首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Radio emissions of electron beams in the solar corona and interplanetary space are tracers of the underlying magnetic configuration and of its evolution. We analyse radio observations from the Culgoora and WIND/WAVES spectrographs, in combination with SOHO/LASCO and SOHO/MDI data, to understand the origin of a type N burst originating from NOAA AR 10540 on January 20, 2004, and its relationship with type II and type III emissions. All bursts are related to the flares and the CME analysed in a previous paper (Goff et al., 2007). A very unusual feature of this event was a decametric type N burst, where a type III-like burst, drifting towards low frequencies (negative drift), changes drift first to positive, then again to negative. At metre wavelengths, i.e., heliocentric distances ≲1.5R , these bursts are ascribed to electron beams bouncing in a closed loop. Neither U nor N bursts are expected at decametric wavelengths because closed quasi-static loops are not thought to extend to distances ≫1.5R . We take the opportunity of the good multi-instrument coverage of this event to analyse the origin of type N bursts in the high corona. Reconnection of the expanding ejecta with the magnetic structure of a previous CME, launched about 8 hours earlier, injects electrons in the same manner as with type III bursts but into open field lines having a local dip and apex. The latter shape was created by magnetic reconnection between the expanding CME and neighbouring (open) streamer field lines. This particular flux tube shape in the high corona, between 5R and 10R , explains the observed type N burst. Since the required magnetic configuration is only a transient phenomenon formed by reconnection, severe timing and topological constraints are present to form the observed decametric N burst. They are therefore expected to be rare features.  相似文献   

2.
We report on the structure and geometry of coronal magnetic fields inferred from the observations of meter-decimeter type III and moving type IV radio bursts, associated with a Hα flare. This is the first report of type III radio bursts from the Nançay radioheliograph after it acquired the two-dimensional multifrequency capability. Dispersion of the radio source positions with frequency suggests that open and closed field lines are considerably inclined to the radial direction which is consistent with the connectivity observed in the magnetogram. We suggest that multiple arch systems are involved in the type IV emission. From the polarization and dispersion characteristics of the type IV source, we infer that the emission is due to fundamental plasma emission.  相似文献   

3.
Pohjolainen  S. 《Solar physics》2003,213(2):319-339
A series of solar flares was observed near the same location in NOAA active region 8996 on 18–20 May 2000. A detailed analysis of one of these flares is presented where the emitting structures in soft and hard X-rays, EUV, H, and radio at centimeter wavelengths are compared. Hard X-rays and radio emission were observed at two separate loop footpoints, while soft X-rays and EUV emission were observed mainly above the nearby positive polarity region. The flare was confined although the observed type III bursts at the time of the flare maximum indicate that some field lines were open to the corona. No flux emergence was evident but moving magnetic features were observed around the sunspot region and within the positive polarity (plage) region. We suggest that the flaring was due to loop–loop interactions over the positive polarity region, where accelerated electrons gained access to the two separate loop systems. The repeated radio flaring at the footpoint of one loop was visible because of the strong magnetic fields near the large sunspot region while at the footpoint of the other loop the electrons could precipitate and emit in hard X-rays. The simultaneous emission and fluctuations in radio and X-rays – in two different loop ends – further support the idea of a single acceleration site at the loop intersection.  相似文献   

4.
The Generating Region of Bidirectional Electron Beams in the Corona   总被引:1,自引:0,他引:1  
Xie  R.X.  Fu  Q.J.  Wang  M.  Liu  Y.Y. 《Solar physics》2000,197(2):375-385
Metric and decimetric type III bursts and microwave spike emissions with negative and positive frequency drift rates which were observed with radio spectrometers at Yunnan and Beijing Observatories are presented. The frequencies and heights at which the bidirectional electron beams originated are estimated. Three events reveal a separatrix frequency (at 250, 1300, and 2900 MHz) between normal- and reverse-drifting radio bursts, indicating a compact acceleration source where electron beams are injected in both upward and downward directions. These cases may indicate that the changeover frequencies of bidirectional electron beams are within a large band from 250 to 2900 MHz and the frequency bands of separatrices are in very small (4 to 100 MHz) and different bands. These type III bursts appear to be a plasma emission phenomenon from a beam of electrons which seem to have widely separated acceleration regions from the high to the low corona. These cases suggest that current sheets that separate open and closed magnetic fluxes in the low corona, and oppositely directed open field lines in the high corona are possible sites for bidirectional electron acceleration. The regions of magnetic topology from closed to open magnetic field structures should be very large (from about 20000 to 107000 km above the photosphere).  相似文献   

