首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tibetan Plateau, the Roof of the World, is the highest plateau with a mean elevation of 4000 m. It is characterized by high levels of solar radiation, low air temperature and low air pressure compared to other regions around the world. The alpine grassland, a typical ecosystem in the Tibetan Plateau, is distributed across regions over the elevation of 4500 m. Few studies for carbon flux in alpine grassland on the Tibetan Plateau were conducted due to rigorous natural conditions. A study of soil respiration under alpine grassland ecosystem on the Tibetan Plateau from October 1999 to October 2001 was conducted at Pangkog County, Tibetan Plateau (31.23°N, 90.01°E, elevation 4800 m). The measurements were taken using a static closed chamber technique, usually every two weeks during the summer and at other times at monthly intervals. The obvious diurnal variation of CO2 emissions from soil with higher emission during daytime and lower emission during nighttime was discovered. Diurnal CO2 flux fluctuated from minimum at 05:00 to maximum at 14:00 in local time. Seasonal CO2 fluxes increased in summer and decreased in winter, representing a great variation of seasonal soil respiration. The mean soil CO2 fluxes in the alpine grassland ecosystem were 21.39 mgCO2 · m-2 · h-1, with an average annual amount of soil respiration of 187.46 gCO2 · m-2 · a-1. Net ecosystem productivity is also estimated, which indicated that the alpine grassland ecosystem is a carbon sink.  相似文献   

2.
Knowledge of seasonal variation of net ecosystem CO2 exchange (NEE) and its biotic and abiotic controllers will further our understanding of carbon cycling process, mechanism and large-scale modelling. Eddy covariance technique was used to measure NEE, biotic and abiotic factors for nearly 3 years in the hinterland alpine steppe—Korbresia meadow grassland on the Tibetan Plateau, the present highest fluxnet station in the world. The main objectives are to investigate dynamics of NEE and its components and to determine the major controlling factors. Maximum carbon assimilation took place in August and maximum carbon loss occurred in November. In June, rainfall amount due to monsoon climate played a great role in grass greening and consequently influenced interannual variation of ecosystem carbon gain. From July through September, monthly NEE presented net carbon assimilation. In other months, ecosystem exhibited carbon loss. In growing season, daytime NEE was mainly controlled by photosynthetically active radiation (PAR). In addition, leaf area index (LAI) interacted with PAR and together modulated NEE rates. Ecosystem respiration was controlled mainly by soil temperature and simultaneously by soil moisture. Q 10 was negatively correlated with soil temperature but positively correlated with soil moisture. Large daily range of air temperature is not necessary to enhance carbon gain. Standard respiration rate at referenced 10°C (R 10) was positively correlated with soil moisture, soil temperature, LAI and aboveground biomass. Rainfall patterns in growing season markedly influenced soil moisture and therefore soil moisture controlled seasonal change of ecosystem respiration. Pulse rainfall in the beginning and at the end of growing season induced great ecosystem respiration and consequently a great amount of carbon was lost. Short growing season and relative low temperature restrained alpine grass vegetation development. The results suggested that LAI be usually in a low level and carbon uptake be relatively low. Rainfall patterns in the growing season and pulse rainfall in the beginning and at end of growing season control ecosystem respiration and consequently influence carbon balance of ecosystem.  相似文献   

3.

