首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A semi-empirical sea-spectrum model for scattering coefficient estimation   总被引:2,自引:0,他引:2  
A semi-empirical sea-spectrum model is proposed to be used in a two-scale radar sea scatter model to obtain estimates of radar backscatter over the frequency bandsLtoKu, the incidence angular range20deg-65deg, the azimuth angular range0deg-180degfrom the wind direction and wind speed range 3.5-30 m/s at 19.5 m above the mean sea level. It is shown that the theoretical estimates obtained are consistent with the existing measurements.  相似文献   

2.
Radar backscatter measurements from the ocean were made at 13.9 GHz from Skylab. The radar signal increased rapidly with wind speed over the entire range of winds encountered, and for angles of incidence of30degand larger. Signals observed were normalized to a nominal incidence angle (from values withinpm2degof the nominal) and to a nominal upwind observation direction, using a theoretical model that has been verified as approximately true with aircraft experiments. The wind speed was regressed against the resulting scattering coefficientssigma^{0}and the values ofbetain windpropto sigma^{0beta}were obtained for incident angles of1deg , 17deg , 32deg , 43deg,and50deg, and for vertical, horizontal, and cross polarizations. For the three larger angles,betavaries from 0.3 to 0.6. Observations during the summer and winter Skylab missions were treated separately because of possible differences caused by an accident to the antenna between the two sets of observations. The results are in general agreement with the theory [26] in all cases, with the winter and cross-polarized agreement somewhat better than that for summer like-polarized data. The "objective analysis" method used for determining "surface-truth" winds in the Skylab experiment was tested by comparing results obtained at weather ships (using all other ship reports to produce the analysis) with the observations made by the weather ships themselves. In most cases, the variance about the regression line between objective analysis and weather-ship data actually exceeded that about the regression line between objective analysis and backscattcr data!  相似文献   

3.
A physical radar cross-section model for a wind-driven sea with swell   总被引:6,自引:0,他引:6  
A new spectrum model for the ocean surface is proposed. We determine the two unknown parameters in this spectrum by fitting it to radar observations. We find that this spectrum combined with two-scale scattering theory can predict much of the observed dependence of the radar cross section on radar frequency, polarization, angle of incidence, and wind velocity at incidence angles in the0deg-70degrange. The spectrum model is combined with a model for swell to examine the effect of swell on the radar cross section. We find that the effect of swell is significant for low radar frequencies (Lband) and near normal incidence but can be nearly eliminated by using higher frequencies (K_{u}band) and large angles of incidence (approx 50deg).  相似文献   

4.
5.
About 10 years ago, the advanced application flight experiment radiometer scatterometer (AAFE RADSCAT) made its first successful measurements of ocean radar scattering cross section from a NASA C-130 aircraft. This instrument was developed as a research tool to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind-speed information at the ocean's surface. The AAFE RADSCAT flight missions and analyses helped establish the feasibility of the satellite scatterometer for measuring both wind speed and direction. Probably the most important function of the AAFE RADSCAT was to provide a data base of ocean normalized radar cross-section (NRCS) measurements as a function of the surface wind vector at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions from 1973 to 1977. Presented herein are analyses of data from the 26 RADSCAT flights during which the quality of the sensor and the surface wind measurements were felt to be understood. Subsets of this data base were used to model the relationship between theKu-band radar signature and the ocean-surface wind vector. The models developed partly from portions of this data base, supplemented with data from the Seasat (JASIN Report), were used for inversion of the Seasat-A Satellite Scatterometer (SASS) radar measurements to vector winds. This paper summarizes results from a comprehensive analysis of the RADSCAT/ocean wind signature deduced from this complete data set.  相似文献   

6.
In September 1979, the radar scattering coefficient (sigmadeg) was measured at platform Noordwijk in the North Sea 10 km off the Dutch coast. This was done in conjunction with similar measurements by Dutch and French investigators as part of Project MARSEN (Marine Remote Sensing). Our measurements were made with vertical and horizontal polarizations, in the frequency baud 9-17 GHz, at incidence angles0deg - 70deg, with wind speeds from 2-22 m/s, and look directions upwind, downwind, and crosswind. This paper presents the scattering-coefficient variation with these radar and ocean parameters. In particular, the exponents for the windspeed response are compared with those from other investigators. Some of the exponents reported here are higher than reported previously, possibly because orthogonal regression was used rather than regression ofsigmadegversus windspeed.  相似文献   

