迟经验模型之一,可提供气压、温度、水汽压等气象参数。为验证和分析GPT2w模型在南极地区的精度,本文利用分布在南极区域的探空站数据和中国第33次南极科考期间的实测探空气球数据对模型气压、温度、水汽压参数进行分层精度检验。与探空站数据比较发现,在南极地区地面高度上,GPT2w模型精度较高,与全球其他区域精度较为一致;进一步通过对比1月和7月统计结果,发现Bias和RMS呈现出季节特性;同时发现模型在垂直方向存在较大误差,表现为随着高度的增加,精度随之下降并逐步趋于稳定。实测数据对比方面,首先利用ECMWF(European Centre for Medium-range Weather Forecasts)气压分层数据对实测数据的可靠性进行验证,结果显示,实测数据与ECMWF分层数据符合得较好;同时通过比对发现,GPT2w天内精度在地面高度上仍与月平均精度相当,但垂直方向随着高度的增加精度相比于暖季精度会有所下滑,说明未考虑日周期项变化对模型精度存在一定影响。用探空数据计算的对流层延迟(zenith tropospheric delay,ZTD)来分析GPT2w的计算精度,结果表明GPT2w在南极区域ZTD计算精度在厘米级,与全球其他位置计算精度相当。  相似文献   

13.
GTDM:一种获取全球对流层延迟的新模型   总被引:1,自引:0,他引:1  
对流层延迟是GNSS定位的主要误差源。现有的各对流层延迟模型大多存在过度拟合的弊端,不能反映延迟在短时间内的细节变化。本文利用2011-2017年ECMWF气象资料分析了对流层延迟的变化特征,发现同一格网相邻年份之间全球对流层延迟偏差绝大多数在5 cm内。在此基础上,本文提出了一种非参数拟合的对流层延迟模型GTDM。经验证,GTDM模型具有较好的拟合效果。本文将2016-2017年IGS分析中心提供的对流层延迟产品数据、探空气象数据解算的对流层延迟作为外检核数据,验证结果表明,GTDM模型在全球范围的精度均优于GZTD、GPT2w、UNB3m模型。GTDM模型建模方法简单,可避免过度拟合对流层延迟值的问题,能够有效地反映对流层延迟变化特征。  相似文献   

14.
对流层延迟是影响全球卫星导航系统(GNSS)定位精度的主要误差源之一,模型修正法是目前削弱对流层延迟影响的主要方法. 以简单易用的角度为切入点,综合UNB3模型的简易性和GPT2w模型的高精度特点,构建一种简易且精度较高的对流层天顶延迟融合模型(FZTD). 并利用多年的国际GNSS服务(IGS) 对流层天顶延迟(ZTD)数据对该模型精度进行了验证. 结果表明FZTD模型的均方根(RMS)与平均偏差(bias)值分别为4.4 cm和?0.3 cm,均小于传统模型UNB3m(RMS:5.1 cm,bias:1.1 cm)和EGNOS(RMS:5.1 cm,bias:0.3 cm),定位精度提高了14%,而且在南半球提高尤为明显,特别在南极地区,精度提高了近3倍,弥补了传统模型在南北半球精度差异大的不足. 新模型总气象参数仅为120个比GPT2w模型急剧减少,与传统模型相当,为GNSS实时导航定位终端的预定义对流层延迟改正提供了更优的选择.   相似文献   

15.
对流层延迟是全球导航卫星系统(GNSS)计算的主要误差之一,其模型精度对测站坐标解算有较大影响,在高程方向尤为明显。因此,有必要对不同的对流层延迟改正模型的适用性进行评估。采用SHA解算了中国陆态网GNSS跟踪站的对流层天顶延迟数据,对常用的对流层改正模型EGNOS/UNB3m/GPT/GPT2的天顶延迟量在中国不同区域、不同季节的适用性进行了分析。结果显示,4种模型的RMS均为4~5cm,各模型RMS之差小于1cm,其中GPT2模型的RMS最小;4种模型的平均偏差(BIAS)为1cm左右,GPT2模型的BIAS最大,为1.5cm;时间上,各个模型在夏季精度普遍较低,这是因为夏季水汽丰富,对流层湿延迟变化较大;空间上,各模型在东南沿海精度较低,因为东南沿海气候湿润,湿延迟变化较大;各模型精度对测站高程不敏感,精度在比较高的测站并无明显降低。通过对不同模型在中国区域的精度分析,验证该改正模型可以为中国区域用户的对流层模型的选择提供一定的参考。  相似文献   