Knowledge of seasonal variation of net ecosystem CO2 exchange (NEE) and its biotic and abiotic controllers will further our understanding of carbon cycling process, mechanism and large-scale modelling. Eddy covariance technique was used to measure NEE, biotic and abiotic factors for nearly 3 years in the hinterland alpine steppe—Korbresia meadow grassland on the Tibetan Plateau, the present highest fluxnet station in the world. The main objectives are to investigate dynamics of NEE and its components and to determine the major controlling factors. Maximum carbon assimilation took place in August and maximum carbon loss occurred in November. In June, rainfall amount due to monsoon climate played a great role in grass greening and consequently influenced interannual variation of ecosystem carbon gain. From July through September, monthly NEE presented net carbon assimilation. In other months, ecosystem exhibited carbon loss. In growing season, daytime NEE was mainly controlled by photosynthetically active radiation (PAR). In addition, leaf area index (LAI) interacted with PAR and together modulated NEE rates. Ecosystem respiration was controlled mainly by soil temperature and simultaneously by soil moisture. Q 10 was negatively correlated with soil temperature but positively correlated with soil moisture. Large daily range of air temperature is not necessary to enhance carbon gain. Standard respiration rate at referenced 10°C (R 10) was positively correlated with soil moisture, soil temperature, LAI and aboveground biomass. Rainfall patterns in growing season markedly influenced soil moisture and therefore soil moisture controlled seasonal change of ecosystem respiration. Pulse rainfall in the beginning and at the end of growing season induced great ecosystem respiration and consequently a great amount of carbon was lost. Short growing season and relative low temperature restrained alpine grass vegetation development. The results suggested that LAI be usually in a low level and carbon uptake be relatively low. Rainfall patterns in the growing season and pulse rainfall in the beginning and at end of growing season control ecosystem respiration and consequently influence carbon balance of ecosystem.

  相似文献   

4.
The effects of environmental factors on carbon flux were analyzed, the spatial and temporal variation of carbon flux was studied at the two heights of 23 m and 39 m with the eddy covariance technique, and the carbon budget was evaluated for evergreen coniferous plantation in the red earth hilly area during the year 2003. The results showed that photosynthetically active radiation (PAR) and soil temperature are essential factors strongly affecting the net ecosystem exchange (NEE); in the daytime, the response of NEE to PAR shows a rectangular hyperbola trend, and in the nighttime, the significant correlation was observed between soil temperature and soil respiration which was filtered using friction velocity. This ecosystem appeared as a carbon sink along the whole year of 2003, and the carbon flux showed the obvious seasonal fluctuation and diurnal variability. The seasonal peak of NEE occurred in May and June with the daily sum about 0.61-0.67 mg · CO2 · m-2 · s-1. For the severe drought in the mid-summer, the daily sum was 0.40-0.44 mg · CO2 · m-2 · s-1 in July which was only 2/3 of that in the last two months. For the lasted drought of the year, the nadir of NEE happened in the winder with the daily sum about -0.29 to -0.35 mg · CO2 · m-2 · s-1. The sink intensity of the ecosystem was about -0.553 to -0.645 kg · Cm-2 per year in 2003.  相似文献   

5.
A two year survey of benthic primary production during periods of emersion was performed on two stations of an intertidal mudflat (a muddy-sand station and a muddy station) in the Seine Estuary (English Channel, France). The goals of this study were to investigate the seasonal variations of metabolism, to estimate daily potential primary production variation at the annual scale and to estimate the annual potential primary production of the mudflat. Primary production and respiration were estimated by in situ measurements of carbon dioxide fluxes. Chlorophyll a concentration exhibited a great variability on both locations. Gross community production ranged from ca. 0 to 77 mg C m(-2) h(-1) at the muddy-sand location and from ca. 0 to 122 mg C m(-2) h(-1) at the muddy location. Community respiration showed a seasonal trend following temperature variations (up to 28.51 mg C m(-2) h(-1) in the muddy-sand and up to 23.40 mg C m(-2) h(-1) in the mud). Daily potential primary production was calculated, according to seasonal variations of photosynthetic parameters calculated using three photosynthesis versus irradiance curves obtained for the muddy location. The annual gross community primary production was 135 g C m(-2) yr(-1), leading to a low autotrophic annual budget, considering an annual community respiration of 110 g C m(-2) yr(-1).  相似文献   

6.
不同生态系统CO2通量和浓度特征分析研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文利用1993~1994年日本国家农业环境研究所与中国科学院沙漠研究所合作在内蒙古奈曼地区实测的7种不同生态系统(沙丘、轻度放牧草原、中度放牧草原、重度放牧草原、无放牧草原、玉米田和大豆田)的净辐射、土壤热通量、两个高度的CO2浓度、温度、湿度和风速等资料,采用空气动力学方法,计算了CO2通量及其与环境和人为干扰因子的关系,并分析了不同下垫面的光合作用特征. 结果表明:各种下垫面CO2通量的共同特点是:在白天,CO2通量和梯度的输送方向是从大气向植被,在中午(11~13时)输送达到负的最大值; 在夜间,CO2通量和梯度输送方向与白天相反,是从植被向大气,在早晨(3~5时)达到正的最大值. 植被覆盖率及生物量不同的下垫面光合作用强度有明显差异,天气状况对光合作用也有一定影响.  相似文献   