7.
A joint airborne measurement program is being pursued by NRL and NASA Wallops Flight Center to determine the extent to which wind speed and sea surface significant wave height (SWH) can be measured quantitatively and remotely with a short pulse (2 ns), wide-beam (60deg), nadir-looking 3-cm radar. The concept involves relative power measurements only and does not need a scanning antenna, doppler filters, or absolute power calibration. The slopes of the leading and trailing edges of the averaged received power for the pulse limited altimeter are used to infer SWH and surface wind speed. The interpretation is based on theoretical models of the effects of SWH on the leading edge shape and rms sea-surface slope on the trailing-edge shape. The models include the radar system parameters of antenna beam width and pulsewidth. Preliminary experimental results look promising and indicate that it may be possible to design a relatively compact airborne radar to infer, in real-time, the sea surface SWH and surface wind speed.  相似文献   

8.
本文选取142幅RADARSAT-2全极化合成孔径雷达(SAR)影像,在没有入射角输入的情况下,首先利用C-2PO模型进行海面风速反演。随后,将同一时空下的ASCAT散射计风向作为初始风向,提取相应雷达入射角,利用地球物理模式函数(GMF) CMOD5.N对142幅SAR影像进行风速计算。反演结果与美国国家资料浮标中心海洋浮标风速数据对比,结果显示:CMOD5.N GMF和C-2PO模型均可反演出较高精确度的海面风速,其均方根误差分别为1.68 m/s和1.74 m/s。此外,研究发现,在低风速段,CMOD5.N GMF的风速反演精度要明显优于C-2PO模型。针对这一现象,本文以SAR系统成像机理为基础,以低风速SAR图像为具体案例,给出了3种造成这一现象的原因。  相似文献   

9.
For Pt. I see ibid. vol. 26, pp. 181-200 (2001). This paper describes the results of experimental investigations into the microwave backscatter from mechanically generated transient breaking waves. The investigations were carried out in a 110 m×7.6 m×4 m deep model basin, utilizing chirped wave packets spanning 0.75-1.75 Hz. Backscatter measurements were taken by a K-band continuous wave radar (24.125 GHz) at 40° angle of incidence, and at azimuth angles of 0°, 45°, 90°, 135° and 180° relative to the direction of wave propagation. Grazing measurements were conducted using an X-band (10.525 GHz) FMCW radar at 85° angle of incidence, and azimuth angles of 0° and 180°. Results show that the maximum radar backscatter was obtained in the upwave direction prior to wave breaking and was caused by the specular or near specular presentation of the wave to the radar. After breaking, the backscatter transitioned from a specular or near-specular dominated scattering, primarily seen in the upwave direction, to a small scale roughness dominated scattering, observed at all azimuths. Physical optics solutions were found to correctly predict the backscatter for the specular or near-specular dominated scattering and the small perturbation method was found to accurately model the VV polarization post-break radar backscatter  相似文献   

10.
This paper describes the first reported high-resolution remote measurements of sea-ice velocities during the summer Arctic pack-ice breakup, made with a high-frequency (HF) radar system (CODAR, for Coastal Ocean Dynamics Applications Radar) located on Cross Island, Alaska. Each 36-min observation also gives the positions of the ice edge, the moving ice, and the open water, with an azimuthal and distance resolution of5degand 1.2 km, respectively, to a range of 15 km. The statistical uncertainties in speed are typically 2-4 cm/s. The ice breakup was observed over a two-day period starting with low ice velocity and no open water and ending with ice and current velocities of approximately 40 cm/s. The position of the ice edge is verified by a simultaneous synthetic aperture radar (SAR) image. To compare the ice, current, and wind velocities, a uniform velocity model was fitted to the measurements of radial velocity. The speed of both ice and current under free drift conditions was found to lie between 2 and 5 percent of the wind speed and the direction within20degof the wind direction.  相似文献   