16.
对流层延迟差异影响合成孔径雷达干涉测量技术(InSAR)形变测量精度;水汽的变化影响天气变化.对流层延迟与水汽具有较好的对应,因此有必要开展全球导航卫星系统(GNSS)对流层延迟的插值研究.以京津冀地区为例,针对GNSS对流层延迟,开展对流层延迟的空间插值研究.首先开展了GNSS对流层延迟与水汽的比较分析,两者存在显著正相关特性,相关性超过91.7%,论证了对流层延迟取代水汽的可行性.然后利用反距离权重法对京津冀地区2016年9月至2017年8月的12组GNSS测站对流层延迟进行空间插值,通过提取插值点对流层延迟与GNSS站点对流层延迟比较验证空间插值精度.全年数据平均偏差最大为1.12 cm,均方根误差最大为0.89 cm;未发生降水过程平均偏差最大为1.25 cm,均方根误差最大为0.82 cm;发生降水过程平均偏差最大为1.08 cm,均方根误差最大为1.38 cm.京津冀平原区域的GNSS对流层延迟空间插值结果精度满足气象等应用要求,可为气象预报和InSAR大气校正提供参考.   相似文献   

17.
单频用户主要采用全球导航卫星系统(global navigation satellite system,GNSS)广播电离层模型来修正电离层延迟,GPS、Galileo和BDS-2均播发广播电离层参数。BDS-3试验卫星也播发了应用于全球电离层延迟修正的BDGIM(BeiDou global ionospheric delay correction model)模型参数。以国际GNSS服务(International GNSS Service,IGS) GIM (global ionosphere maps)产品和全球140余个GNSS观测站GPS双频观测量为基准,从全球范围、不同纬度、不同区域等系统分析了GPS、Galileo和BDS-3的全球广播电离层模型改正精度,并与IGS预报电离层产品(IGS P1和IGS P2)进行比较。分析认为,IGS P1和IGS P2产品的改正精度总体最优,BDGIM参数优于Gal NeQuick和GPS K8。对于BDS-3新发布的BDGIM参数,分析认为,在全球范围的改正精度(均方根)约为3.58 TECU,改正率约77.2%,在全球不同区域的改正精度相当。  相似文献   

18.
大气加权平均温度(Tm)是全球导航卫星系统(GNSS)水汽监测的关键参数。针对中国区域地形起伏较大的特点,本文构建了顾及精细季节变化的Tm垂直递减率函数模型,在此基础上,利用2007—2014年的Global Geodetic Observing System(GGOS)atmosphere格网数据建立了中国区域的Tm格网新模型(简称为CTm模型)。以2015年GGOS格网数据和无线电探空资料为参考值,对CTm模型进行精度检验,并与常用的Bevis公式和GPT2w模型进行比较分析。结果表明:①以GGOS格网数据为参考值,CTm模型的年均偏差和均方根误差(RMS)分别为-0.52 K和3.28 K,相比于GPT2w-5和GPT2w-1模型,精度(RMS值)分别提高了27%和13%;②以探空数据为参考值,CTm模型的年均偏差和RMS误差分别为0.26 K和3.75 K,相对于GPT2w-5和GPT2w-1模型,精度分别提高了21%和16%,尤其在中国西部地区,CTm模型表现出更为显著的优势。此外,将CTm模型用于GNSS水汽计算,其引起的水汽计算RMS误差和相对误差分别为0.29 mm和1.36%。CTm模型不需要实测气象参数,因此,在中国区域的GNSS实时高精度水汽探测中具有重要的应用。  相似文献   

19.
对流层延迟是影响全球卫星导航系统(GNSS)测量精度的重要因素. 针对现有对流层延迟模型稳定性差,精度较低等问题,在无实测气象参数条件下,提出一种基于Keras平台的长短期记忆神经网络(LSTM)的对流层延迟预测模型. 选取全球均匀分布的8个测站,使用其2016年第90-131年积日共42 天的整点对流层延迟数据预测其第132-136年积日的整点数据. 以国际GNSS服务(IGS)中心提供的对流层产品为真值,分析比较LSTM模型和反向传播(BP)神经网络模型的预测效果. 研究表明,LSTM模型预测结果的均方根误差基本达到mm级,其平均绝对误差和平均绝对百分比误差均比BP模型低,LSTM模型在精度和稳定性上较BP模型均有明显提高;LSTM模型在中高纬区域的均方根误差(RMSE)均值达到7.82 mm,中高纬地区更适合使用该模型.   相似文献   

20.
测站气压和温度的准确获取对GPS水汽反演的精度至关重要,但是我国各地在建立GPS连续运行观测站时的发展状态差别较大,有相当部分的GPS气象站网并未配备气压和温度传感器,无法有效准确采集测站气压及温度相关数据,对实时获取测站上方水汽有较大影响.本文基于一种增加高度改正的反距离加权法,和分布在全国的全球卫星导航系统(GNSS)气象站网数据,对该方法进行了实验验证.实验结果表明,通过此方法得到的气压和温度参数精度满足水汽解算需要.同时将本文方法与全球气温和气压经验模型(GPT2)进行对比,证明了本文得到的温压参数精度要优于GPT2模型.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号