首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several models for pulsating type IV radio bursts are presented based on the assumption that the pulsations are the result of fluctuations in the synchrotron emission due to small variations in the magnetic field of the source. It is shown that a source that is optically thick at low frequencies due to synchrotron self-absorption exhibits pulsations that occur in two bands situated on either side of the spectral peak. The pulsations in the two bands are 180° out of phase and the band of pulsations at the higher frequencies is the more intense. In contrast, a synchrotron source that is optically thin at all frequencies and whose low frequency emission is suppressed due to the Razin effect develops only a single band of pulsations around the frequency of maximum emission. However, the flux density associated with the later model would be too small to explain the more intense pulsations that have been observed unless the source area is considerably larger than presently seems reasonable.  相似文献   

2.
Wang  M.  Xie  R.X.  Duan  C.C.  Yan  Y.H.  Sych  R.A.  Altyntsev  A.T. 《Solar physics》2003,212(2):407-424
A type IV radio burst accompanied by several normal- and reverse-drifting type III bursts, multiple long-term quasi-periodic pulsations and spikes was observed with the radio spectrometers (1.0–2.0 and 2.6–3.8 GHz) at National Astronomical Observatories of China (NAOC) on 23 September 1998. In combination with the images of Siberian Solar Radio Telescope (SSRT) of Russia, the complex and multiple magnetic structures inferred from the radio bursts reveal the existence of both large-scale and small-scale magnetic structures. This event suggests that the geometries of coronal magnetic fields contain multiple discrete electron acceleration/injection sites at different heights, and extended open and closed magnetic field lines. It can be shown that the energetic electrons gain access to open, diverging and closed field lines thus producing different types of radio bursts. From the characteristics of position, polarization, dispersion and displacement of the sources, the model of the type IV event is supported, which involves synchrotron emission from the electrons confined by the rapid scattering through the interaction of hydromagnetic wave with particles.  相似文献   

3.
1998年9月23 日复杂太阳爆发射电联合观测的初步分析   总被引:1,自引:1,他引:0  
利用北京天文台1998.09.23日1-2GHz和2.6-3.8GHz频谱仪观测到的一个Ⅲ-Ⅳ型复杂大爆发,结合俄罗斯SSRT和德国分米-米波动态频谱仪的观测资料,进行了初步的比对分析,拓展了关于日冕电子加速和日冕磁结构方面的一些研究内容,简单地注释了一些可研究的现象和运动Ⅳ型爆发及多重脉动的辐射机制。  相似文献   

4.
We have proposed a mechanism of arise of transient magnetic disturbances from solar flare explosion which can lead to understanding of observed pulsations of type IV radio emission with period of 0.3–3.0 s. According to the proposed mechanism the pulsation activity of the radio emission results from MHD waves accompanying the expanding diamagnetic plasma produced by the explosive flare material.  相似文献   

5.
Type IV radio bursts with wide band from microwave to metric-wave frequency are generally associated with solar proton flares. Recently, Castelli et al. (1967, 1968) have shown that the type IV radio bursts associated with solar proton flares show the U-shaped peak flux spectra with the minimum flux at decimetric frequencies. In this paper, the center-to-limb variation of such peak flux spectra is investigated in order to examine the effect of decrease of the peak flux at metric frequencies with increase of the angular distance from the central meridian of the Sun. It is shown that the U-shaped spectra are obtained independent of the position of proton flares, although the spectral form changes significantly in the case of the flares near the limb. It is further suggested that the U-shaped spectra consist of the two essentially independent components for microwave and metric-wave frequencies, respectively.  相似文献   

