首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A physical radar cross-section model for a wind-driven sea with swell   总被引:6,自引:0,他引:6  
A new spectrum model for the ocean surface is proposed. We determine the two unknown parameters in this spectrum by fitting it to radar observations. We find that this spectrum combined with two-scale scattering theory can predict much of the observed dependence of the radar cross section on radar frequency, polarization, angle of incidence, and wind velocity at incidence angles in the0deg-70degrange. The spectrum model is combined with a model for swell to examine the effect of swell on the radar cross section. We find that the effect of swell is significant for low radar frequencies (Lband) and near normal incidence but can be nearly eliminated by using higher frequencies (K_{u}band) and large angles of incidence (approx 50deg).  相似文献   

2.
Microwave scattering signatures of the ocean have been measured over a range of surface wind speeds from 3 m/s to 23.6 m/s using the AAFE RADSCAT scatterometer in an aircraft. Normalized scattering coefficients are presented for vertical and horizontal polarizations as a function of incidence angle (nadir to55deg) and radar azimuth angle (0degto360deg) relative to surface wind direction. For a given radar polarization, incidence angle, and azimuth angle relative to the wind direction, these scattering data exhibit a power law dependence on surface wind speed. The relation of the scattering coefficient to azimuth angle obtained during aircraft circles (antenna conical scans) is anisotropic and suggests that microwave scatterometers can be used to infer both wind speed and direction. These results have been used for the design of the Seasat-A Satellite Scatterometer (SASS) to be flown in 1978 on this first NASA oceanographic satellite.  相似文献   

3.
The ability to use radar to discriminate Arctic Sea ice types has been investigated using surface-based and helicopter-borne scatterometer systems. The surface-based FM/CW radar operated at 1.5 GHz and at multiple frequencies in the 8-18-GHz region. Measurements were made at angles of10degto70degfrom nadir. The helicopter-based radar operated at the 8-18-GHz frequencies with incidence angles of0degto60deg. Extensive surface-truth measurements were made at or near the time of backscattar measurement to describe the physical and electrical properties of the polar scene. Measurements in the 8-18-GHz region verify the ability to discriminate multiyear, thick first-year, thin first-year, and pressure-ridged sea ice and lake ice. The lowest frequency, 9 GHz, was found to provide the greatest contrast between these ice categories, with significant levels of separation existing between angles from15degto70deg. The radar cross sections for like antenna polarizations, VV and HH, were very similar in absolute level and angular response. Cross-polarization, VH and HV, provided the greatest contrast between ice types, The 1.5-GHz measurements showed that thick first-year, thin first-year, and multiyear sea ice cannot be distinguished at10degto60degincidence angles with like polarization, VV, by backscatter alone; but that undeformed sea ice can be discriminated from pressure-ridged ice and lake ice. The effect of snow cover on the backscatter from thick first-year ice was also investigated. It contributes on the order of 0 to 4 dB, depending on frequency and incidence angle; the contribution of the snow layer increased with increasing frequency. Snow cover on smooth lake ice was found to be a major backscatter mechanism. Summer measurements demonstrate the inability to extend the knowledge of the backscatter from sea ice under spring conditions to all seasons.  相似文献   

4.
A joint airborne measurement program is being pursued by NRL and NASA Wallops Flight Center to determine the extent to which wind speed and sea surface significant wave height (SWH) can be measured quantitatively and remotely with a short pulse (2 ns), wide-beam (60deg), nadir-looking 3-cm radar. The concept involves relative power measurements only and does not need a scanning antenna, doppler filters, or absolute power calibration. The slopes of the leading and trailing edges of the averaged received power for the pulse limited altimeter are used to infer SWH and surface wind speed. The interpretation is based on theoretical models of the effects of SWH on the leading edge shape and rms sea-surface slope on the trailing-edge shape. The models include the radar system parameters of antenna beam width and pulsewidth. Preliminary experimental results look promising and indicate that it may be possible to design a relatively compact airborne radar to infer, in real-time, the sea surface SWH and surface wind speed.  相似文献   