7.
With the static opaque chamber and gas chromatography technique, from January 2003 to January 2004 soil respiration was investigated in a tropical seasonal rain forest in Xishuangbanna, SW China. In this study three treatments were applied, each with three replicates: A (bare soil), B (soil+litter), and C (soil+litter+seedling). The results showed that soil respiration varied seasonally, low from December 2003 to February 2004, and high from June to July 2004. The annual average values of CO2 efflux from soil respiration differed among the treatments at 1% level, with the rank of C (14642 mgCO2· m-2. h-1)>B (12807 mgCO2· m-2. h-1)>A (9532 mgCO2· m-2. h-1). Diurnal variation in soil respiration was not apparent due to little diurnal temperate change in Xishuangbanna. There was a parabola relationship between soil respiration and soil moisture at 1% level. Soil respiration rates were higher when soil moisture ranged from 35% to 45%. There was an exponential relationship between soil respiration and soil temperature (at a depth of 5cm in mineral soil) at 1% level. The calculated Q1o values in this study,ranging from 2.03 to 2.36, were very near to those of tropical soil reported. The CO2 efflux in 2003was 5.34 kgCO2· m-2. a-1 from soil plus litter plus seedling, of them 3.48 kgCO2· m-2. a-1 from soil (accounting for 62.5%), 1.19 kgCO2· m-2. a-1 from litter (22.3%) and 0.67 kgCO2·m-2. a-1 from seedling (12.5%).  相似文献   

8.
Nitrogen (N) fertilization may profoundly affect soil microbial communities. In this study, a field fertilization experiment was conducted in temperate grassland in Inner Mongolia, China to examine the effect of N fertilization on soil microbial properties and the main factors related to the characteristics of soil microbial community. Soil microbial biomass carbon (MBC) and microbial functional diversity along an N gradient were measured over three months (June to August). The result showed that N fertilization significantly decreased MBC under high N treatment (N200, 200 kg N ha?1 y?1) compared with the control (N0, 0 kg N ha?1 y?1) in the three months. Microbial functional diversity in July and August were significantly increased by low N treatment (N50, 50 kg N ha?1 y?1). Among the three fertilization treatments, microbial functional diversity under N200 in the three months was significantly lower than that of N50. The decrease of MBC and functional diversity under N200 were mainly due to the significant decline of plant belowground biomass under high N treatment. The increase of functional diversity under N50 treatment was due to the higher plant aboveground biomass as a result of the higher soil moisture availability. This finding highlighted that the higher N fertilization (N200) was not suitable for the growth and improvement of functional diversity of the soil microbial community, and that site and plant community play an important role in regulating the characteristics of soil microbial community.  相似文献   

9.
Carbon dynamics of grasslands on the Qinghai-Tibetan Plateau may play an important role in regional and global carbon cycles. The CENTURY model (Version 4.5) is used to examine temporal and spatial variations of soil organic carbon (SOC) in grasslands on the Plateau for the period from 1960 to 2002. The model successfully simulates the dynamics of aboveground carbon and soil surface SOC at the soil depth of 0-20 cm and the simulated results agree well to the measurements. Examination of SOC for eight typical grasslands shows different patterns of temporal variation in different ecosystems in 1960-2002. The extent of temporal variation increases with the increase of SOC of ecosystem. SOC increases first and decreases quickly then during the period from 1990 to 2000. Spatially, SOC density obtained for the equilibrium condition declines gradually from the southeast to the northwest on the plateau and showed a high heterogeneity in the eastern plateau. The results suggest that (i) SOC den-sity in the alpine grasslands shows remarkable response to climate change during the 42 years, and (ii) the net carbon exchange rate between the alpine grassland ecosystems and the atmosphere increases from 1990 to 2000 as compared with that before 1990.  相似文献   