6.
A. Krüger 《Solar physics》1972,27(1):217-226
The slowly varying solar radio and X-ray emissions are considered theoretically and statistically concerning their significance as potential indicators of energy storage processes in active regions leading to large flare-burst events. A correlation analysis has been carried out in order to test different global emission parameters accessable by daily routine measurements regarding their connection with type IV bursts and proton flares. From all investigated quantities systematically best (though not very high) correlations have been verified for both the 3 cm radio and 0–8 Å X-ray fluxes. Increasing correlation coefficients resulted for running averages indicating possible storage processes over several days.There is some evidence favouring the assumption of a small contribution of nonthermal processes to the spectrum of the S-component at burst-active periods which possibly lead to the development of flare-burst instabilities.  相似文献   

7.
The investigation of solar radio emission fluctuations at the wavelength - 3 cm led to the discovery of a visible increase in pulsations with periods of about 30–120 min prior to proton flares. These pulsations were observed before all (seven) proton flares included in our cycle of observations from 1969 to 1974. The phenomenon was not found to occur before non-proton flares. The assumption is made that the observed pulsations are a manifestation of pre-flare instability in coronal structures. Estimations have been made for fluctuations of the gyro-resonance radiation from the regions above spots associated with the magnetic field variations when a groove instability of a coronal condensation is developed. They are in good agreement with the observational data. The discovered manifestation of the pre-flare instability in fluctuations of the solar radio emission open new ways to study the flare development and to predict geo-effective phenomena on the Sun.  相似文献   

8.
An hypothesis on the interference origin of millisecond pulsations of solar-burst microwave radio emissions based on the fact that the signal scintillation appears as a result of radio-wave propagation through an inhomogeneous turbulent corona is considered. It is shown that the time profile of pulsations depends on the phase difference of interfering waves and can either look like pulses of “emission” and “absorption” or it can have a sawtooth form with slow buildup and fast drop. The observed properties of pulsations were compared with predictions of this model; this comparison showed that the formation of pulsations and their observed properties are satisfactorily explained by multipath propagation, which takes place at traversal of the coronal plasma by radio waves.  相似文献   

9.
This paper discusses the relationship between some characteristics of microwave type IV radio bursts and solar cosmic ray protons of MeV energy. It is shown that the peak flux intensity of those bursts is almost linearly correlated with the MeV proton peak flux observed by satellites near the Earth and that protons and electrons would be accelerated simultaneously by a similar mechanism during the explosive phase of solar flares.Brief discussion is given on the propagation of solar cosmic rays in the solar envelope after ejection from the flare regions.  相似文献   

10.
This work investigates the spatial relation between coronal X-ray sources and coherent radio emissions, both generally thought to be signatures of particle acceleration. Two limb events were selected during which the radio emission was well correlated in time with hard X-rays. The radio emissions were of the type of decimetric pulsations as determined from the spectrogram observed by Phoenix-2 of ETH Zurich. The radio positions were measured from observations with the Nançay Radioheliograph between 236 and 432 MHz and compared to the position of the coronal X-ray source imaged with RHESSI. The radio pulsations originated at least 30?–?240 Mm above the coronal hard X-ray source. The altitude of the radio emission increases generally with lower frequency. The average positions at different frequencies are on a line pointing approximately to the coronal hard X-ray source. Thus, the pulsations cannot be caused by electrons trapped in the flare loops, but are consistent with emission from a current sheet above the coronal source.  相似文献   

11.
Maxwell  A.  Rinehart  R. 《Solar physics》1974,37(2):437-442

The dynamic radio spectrum of the class 3B solar flare of 1972, August 7, 15: 00 UT, over the band 10 to 2000 MHz is examined. Type II and type IV bursts in the spectrum are interpreted in terms of a piston-driven shock, which appeared to be travelling at a velocity of about 1500 km s?1 and which generated pulsations in the band 100 to 200 MHz as it passed through the corona. The progress of the shock through the interplanetary plasma was subsequently monitored by Malitson et al. with radio equipment covering the band 0.03 to 2.6 MHz on the IMP-6 satellite.