5.
Second-order features in HF radar Doppler spectral data are compared with a theoretical model of the radar spectrum. The model is the corner reflector double-scatter model which employs a more realistic directional sea spectrum model than those used in earlier works. It includes a frequency-dependent angular spreading function and assumes the existence of spectral energy over a full360degarising from an apparent second-order wave-wave interaction. Comparison is made with ground wave data collected at the NRL/NOAA/ITS San Clemente Island HF radar.  相似文献   

6.
The ideal scatterometer, operating from either an aircraft or a satellite platform, should be capable of making rapid, accurate estimates of the sea backscatter cross sectionsigmaover as wide a range of grazing anglespsias possible. Efficient operation over a large range of grazing angles is desirable because 1)sigmabehavior for90deg geq psi geq 70degyields rms gravity wave slope information and is an indicator of sea state and 2)sigmabehavior for70deg geq psi geq 0degyields data on surface wind magnitude and direction as well as information about the power spectrum of the sea. A "hybrid" estimation procedure has been developed for pulse compression radars which uses both frequency and spatially decorrelated samples ofsigmato provide an unbiased estimate ofsigmahaving minimum variance over the entire range of grazing angles for which radar reception is not noise-limited.  相似文献   

7.
In September 1979, the radar scattering coefficient (sigmadeg) was measured at platform Noordwijk in the North Sea 10 km off the Dutch coast. This was done in conjunction with similar measurements by Dutch and French investigators as part of Project MARSEN (Marine Remote Sensing). Our measurements were made with vertical and horizontal polarizations, in the frequency baud 9-17 GHz, at incidence angles0deg - 70deg, with wind speeds from 2-22 m/s, and look directions upwind, downwind, and crosswind. This paper presents the scattering-coefficient variation with these radar and ocean parameters. In particular, the exponents for the windspeed response are compared with those from other investigators. Some of the exponents reported here are higher than reported previously, possibly because orthogonal regression was used rather than regression ofsigmadegversus windspeed.  相似文献   

8.
A model for computing microwave emissivity of a wind-driven foam-covered sea is presented. The effect of roughness and foam is modeled by combining early measurement results and theoretical analysis. Recent Seasat-SMMR measurements are used to fine tune the model and derive an "effective" fractional foam coverage expression in terms of frequency and wind speed. The model incorporates polarization characterization and view angle dependence of the foam-cover emissivity. For48.8degincidence angle and wind speed less than 15 m/s, the emissivity values calculated from this model differs by <8 percent from those calculated from Wilheit's model. At nadir and at 25 m/s wind speed, the emissivity calculated from the two models differ bysim15percent.  相似文献   

9.
Radar backscatter measurements from the ocean were made at 13.9 GHz from Skylab. The radar signal increased rapidly with wind speed over the entire range of winds encountered, and for angles of incidence of30degand larger. Signals observed were normalized to a nominal incidence angle (from values withinpm2degof the nominal) and to a nominal upwind observation direction, using a theoretical model that has been verified as approximately true with aircraft experiments. The wind speed was regressed against the resulting scattering coefficientssigma^{0}and the values ofbetain windpropto sigma^{0beta}were obtained for incident angles of1deg , 17deg , 32deg , 43deg,and50deg, and for vertical, horizontal, and cross polarizations. For the three larger angles,betavaries from 0.3 to 0.6. Observations during the summer and winter Skylab missions were treated separately because of possible differences caused by an accident to the antenna between the two sets of observations. The results are in general agreement with the theory [26] in all cases, with the winter and cross-polarized agreement somewhat better than that for summer like-polarized data. The "objective analysis" method used for determining "surface-truth" winds in the Skylab experiment was tested by comparing results obtained at weather ships (using all other ship reports to produce the analysis) with the observations made by the weather ships themselves. In most cases, the variance about the regression line between objective analysis and weather-ship data actually exceeded that about the regression line between objective analysis and backscattcr data!  相似文献   