10.
The effects of visitor activities on surface soil environmental conditions and aboveground herbaceous biomass in Ayder Natural Park, Turkey, were investigated. Soil properties and aboveground herbaceous biomass were identified and characterized as heavily trafficked site (HTS), moderately trafficked sites (MTS) and control (non‐trafficked site) in grassland in a forest gap. Some soil properties were measured on 60 pits at 0–5 and 5–10 cm soil depths. The intensity of visitor activities had a negative impact on both surface soil properties and the aboveground herbaceous plant biomass and root mass in the study area in Ayder. The soil bulk density and soil penetration resistance increased from 0.94 to 1.47 g cm–3 and 0.55 to 1.65 MPa, respectively, saturated hydraulic conductivity decreased from 77.98 to 8.85 mm h–1, and soil organic matter decreased from 6.71 to 1.77% in moderately and heavily trafficked sites, respectively, at 0–5 cm soil depth. The soil properties were degraded at both the surface layer and the subsurface layer and the greatest degradation was measured in the heavily trafficked site followed by the moderately trafficked site. There was a strong negative linear relationship between soil degradation and aboveground herbaceous plant biomass, which decreased by 50.05 and 78.19% in moderately and heavily trafficked sites, respectively.  相似文献   

11.
Based on eddy covariance measurements over two kinds of land surfaces(a degraded grassland and a maize cropland)in a semiarid area of China in 2005 and 2008,the effects of different gap filling methods,energy balance closure and friction velocity threshold(u*)on annual net ecosystem exchange(NEE)were analyzed.Six gap filling methods,including mean diurnal variation(MDV),marginal distribution sampling(MDS),and nonlinear regressions method,were investigated by generating secondary datasets with four different artificial gap lengths(ranging in length from single half-hours to 12 consecutive days).The MDS generally showed a good overall performance especially for long gaps,with an annual sum bias error less than 5 g C m-2 yr-1.There was a large positive annual sum bias error for nonlinear regressions,indicating an overestimate on net ecosystem respiration.The offset in the annual sum NEE for four nonlinear regressions was from 8.0 to 30.8 g C m-2 yr-1.As soil water content was a limiting factor in the semiarid area,the nonlinear regressions considering both soil temperature and soil water content as controlling variables had a better performance than others.The performance of MDV was better in daytime than in nighttime,with an annual sum bias error falling between-2.6 and-13.4 g C m-2 yr-1.Overall,the accuracy of the gap filling method was dependent on the type of the land surface,gap length,and the time of day when the data gap occurred.The energy balance ratio for the two ecosystems was nearly 80%.Turbulent intensity had a large impact on energy balance ratio.Low energy balance ratio was observed under low friction velocity during the night.When there was a large fetch distance in a wind direction,a low energy balance ratio was caused by mismatch of the footprints between the available energy and turbulent fluxes.The effect of energy balance correction on CO2 flux was evaluated by assuming the imbalance caused by the underestimation of sensible heat flux and latent heat flux.The results showed an average increase of 10 g C m-2 yr-1 for annual NEE in both ecosystems with an energy balance correction.On the other hand,the u*threshold also have a large impact on annual sum NEE.Net carbon emission increased 37.5 g C m-2 yr-1 as u*threshold increased from 0.1 to 0.2 m s-1,indicating a large impact of imposing u*threshold on net ecosystem carbon exchange.  相似文献   

12.
Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique was made at two ChinaFLUX forest sites including the young subtropical Pinus plantation (Qianyanzhou) and old temperate broad-leaved Korean pine mixed forest (Changbai Mountains) as part of the ChinaFLUX network. Seasonal patterns and environmental control of ecosystem respiration in the subtropical and temperate forests were evaluated by the often-used multiplicative model and Q10 model as a function of temperature and soil water content. The resuits suggested that ( i ) temperature was found to be a dominant factor in the ecosystem respiration, and most of the temporal variability of ecosystem respiration was explained by temperature. However, in the drought-stressed ecosystem, soil water content controlled the temporal variability of ecosystem respiration other than temperature effects, and soil water content became a dominat factor when severe drought affected the ecosystem respiration; (ii) the regression models analysis revealed that in the drier soil, ecosystem respiration was more sensitive to soil moisture than was expressed by the often-used multiplicative model. It was possible to accurately estimate the seasonal variation of ecosystem respiration based on the Q10 model; and (iii)annual ecosystem respiration derived from the often-used multiplicative model was 1209 g C m-2and 1303 g C m-2, and was consistently a little higher than the Q10 model estimates of 1197 g C m-2 and 1268 g C m-2 for Qianyanzhou and Changbai Mountains, respectively.  相似文献   