5.
During its flyby of Jupiter in February 1992, the Ulysses spacecraft passed through the Southern Hemisphere dusk-side Jovian magnetosphere, a region not previously explored by spacecraft. Among the new findings in this region were numerous, sometimes periodic, bursts of high energy electrons with energies extending from less than 1.5 MeV to beyond 16 MeV. These bursts were discovered by the High Energy Telescope (HET) and the Kiel Electron Telescope (KET) of the COSPIN Consortium. In this paper we provide a detailed analysis of observations related to the bursts using HET measurements. At the onset of bursts, the intensity of > 16 MeV electrons often rose by a factor of > 100 within 1 min, and multiple, pulsed injections were sometimes observed. The electron energy spectrum also hardened significantly at the onset of a burst. In most bursts anisotropy measurements indicated initial strong outward streaming of electrons along magnetic field lines that connect to the southern polar regions of Jupiter, suggesting that the acceleration and/or injection region for the electrons lies at low altitudes near the South Pole. The initial strong outward anisotropies relaxed to strong field-aligned bidirectional anisotropies later in the events. The bursts sometimes appeared as isolated events, but at other times appeared in quasi-periodic series with a period of 40 min. For smaller events shorter periods of the order 2–3 min were also observed in a few cases. For large events, multiple injections were sometimes observed in the first few minutes of the event. Radio bursts identified by the Ulysses URAP experiment in the frequency range 1–50 kHz were correlated with many of the electron bursts, and comparison of the time-intensity profiles for radio and electrons shows that the radio emission typically started several minutes before the electron intensity increase was observed. For the strongest electron bursts, small increases in the low energy (> 0.3 MeV) proton counting rates were also observed. Using a computerized identification algorithm to pick out bursts from the data record using a consistent set of criteria, 121 events were identified as electron bursts during the outbound pass, compared to only three events that satisfied the same criteria during the inbound pass through the day-side magnetosphere. No similar electron burst events have been found outside the magnetopause. Estimates of the electron content of a typical large burst (> 1027 electrons) suggest that these bursts may make significant contributions to the fluxes of electrons observed in Jupiter's outer magnetosphere, and in interplanetary space.  相似文献   

6.
Solar energetic particles (SEPs) detected in space are statistically associated with flares and coronal mass ejections (CMEs). But it is not clear how these processes actually contribute to the acceleration and transport of the particles. The present work addresses the question why flares accompanied by intense soft X-ray bursts may not produce SEPs detected by observations with the GOES spacecraft. We consider all X-class X-ray bursts between 1996 and 2006 from the western solar hemisphere. 21 out of 69 have no signature in GOES proton intensities above 10 MeV, despite being significant accelerators of electrons, as shown by their radio emission at cm wavelengths. The majority (11/20) has no type III radio bursts from electron beams escaping towards interplanetary space during the impulsive flare phase. Together with other radio properties, this indicates that the electrons accelerated during the impulsive flare phase remain confined in the low corona. This occurs in flares with and without a CME. Although GOES saw no protons above 10 MeV at geosynchronous orbit, energetic particles were detected in some (4/11) confined events at Lagrangian point L1 aboard ACE or SoHO. These events have, besides the confined microwave emission, dm-m wave type II and type IV bursts indicating an independent accelerator in the corona. Three of them are accompanied by CMEs. We conclude that the principal reason why major solar flares in the western hemisphere are not associated with SEPs is the confinement of particles accelerated in the impulsive phase. A coronal shock wave or the restructuring of the magnetically stressed corona, indicated by the type II and IV bursts, can explain the detection of SEPs when flare-accelerated particles do not reach open magnetic field lines. But the mere presence of these radio signatures, especially of a metric type II burst, is not a sufficient condition for a major SEP event.  相似文献   

7.
G. Thejappa 《Solar physics》1987,111(1):45-51
An attempt is made to construct a self-consistent model for type II radio bursts. It is proposed that a majority of the type II shocks are super-critical and the reflected ions from such type II shock fronts are described by the drifted Maxwellian in the upstream and by the Dory-Guest-Harris distribution in the downstream. The low-frequency waves excited by these ions accelerate electrons resonantly along the field lines both in the upstream as well as in the downstream, which are responsible for the lower-frequency and upper-frequency bands in the dynamic spectrum of a type II radio burst. The functional behaviour of the distribution functions of the accelerated electrons is the same in both the cases whereas the number densities of the accelerated electrons in the downstream is smaller than that in the upstream.Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   