11.
The ability to use radar to discriminate Arctic Sea ice types has been investigated using surface-based and helicopter-borne scatterometer systems. The surface-based FM/CW radar operated at 1.5 GHz and at multiple frequencies in the 8-18-GHz region. Measurements were made at angles of10degto70degfrom nadir. The helicopter-based radar operated at the 8-18-GHz frequencies with incidence angles of0degto60deg. Extensive surface-truth measurements were made at or near the time of backscattar measurement to describe the physical and electrical properties of the polar scene. Measurements in the 8-18-GHz region verify the ability to discriminate multiyear, thick first-year, thin first-year, and pressure-ridged sea ice and lake ice. The lowest frequency, 9 GHz, was found to provide the greatest contrast between these ice categories, with significant levels of separation existing between angles from15degto70deg. The radar cross sections for like antenna polarizations, VV and HH, were very similar in absolute level and angular response. Cross-polarization, VH and HV, provided the greatest contrast between ice types, The 1.5-GHz measurements showed that thick first-year, thin first-year, and multiyear sea ice cannot be distinguished at10degto60degincidence angles with like polarization, VV, by backscatter alone; but that undeformed sea ice can be discriminated from pressure-ridged ice and lake ice. The effect of snow cover on the backscatter from thick first-year ice was also investigated. It contributes on the order of 0 to 4 dB, depending on frequency and incidence angle; the contribution of the snow layer increased with increasing frequency. Snow cover on smooth lake ice was found to be a major backscatter mechanism. Summer measurements demonstrate the inability to extend the knowledge of the backscatter from sea ice under spring conditions to all seasons.  相似文献   

12.
The ideal scatterometer, operating from either an aircraft or a satellite platform, should be capable of making rapid, accurate estimates of the sea backscatter cross sectionsigmaover as wide a range of grazing anglespsias possible. Efficient operation over a large range of grazing angles is desirable because 1)sigmabehavior for90deg geq psi geq 70degyields rms gravity wave slope information and is an indicator of sea state and 2)sigmabehavior for70deg geq psi geq 0degyields data on surface wind magnitude and direction as well as information about the power spectrum of the sea. A "hybrid" estimation procedure has been developed for pulse compression radars which uses both frequency and spatially decorrelated samples ofsigmato provide an unbiased estimate ofsigmahaving minimum variance over the entire range of grazing angles for which radar reception is not noise-limited.  相似文献   

13.
This study represents an attempt to quantitatively assess the capability of a spaceborne radar altimeter to infer ocean surface wind speeds from a measurement of the backscattered power at vertical incidence. The study uses data acquired during 184 near overflights of NOAA data buoys with the GEOS-3 satellite radar altimeter and encompasses a wind-speed range from less than 1 to 18 m/s. An algorithm is derived from the data comparison for converting measurements of the normalized scattering cross section of the ocean surface at 13.9 GHz into estimates of the surface wind speed at the standard anemometer height of 10 m. The algorithm is straightforward and potentially useful for on-board processing of raw altimeter data for the purpose of providing real-time estimates of surface wind speed. For winds in the range of 1 to 18 m/s, the mean difference between the altimeter-inferred winds and the buoy measurements is negligible while the standard deviation of the difference is 1.74 m/s.  相似文献   

14.
为了解各向异性随机粗糙海面的微波双站散射机制及其特性,本文利用解析近似的积分方程模型以及一种改进的半经验海浪谱模型实现了对各向异性随机粗糙海面的全极化微波散射仿真模拟,并与卫星观测数据、经验的地球物理模式函数及已有的解析近似散射模型仿真结果进行了对比,验证了仿真结果的可行性和准确性。利用该模型分析了入射波频率、入射角、极化方式、海面风速及风向等参数对各向异性海面双站散射的影响。模拟结果表明,在不同的入射角、散射角及方位角等观测几何条件下,海面不同波段的双站散射表现出不同的空间散射特性,且对风速、风向等海面动力学参数表现出不同的敏感性,以L波段为例,海面向后半球双站散射在各个极化方式下都对风速较为敏感,而在同极化方式下,其对风向的响应在中低风速和高风速条件下相反,整体而言,低风速下海面双站散射对风向更为敏感。这表明对于海面动力参数的反演,双站散射可以提供比传统单站雷达后向散射更丰富的物理信息。本文探讨了各向异性海面微波双站散射特性,为基于主动式及分布式微波传感器的海洋动力参数遥感反演提供了理论分析基础。  相似文献   