13.
三峡水库澎溪河水-气界面CO2、CH4扩散通量昼夜动态初探   总被引:6,自引:2,他引:4  
李哲  姚骁  何萍  王钦  郭劲松  陈永柏 《湖泊科学》2014,26(4):576-584
三峡水库温室气体效应近年来备受关注.为揭示三峡水库典型支流澎溪河水-气界面CO2和CH4通量的昼夜动态规律,明晰短时间尺度下该水域温室气体释放的影响因素,在2010年6月至2011年5月的一个完整水文周年内,选择4个具有代表性的时段(2010年8、11月和2011年2、5月)对澎溪河高阳平湖水域开展昼夜跟踪观测.结果表明:2010年8、11月和2011年2、5月4次采样的CO2日总通量值分别为-8.34、73.94、28.13和-20.12 mmol/(m2·d),相应的CH4日总通量值分别为2.22、0.11、0.32和7.16 mmol/(m2·d),不同时期昼夜变化明显.研究水域CO2和CH4通量过程不具同步性:CO2昼夜通量变化可能更显著地受到水柱光合/呼吸过程的影响,但瞬时气象过程(水汽温差、瞬时风速等)在高水位时期亦可对CO2通量产生显著影响;CH4昼夜通量变化与水温条件改变更为密切.  相似文献   

14.
Two years of eddy covariance measurements of above- and below-canopy carbon fluxes and static opaque chamber and gas chromatography technique measurements of soil respiration for three treatments (bare soil, soil litterfall, soil litterfall seedling) were carried out in a tropical seasonal rain forest. In addition, data of photosynthesis of dominant tree species and seedlings, leaf area index, litter production and decomposing speed, soil moisture, soil temperature and photosynthetic photon flux density within the forest were all measured concurrently. Data from January 2003 to December 2004 are used to present annual variability of carbon flux and relationships between carbon flux and impact factors. The results show that carbon flux of this forest presented unusual tendency of annual variation; above-canopy carbon fluxes were negative in the dry season (November-April) and mainly positive in the rainy season, but overall the forest is a carbon sink. Carbon flux has obviously diurnal variation in this tropical seasonal rain forest. Above-canopy carbon fluxes were negative in the daytime and absolute values were larger in the dry season than that in the rainy season, causing the forest to act as a carbon sink; at night, carbon fluxes were mainly positive, causing the forest to act as a carbon source. Dominant tree species have greater photosynthesis capability than that of seedlings, which have a great effect on above-canopy carbon flux. There was a significant correlation between above-canopy carbon flux and rate of photosynthesis of tree species. There was also a significant correlation between above-canopy carbon flux and rate of photosynthesis of seedlings; however, the below-canopy carbon flux was only significantly correlated with rate of photosynthesis of seedlings during the hot-dry season. Soil respiration of the three treatments displayed a markedly seasonal dynamic; in addition, above-canopy carbon fluxes correlated well with soil respiration, litterfall production, litterfall decomposition rate, precipitation, and soil moisture and temperature. A primary statistical result of this study showed that above-canopy carbon flux in this forest presented carbon source or sink effects in different seasons, and it is a carbon sink at the scale of a year.  相似文献   

15.
Zhang  Yiping  Sha  Liqing  Yu  Guirui  Song  Qinghai  Tang  Jianwei  Yang  Xiaodong  Wang  Yuesi  Zheng  Zheng  Zhao  Shuangju  Yang  Zhen  Sun  Xiaomin 《中国科学:地球科学(英文版)》2006,49(2):150-162