8.
We analyze large-scale H-alpha movies of the large spot group of Sept. 13–26, 1963, together with radio, ionospheric and magnetic field data as well as white light pictures. The evolution of the group and associated magnetic fields is followed, and the positions of solar flares relative to the fields are noted, along with their morphology. Although the magnetic field is deformed in time, characteristic field structures may be traced through the deformation as the seat of recurrent homologous flares.We find that most flares are homologous, and some are triggered by disturbances elsewhere in the region. We note events produced by surges falling back to the surface, and one flare initiated by a bright bead seen to fly across the region. In almost every case of an isolated type III radio burst, a corresponding H-alpha brightening could be found, but not all flares produced bursts. Flares close to the sunspots are most likely to produce radio bursts. Flare surface waves in the region all travel out to the west, because of more open magnetic field structure there. In one case (Sept. 25) a wave is turned back by the closed field structure to the east.In almost all cases the time association of radio or ionospheric events is with the beginning of the flare or with the flash phase.Several morphological classes of flares are noted as recurrent types.  相似文献   

9.
We report on the analysis of a fast (>2,000 km/s) CME-driven shock event observed with the UVCS telescope operating aboard SoHO on 23 July 2002. The same shock was also detected in the metric band by several ground-based radiospectrographs. The peculiarity of this event is the presence in the radio spectra of two intense metric type II bursts features drifting at different rates, together with clear shock/related broadenings of the O VI doublet lines observed by UVCS that were found to be temporally associated with the above radio features. The nature of these multiple radio lanes in the metric band is still under debate. One possible explanation is that they are produced by multiple shock waves generated by different ejections or, alternatively, by the flare and the associated CME. Also, emission from the upstream and downstream shock regions can produce split bands. By adopting a plausible CME model, together with a detailed analysis of the white-light, UV, and radio data associated with this event, we are able to conclude that both the radio and the UV shock signatures were produced by a single shock wave surface generated by the expanding CME.  相似文献   

10.
Metric type III solar radio burst positions are compared spatially and temporally to underlying active region geometry. The positions of these radio bursts have an asymmetric location distribution relative to simple bipolar regions. The type III bursts show a tendency to occur nearer the leading active region - an association shown before from type III burst and magnetic field polarity measurements. The type III bursts also generally occur to the left of the outward to inward directed magnetic field. The asymmetry relative to the outward directed magnetic field has a sense that is consistent with a mechanism of type III burst production that involves a pre-existing coronal current system situated between expanding closed and open magnetic field lines.  相似文献   

11.
Kundu  M. R.  Gergely  T. E.  Kane  S. R.  Sawant  H. S. 《Solar physics》1986,103(1):153-164
We present the results of a study of the relationship of a complex meter-decameter wavelength radio burst observed with the Clark Lake E-W and N-S interferometers, with a hard X-ray burst observed with the X-ray spectrometer aboard ISEE-3. The radio burst consisted of several type III's, reverse drift type III's, a U burst, and type II and type IV bursts. The X-ray emission was also complex. The radio as well as hard X-ray emissions were observed before the flash phase of the flare; they were not always associated and we conjecture that this may constitute evidence for acceleration of electrons high in the corona. On the other hand, all components of the reverse drift burst were associated with hard X-ray subpeaks, indicating multiple injection of electron beams along field lines with different density gradients. While the type II burst appeared to be related to the hard X-ray burst, a detailed correspondence between individual features of the radio and hard X-ray burst emissions could not be found. The type IV burst started after all hard X-ray emissions ceased. Its source appeared to be a magnetic arch, presumably containing energetic electrons responsible for the gyrosynchrotron radiation of type IV.Presently at INPE/CRAAM, São Paulo, Brazil.  相似文献   