  相似文献   

12.
Wang  M.  Xie  R. X. 《Solar physics》1997,176(1):171-179
Long-periodic pulsations with a period of tens of seconds associated with a Type IV solar radio emission are found at 1420 and 2000 MHz. Some features (such as the bandwidth, periodicity, frequency drift, amplitude, and relative amplitude) of the pulsations are introduced and discussed in this paper.  相似文献   

13.
《New Astronomy》2003,8(3):213-229
A flare-CME event on April 15, 1998 is studied with data of Nobeyama Radio Polarimeters (NoRP) and Heliograph (NoRH), the radio spectrometers of Chinese National Astronomical Observatories (1.0–2.0 GHz and 2.6–2.8 GHz), and the Astrophysical Institute of Postdam (200–800 MHz), as well as the data of YOHKOH, SOHO, BATSE, and GOES. There were strong fluctuations superposed on the initial phase of the BATSE hard X-ray burst, and the radio burst at 1.0–2.0 GHz with a group of type III-like positive and negative frequency drift pairs, which may be interpreted as the process of magnetic reconnection or particle acceleration in corona. A type II-like burst with a series of pulsations at 200–800 MHz followed the maximum phase of the radio and hard X-ray burst, and slowly drifted to lower frequencies with typical zebra feature. After 10 min of that, a similar dynamic spectrum was recorded at 2.6–3.8 GHz, where the type II-like signal drifted to higher frequencies with a series of pulsations and zebra structures. The polarization sense was strongly RCP at 2.6–3.8 GHz, and weakly LCP at 1.0–2.0 GHz, which was confirmed by the observations of NoRP. The radiation mechanism of these pulsations may be caused by the electron cyclotron maser instability. The local magnetic field strength and source height are estimated based on the gyro-synchrotron second harmonic emission. The ambient plasma density is calculated from the YOHKOH/SXT data. The ratio between the electron plasma frequency and gyro-frequency is around 1.3, which corresponds to the reversal value from extraordinary mode (LCP) to ordinary mode (RCP). Moreover, both the time scale and the modularity of an individual pulse increase statistically with the increase in the burst flux, which may be explained by the acceleration process of non-thermal electrons in the shock wave-fronts propagated upward and downward. Therefore, the radio observations may provide an important signature that flare and CME are triggered simultaneously by magnetic reconnection and are associated with the formation of bi-directional shock waves.  相似文献   

14.
We investigate the relative timing between hard X-ray (HXR) peaks and structures in metric and decimetric radio emissions of solar flares using data from the RHESSI and Phoenix-2 instruments. The radio events under consideration are predominantly classified as type III bursts, decimetric pulsations and patches. The RHESSI data are demodulated using special techniques appropriate for a Phoenix-2 temporal resolution of 0.1 s. The absolute timing accuracy of the two instruments is found to be about 170 ms, and much better on the average. It is found that type III radio groups often coincide with enhanced HXR emission, but only a relatively small fraction (∼20%) of the groups show close correlation on time scales < 1 s. If structures correlate, the HXRs precede the type III emissions in a majority of cases, and by 0.69 ± 0.19 s on the average. Reversed drift type III bursts are also delayed, but high-frequency and harmonic emission is retarded less. The decimetric pulsations and patches (DCIM) have a larger scatter of delays, but do not have a statistically significant sign or an average different from zero. The time delay does not show a center-to-limb variation excluding simple propagation effects. The delay by scattering near the source region is suggested to be the most efficient process on the average for delaying type III radio emission.  相似文献   

15.
High sensitivity, high time resolution recordings of microwave radio bursts show a number of periodic and quasi-periodic bursts which exhibit intervals of the order of 10–20 s. Some of the bursts are accompanied by simultaneous pulsations of the same interval detected in X-rays, type III-m, and extreme ultraviolet emissions. Mechanisms to explain solar radio pulsations are reviewed to see which can explain or be extended to explain these observations.Supported by a company-financed research program of The Aerospace Corporation.  相似文献   