10.
This paper describes the first reported high-resolution remote measurements of sea-ice velocities during the summer Arctic pack-ice breakup, made with a high-frequency (HF) radar system (CODAR, for Coastal Ocean Dynamics Applications Radar) located on Cross Island, Alaska. Each 36-min observation also gives the positions of the ice edge, the moving ice, and the open water, with an azimuthal and distance resolution of5degand 1.2 km, respectively, to a range of 15 km. The statistical uncertainties in speed are typically 2-4 cm/s. The ice breakup was observed over a two-day period starting with low ice velocity and no open water and ending with ice and current velocities of approximately 40 cm/s. The position of the ice edge is verified by a simultaneous synthetic aperture radar (SAR) image. To compare the ice, current, and wind velocities, a uniform velocity model was fitted to the measurements of radial velocity. The speed of both ice and current under free drift conditions was found to lie between 2 and 5 percent of the wind speed and the direction within20degof the wind direction.  相似文献   

11.
The ratiosZ_{K,t}of electrical conductivities of potassium chloride (KCI) solutions of known concentration (K) to standard seawater at the same temperature have been measured at15degC and24degC for solutions withZ_{k,15}between 0.96 and 1.04. The "normal" concentration (N or K_{N}) givingZ_{N,15}= 1was found to beK_{N} = 32.4356gKCI/kg solution. The effect of temperature onZ_{N,t}was measured over the range15degC to30degC. Equations are given for KCI concentration as a function ofZ_{15}and the inverse function, forZ_{15}/Z_{24}as a function ofZ_{24}(to allow use of a laboratory salinometer for the KCI-seawater comparisons), andZ_{N,t}as a function of temperature.  相似文献   

12.
Mapping wind with high-frequency(HF) radar is still a challenge. The existing second-order spectrum based wind speed extraction method has the problems of short detection distances and low angular resolution for broad-beam HF radar. To solve these problems, we turn to the first-order Bragg spectrum power and propose a space recursion method to map surface wind. One month of radar and buoy data are processed to build a wind spreading function model and a first-order spectrum power model describing the relationship between the maximum of first-order spectrum power and wind speed in different sea states. Based on the theoretical propagation attenuation model, the propagation attenuation is calculated approximately by the wind speed in the previous range cell to compensate for the first-order spectrum in the current range-azimuth cell. By using the compensated first-order spectrum, the final wind speed is extracted in each cell. The first-order spectrum and wind spreading function models are tested using one month of buoy data, which illustrates the applicability of the two models. The final wind vector map demonstrates the potential of the method.  相似文献   

13.
14.
The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) data in the coastal waters near Hong Kong during a period from October 2005 to July 2007. The retrieved wind speeds are evaluated by comparing with buoy measurements and the QuikSCAT (quick scatterometer) wind products. The results show that the CMOD4 model gives the best performance at wind speeds lower than 15 m/s. The correlation coefficients with buoy and QuikSCAT winds are 0.781 and 0.896, respectively. The root mean square errors are the same 1.74 m/s. Namely, the CMOD4 model is the best one for sea surface wind speed retrieval from ASAR data in the coastal waters near Hong Kong.  相似文献   

15.
A formulation is presented for evaluating the performance of acoustic data systems to determine the location and orientation of underwater research apparatus. The variables to describe the position of the underwater research apparatus are referenced to a surface ship, and represent the straight-line distance from the stern of the ship to a point on the apparatus (R), the angular distance down from the sea surface (Phi), and the angular distance from the direction of motion of the ship (Theta). The three orientation variables on the apparatus are the angle between thezandz'axes (i), the angle between thexandx'axes in thex'-y'plane (Omega), and the angle which locates thex'axis in thex'-y'plane (omega). A simple model for the sound velocity variation with depth is included in the range data analysis, while the Doppler data are shown not to need that further complication in the analysis. An error model is constructed and applied to three geometries which represent common underwater research devices. Accuracy goals for possible applications of these devices are discussed, and performance requirements for an acoustic system which would meet the goals are derived.  相似文献   