12.
A high resolution study in time, frequency, position, and intensity was made at 169 MHz and neighbouring frequencies of the solar radio event of 1971, January 14, 11h 20m–30m UT. The event consisted of two closely resembling groups of type III bursts and type II like details.Before, during, and after the outburst a stationary type IV continuum was seen, with small amplitude pulsating structure. The size of the pulsating structure (which was located inside the continuum) was considerably smaller than the continuum size, and in agreement with an explanation by fluctuating magnetic inhomogeneities inside the continuum source.The continuum moved outward after each outburst at a high speed (2–4000 km s–1). After the second event the continuum source returned inward slowly ( 450 km s–1). The outward motion is discussed. It can be explained by a combination of the impact of a fast magnetohydrodynamic shock and the injection of highly energetic particles during the event, the required number being also necessary to account for the observed radio flux. The slow returning motion can be related to mhd restoring of the magnetic field configuration.  相似文献   

13.
The speeds of coronal mass ejection events   总被引:2,自引:0,他引:2  
The outward speeds of mass ejection events observed with the white light coronagraph experiment on Skylab varied over a range extending from less than 100 km s–1 to greater than 1200 km s–1. For all events the average speed within the field of view of the experiment (1.75 to 6 solar radii) was 470 km s–1. Typically, flare associated events (Importance 1 or greater) traveled faster (775 km s–1) than events associated with eruptive prominences (330 km s–1); no flare associated event had a speed less than 360 km s–1, and only one eruptive prominence associated event had a speed greater than 600 km s–1. Speeds versus height profiles for a limited number of events indicate that the leading edges of the ejecta move outward with constant or increasing speeds.Metric wavelength type II and IV radio bursts are associated only with events moving faster than about 400 km s–1; all but two events moving faster than 500 km –1 produced either a type II or IV radio burst or both. This suggests that the characteristic speed with which MHD signals propagate in the lower (1.1 to 3 solar radii) corona, where metric wavelength bursts are generated, is about 400 to 500 km s–1. The fact that the fastest mass ejection events are almost always associated with flares and with metric wavelength type II and IV radio bursts explains why major shock wave disturbances in the solar wind at 1 AU are most often associated with these forms of solar activity rather than with eruptive prominences.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
Willson  Robert F. 《Solar physics》2000,197(2):399-419
Very Large Array (VLA) observations of the Sun at 91 and 400 cm wavelength have been used to investigate the radio signatures of EUV heating events and coronal mass ejections (CMEs) detected by SOHO and TRACE. Our 91 cm observations show the onset of Type I noise storm emission about an hour after an EUV ejection event was detected by EIT and TRACE. The EUV event also coincided with the estimated start time of a CME detected by the LASCO C2 coronagraph, suggesting an association between the production of nonthermal particles and evolving plasma-magnetic field structures at different heights in the corona. On another day, our VLA 400 cm observations reveal weak, impulsive microbursts that occurred sporadically throughout the middle corona. These low-brightness-temperature (T b=0.7–22×106 K) events may be weak Type III bursts produced by beams of nonthermal electrons which excite plasma emission at a height where the local plasma frequency or its first harmonic equals the observing frequency of 74 MHz. For one microburst, the emission was contained in two sources separated by 0.7 R 0, indicating that the electron beams had access to widely-divergent magnetic field lines originating at a common site of particle acceleration. Another 400 cm microburst occurred in an arc-like source lying at the edge of EUV loops that appeared to open outward into the corona, possibly signaling the start of a CME. In most instances the 400 cm microbursts were not accompanied by detectable EUV activity, suggesting that particles that produce the microbursts were independently accelerated in the middle corona, perhaps as the result of some quasi-continuous, large-scale process of energy release.  相似文献   

15.
Ning  Zongjun  Fu  Qijun  Lu  Quankang 《Solar physics》2000,194(1):137-145
We present a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0–2.0 GHz) of the Beijing Astronomical Observatory (BAO). Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. We call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is a nice interpretation of type III burst pair since the plasma beta 0.01 is much less than 1 and the beams have velocity of about 1.07×108 cm s–1 after leaving the reconnection region if we assume that the ambient magnetic field strength is about 100 G.  相似文献   

16.
G. Trottet 《Solar physics》1986,104(1):145-163
Observations relevant to the relative timing of hard X-ray, microwave and lower frequency radio bursts in different phases of flare are reviewed. It is shown that such timing comparisons give important information concerning the electron acceleration/injection process, the magnetic field topology at the acceleration site and the flare development itself. In particular it is shown that acceleration begins before the flash phase of flares and that it keeps going on continuously during the entire duration of a flare. Moreover, despite their wide separation in altitude, hard X-ray, microwave and lower frequency sources appear to arise from a common injection of electrons going on continuously through the different phases of flare. In situ acceleration by shock waves giving rise to type II radio emission is briefly discussed. As an alternative interactions between small and large scale magnetic structures is proposed.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