16.
In this paper the solar neutron and white-light flare is studied on the basis of radioastronomical observations. It is shown that the 3 June, 1982 flare had an impulsive character. A strong shock wave (M A 2.9) was observed unusually soon after the impulsive phase of the flare. The radio spectrum of this event shows that the primary acceleration process probably occurred in the region with an electron density of n e = 4.4 × 1015 m–3. The pulsations of the type IV radio burst, observed 15 min after the mass ejection process, manifest the reconnection process in the post-flare stage.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

17.
Using the decimetric (700–1500 MHz) radio spectrometer and the synchronous observational system with high temporal resolution at four frequencies (1420, 2130, 2840 and 4260 MHz) of Yunnan Observatory, two rare events were observed on 2001 June 24 and 1990 July 30. The former was a small radio burst exhibiting pulsations with short periods (about 29, 40 and 100 ms) in the impulsive phase. The latter was a large radio burst, which at 2840 MHz produced radio pulsations with period of about 30 ms. This paper focuses on pulsations with very short periods in the range of 29–40 ms. The mechanism of generation of such pulsations may be modulation of radio radiation by the periodic trains of whistler packets originating in unstable regions of the corona. Alternatively, these pulsations can be attributed to wave-wave non-linear interactions of electrostatic upper hybrid waves driven by beams of precipitating electrons in flaring loops.  相似文献   

18.
We have estimated the proton injection flux from the nuclei of some typical extragalactic radio sources (EGRS). To do so, we have used measured values of radio luminosities from these sources and have assumed the proton-proton collision model as a source of relativistic electrons which give rise to radio emission. The estimated values of the proton flux is in fairly good agreement with theoretical estimates of cosmic-ray fluxes within the same range of energy. This lends support to the fact that the nuclei of EGRSs might be the site for the generation of primary cosmic rays.  相似文献   

19.
ARTEMIS IV Radio Observations of the 14 July 2000 Large Solar Event   总被引:1,自引:0,他引:1  
Caroubalos  C.  Alissandrakis  C.E.  Hillaris  A.  Nindos  A.  Tsitsipis  P.  Moussas  X.  Bougeret  J.-L.  Bouratzis  K.  Dumas  G.  Kanellakis  G.  Kontogeorgos  A.  Maroulis  D.  Patavalis  N.  Perche  C.  Polygiannakis  J.  Preka-Papadema  P. 《Solar physics》2001,204(1-2):165-177
In this report we present a complex metric burst, associated with the 14 July 2000 major solar event, recorded by the ARTEMIS-IV radio spectrograph at Thermopylae. Additional space-borne and Earth-bound observational data are used, in order to identify and analyze the diverse, yet associated, processes during this event. The emission at metric wavelengths consisted of broad-band continua including a moving and a stationary type IV, impulsive bursts and pulsating structures. The principal release of energetic electrons in the corona was 15–20 min after the start of the flare, in a period when the flare emission spread rapidly eastwards and a hard X-ray peak occurred. Backward extrapolation of the CME also puts its origin in the same time interval, however, the uncertainty of the extrapolation does not allow us to associate the CME with any particular radio or X-ray signature. Finally, we present high time and spectral resolution observations of pulsations and fiber bursts, together with a preliminary statistical analysis.  相似文献   

20.
The frequency dependence of the quasi-quantized energy release is reported for the first time in 14 bursts with pulsations of seconds at 1.0, 2.0, 3.75, 9.4, 17, and 35 GHz, observed by the Nobeyama Radio Polarimeters (NoRP). There is a linear correlation between the repetition rate of pulsations and the radio flux during the burst, the so-called R – S relation, at each burst frequency. The slope in the linear fitting, which is equivalent to the energy release in an individual pulse, becomes maximum at a particular frequency around 10 GHz, which can be explained by electrons accelerated in solar flares with maximum energy density around this frequency or coronal height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号