15.
OSMAR-S系列便携式高频地波雷达系统采用单极子/交叉环紧凑型天线阵,通过单站雷达即可实现有效探测距离约10km内海浪和海面风的单点观测。为了更好地了解OSMAR-S100雷达系统海浪和海面风的综合探测性能,于2013年1月29日至3月7日在台湾海峡西南部海域进行了雷达与浮标观测的对比试验,得到了有效波高、有效波周期、平均风速和平均风向数据。对比结果表明,OSMAR-S100便携式高频地波雷达可有效观测距雷达10km以内有效波高0.5m以上的海浪平均状况和平均风速5m/s以上的海面风,雷达反演有效波高和有效波周期的均方根误差分别为0.60m和1.60s,反演平均风速和平均风向的均方根误差为1.83m/s和16.7°。在未经区域化标定的情况下,此结果说明了该型雷达产品已初步具备了海浪和海面风的业务化观测水平。  相似文献   

16.
The SeaSat-A satellite scatterometer   总被引:1,自引:0,他引:1  
This paper describes the methods used to develop performance requirements and design characteristics for the microwave scatterometer (SASS) ocean-surface wind sensor on the NASA SeaSat-A satellite. Wind vector measurement requirements from the SeaSat user community such as wind speed and direction accuracy, resolution cell size, grid spacing, and swath width formed the basis for defining instrument characteristics. The resulting scatterometer is designed for 14.6 GHz using four fan beam antennas to measure wind speed and direction over a 1000-km swath width with a resolution cell size50 times 50km. Results presented show scatterometer accuracy satisfies user requirements for wind speed from 4 m/s to greater than 24 m/s for the nominal SeaSat-A orbit of 790 km altitude,108deginclination, and 0.001 eccentricity.  相似文献   

17.
A model for computing microwave emissivity of a wind-driven foam-covered sea is presented. The effect of roughness and foam is modeled by combining early measurement results and theoretical analysis. Recent Seasat-SMMR measurements are used to fine tune the model and derive an "effective" fractional foam coverage expression in terms of frequency and wind speed. The model incorporates polarization characterization and view angle dependence of the foam-cover emissivity. For48.8degincidence angle and wind speed less than 15 m/s, the emissivity values calculated from this model differs by <8 percent from those calculated from Wilheit's model. At nadir and at 25 m/s wind speed, the emissivity calculated from the two models differ bysim15percent.  相似文献   

18.
田炜  任新成  黄保瑞 《海洋通报》2011,30(2):227-233
运用微扰法研究了平面电磁波入射随机粗糙面的电磁散射问题,得到了具有A.K.Fung海谱的粗糙海面散射截面的数学表达式,进一步得出了不同极化状态下散射系数的计算公式.通过数值计算得到了双站和单站两种情形下散射系数随散射角、风速、入射波频率变化的曲线,讨论了粗糙面高度起伏均方根、海水温度、风速、入射波频率对散射系数的影响,...  相似文献   

19.
Radar backscatter measurements made as part of Project MARSEN in 1979 from the Noordwijk tower off the Dutch coast are used to calculate apparent ripple (capillary and short-gravity wave) spectra by inverting the small-perturbation scattering theory. The measurements were made at 10 and 15 GHz for angles of incidence ranging from20degto70deg; this means that the range of Bragg-resonant spatial wavenumbers covered is from 1.43 to 5.90 cm-1. Results of coincidentC- andX-band experiments by the Institute Francais du Petrole (IFP) andX-band experiments by a group of Dutch researchers (TNO) are compared with our results and good general agreement is found. Our initial results show a steeper falloff of the spectra with increasing wavenumber than reported previously, particularly at low windspeeds. When the spectra are modified to account for the difference between previous aircraft and tower measurements [1], the observed spectra agree well with the appropriate part of Pierson's wave spectrum as modified by Fung and Lee [2].  相似文献   

20.
Imaging altimeter (IALT) is a new type of radar altimeter system. In contrast to the conventional nadir-looking altimeters, such as HY-2A altimeter, Jason-1/2, and TOPEX/Poseidon, IALT observes the earth surface at low incident angles (2.5°–8°), so its swath is much wider and its spatial resolution is much higher than the previous altimeters. This paper presents a wind speed inversion method for the recently launched IALT onboard Tiangong-2 space station. Since the current calibration results of IALT do not agree well with the well-known wind geophysical model function at low incidence angles, a neural network is used to retrieve the ocean surface wind speed in this study. The wind speed inversion accuracy is evaluated by comparing with the ECMWF reanalysis wind speed, buoy wind speed, and in-situ ship measurements. The results show that the retrieved wind speed bias is about –0.21 m/s, and the root-mean-square (RMS) error is about 1.85 m/s. The wind speed accuracy of IALT meets the performance requirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号