17.
Huang  G.L.  Wu  H.A.  Grechnev  V.V.  Sych  R.A.  Altyntsev  A.T. 《Solar physics》2003,213(2):341-358
A solar radio burst on 25 August 1999 with fine structures (FS) at 4.5–7.5 GHz is studied in this paper. The FS started about one minute prior to the main burst. The maximum emission took place at 4–5 GHz for the FS, and at 10–11 GHz for the main burst, respectively. The time profiles at 4.5–7.5 GHz coincide very well with those of hard X-rays (from 25 keV to >300 keV) in both the main burst and the FS, which shows that the same population of accelerated electrons is responsible for both the microwave and hard X-ray bursts. The source of FS is 20 arc sec away from the main source close to a compact dipolar magnetic field, which is confirmed by different time and polarization profiles in the FS and main sources. It is interesting that the FS at 4.5–7.5 GHz are associated with a series of twisted magnetic loops or ropes, which may be modulated by Alfvén waves with a period of 1 s and a spatial wavelength of 103 km in respect to the typical Alfvén velocity of 103 km s–1 in corona. These magnetic ropes may be rooted in the dipole site, which extended into the corona during the event and retracted after the event. Therefore, the FS in this event may show an important signature or precursor for energy release. The magnetic reconnection may be triggered by the interaction of the magnetic ropes at the height corresponding to 5–6 GHz, followed by cascaded energy release close to the foot-point of the magnetic ropes.  相似文献   

18.
Solar radio bursts at long wavelengths provide information on solar disturbances such as coronal mass ejections (CMEs) and shocks at the moment of their departure from the Sun. The radio bursts also provide information on the physical properties (density, temperature and magnetic field) of the medium that supports the propagation of the disturbances with a valuable cross-check from direct imaging of the quiet outer corona. The primary objective of this paper is to review some of the past results and highlight recent results obtained from long-wavelength observations. In particular, the discussion will focus on radio phenomena occurring in the outer corona and beyond in relation to those observed in white light. Radio emission from nonthermal electrons confined to closed and open magnetic structures and in large-scale shock fronts will be discussed with particular emphasis on its relevance to solar eruptions. Solar cycle variation of the occurrence rate of shock-related radio bursts will be discussed in comparison with that of interplanetary shocks and solar proton events. Finally, case studies describing the newly-discovered radio signatures of interacting CMEs will be presented.  相似文献   

19.
For the time periods 1979 April 22–May 17 and 1980 May 9–June 10, when the HELIOS spacecraft were located inside 0.5 AU, we compared the antenna temperature T A of the 466 kHz type III bursts measured by the SBH instrument on ISEE 3 with the fluxes of 0.5 MeV electrons measured by HELIOS. For 51 flare-associated kilometric type III bursts (FAIII bursts) with log(T A) > 10 we find: (1) 25 bursts (49%) are accompanied by a relativistic electron event in interplanetary space, (2) the probability for detection of an electron event decreases from more than 74% inside a cone of ± 20 ° to 56% inside a cone of ± 60° around the flare site, (3) there is only a small correlation between the brightness temperature of the radio burst and the size of the electron event, and (4) despite the broad scatter of these values there is a clear indication that for a given size of the relativistic electron event the intensity of the type III burst is about a factor of 5 higher if it is accompanied by a type II burst. These results give evidence (a) that at least part of the relativistic electrons frequently is accelerated together with non-relativistic electrons and (b) that the coronal shock associated with the metric type II burst has a weaker effect on relativistic than on non-relativistic electrons.Now at DFVLR, Oberpfaffenhofen, Germany.  相似文献   

20.
We present the two-dimensional imaging observations of radio bursts in the frequency range 25–50 MHz made with the Clark Lake multifrequency radioheliograph during a coronal mass ejection event (CME) observed on 1984, June 27 by the SMM Coronagraph/Polarimeter and Mauna Loa K-coronameter. The event was spatially and temporally associated with precursors in the form of meter-decameter type III bursts, soft X-ray emission and a H flare spray. The observed type IV emission in association with the CME (and the H spray) could be interpreted as gyrosynchrotron emission from a plasmoid containing a magnetic field of 2.5 G and nonthermal electrons with a number density of 105 cm–3 and energy 350 keV.On leave from Indian Institute of Astrophysics, Kodaikanal, India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号