16.
This paper treats the fabrication problems and test results of an acoustic lens built in accordance with the acoustic design presented in an accompanying paper. Specific areas covered include the selection of the internal fluid, the window, construction of the case, sound-absorbing lining, and acoustic test results. With a SOAB sound-absorbing lining, the lens model worked well, giving horizontal beamwidths of6degand vertical widths of30deg. There is still a problem of compatibility between the SOAB and the Freon TF lens fluid selected.  相似文献   

17.
海洋微波散射模型相比于以经验统计建立的地球物理模式函数具有不受特定微波频率限制的优势。组合布拉格散射模型和几何光学模型形成了复合雷达后向散射模型。利用南海北部气象浮标2014年海面风速风向实测值作为散射模型输入,分别比较了复合雷达后向散射模型与RADARSAT-2卫星C波段SAR、HY-2A卫星Ku波段微波散射计的海面后向散射系数,偏差分别为(?0.22±1.88) dB (SAR)、(0.33±2.71) dB (散射计VV极化)和(?1.35±2.88) dB (散射计HH极化);以美国浮标数据中心(NDBC)浮标2011年10月1日至2014年9月30日共3年的海面风速、风向实测值作为散射模型输入,分别比较了复合雷达后向散射模型与Jason-2、HY-2A卫星Ku波段高度计海面后向散射系数,偏差分别为(1.01±1.15) dB和(1.12±1.29) dB。中等入射角和垂直入射下的卫星传感器后向散射系数观测值与复合雷达后向散射模型模拟值比较,具有不同的偏差,但具有相同的海面风速检验精度,均方根误差小于1.71 m/s。结果表明,复合雷达后向散射模型可模拟计算星载SAR、散射计和高度计观测条件下的海面雷达后向散射系数,且与CMOD5、NSCAT-2、高度计业务化海面风速反演的地球物理模式函数的计算结果具有一致性;复合雷达后向散射模型可用于微波遥感器的定标与检验、海面雷达后向散射的模拟。  相似文献   

18.
本文利用角动量模式计算获得高风速资料,并通过气象观测站实测资料验证了风速资料的准确性,并将所得风速应用于Jason-1高度计风速反演模式函数研究,得到了一个新的风速反演模式函数。研究结果表明,本文提出的模式函数能更好地反映台风经过时海表面风速情况,实现了高度计对高风速(10~40 m/s)的反演,可作为Jason-1高度计风速反演业务化算法在高风速情况下的补充,以提高高度计风速反演精度。  相似文献   

19.
The absolute electrical conductivity at15degC of several lots of standard seawater has been measured with great precision as a function of chlorinity. Potassium chloride (KCI) solutions of known concentration and having almost the same conductivity were also measured and the concentration giving the same conductivity at15degC as35.0000permilstandard seawater (Chl =19.37394permil) was found to be 32.4352 g/kg.  相似文献   

20.
This study represents an attempt to quantitatively assess the capability of a spaceborne radar altimeter to infer ocean surface wind speeds from a measurement of the backscattered power at vertical incidence. The study uses data acquired during 184 near overflights of NOAA data buoys with the GEOS-3 satellite radar altimeter and encompasses a wind-speed range from less than 1 to 18 m/s. An algorithm is derived from the data comparison for converting measurements of the normalized scattering cross section of the ocean surface at 13.9 GHz into estimates of the surface wind speed at the standard anemometer height of 10 m. The algorithm is straightforward and potentially useful for on-board processing of raw altimeter data for the purpose of providing real-time estimates of surface wind speed. For winds in the range of 1 to 18 m/s, the mean difference between the altimeter-inferred winds and the buoy measurements is negligible while the standard deviation of the difference is 1.74 m/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号