Two years of eddy covariance measurements of above-and below-canopy carbon fluxes and static opaque chamber and gas chromatography technique measurements of soil respiration for three treatments (bare soil, soil+litterfall, soil+litterfall+seedling) were carried out in a tropical seasonal rain forest. In addition, data of photosynthesis of dominant tree species and seedlings, leaf area index, litter production and decomposing speed, soil moisture, soil temperature and photosynthetic photon flux density within the forest were all measured concurrently. Data from January 2003 to December 2004 are used to present annual variability of carbon flux and relationships between carbon flux and impact factors. The results show that carbon flux of this forest presented unusual tendency of annual variation; above-canopy carbon fluxes were negative in the dry season (November–April) and mainly positive in the rainy season, but overall the forest is a carbon sink. Carbon flux has obviously diurnal variation in this tropical seasonal rain forest. Above-canopy carbon fluxes were negative in the day-time and absolute values were larger in the dry season than that in the rainy season, causing the forest to act as a carbon sink; at night, carbon fluxes were mainly positive, causing the forest to act as a carbon source. Dominant tree species have greater photosynthesis capability than that of seedlings, which have a great effect on above-canopy carbon flux. There was a significant correlation between above-canopy carbon flux and rate of photosynthesis of tree species. There was also a significant correlation between above-canopy carbon flux and rate of photosynthesis of seedlings; however, the below-canopy carbon flux was only significantly correlated with rate of photosynthesis of seedlings during the hot-dry season. Soil respiration of the three treatments displayed a markedly seasonal dynamic; in addition, above-canopy carbon fluxes correlated well with soil respiration, litterfall pro-duction, litterfall decomposition rate, precipitation, and soil moisture and temperature. A primary sta-tistical result of this study showed that above-canopy carbon flux in this forest presented carbon source or sink effects in different seasons, and it is a carbon sink at the scale of a year.

  相似文献   

16.
Two years of eddy covariance measurements of above-and below-canopy carbon fluxes and static opaque chamber and gas chromatography technique measurements of soil respiration for three treatments (bare soil, soil+litterfall, soil+litterfall+seedling) were carried out in a tropical seasonal rain forest. In addition, data of photosynthesis of dominant tree species and seedlings, leaf area index, litter production and decomposing speed, soil moisture, soil temperature and photosynthetic photon flux density within the forest were all measured concurrently. Data from January 2003 to December 2004 are used to present annual variability of carbon flux and relationships between carbon flux and impact factors. The results show that carbon flux of this forest presented unusual tendency of annual variation; above-canopy carbon fluxes were negative in the dry season (November–April) and mainly positive in the rainy season, but overall the forest is a carbon sink. Carbon flux has obviously diurnal variation in this tropical seasonal rain forest. Above-canopy carbon fluxes were negative in the day-time and absolute values were larger in the dry season than that in the rainy season, causing the forest to act as a carbon sink; at night, carbon fluxes were mainly positive, causing the forest to act as a carbon source. Dominant tree species have greater photosynthesis capability than that of seedlings, which have a great effect on above-canopy carbon flux. There was a significant correlation between above-canopy carbon flux and rate of photosynthesis of tree species. There was also a significant correlation between above-canopy carbon flux and rate of photosynthesis of seedlings; however, the below-canopy carbon flux was only significantly correlated with rate of photosynthesis of seedlings during the hot-dry season. Soil respiration of the three treatments displayed a markedly seasonal dynamic; in addition, above-canopy carbon fluxes correlated well with soil respiration, litterfall pro-duction, litterfall decomposition rate, precipitation, and soil moisture and temperature. A primary sta-tistical result of this study showed that above-canopy carbon flux in this forest presented carbon source or sink effects in different seasons, and it is a carbon sink at the scale of a year.  相似文献   

17.
In this paper, we apply the approach of conditional nonlinear optimal perturbation related to the parameter (CNOP-P) to study parameter uncertainties that lead to the stability (maintenance or degradation) of a grassland ecosystem. The maintenance of the grassland ecosystem refers to the unchanged or increased quantity of living biomass and wilted biomass in the ecosystem, and the degradation of the grassland ecosystem refers to the reduction in the quantity of living biomass and wilted biomass or its transformation into a desert ecosystem. Based on a theoretical five-variable grassland ecosystem model, 32 physical model parameters are selected for numerical experiments. Two types of parameter uncertainties could be obtained. The first type of parameter uncertainty is the linear combination of each parameter uncertainty that is computed using the CNOP-P method. The second type is the parameter uncertainty from multi-parameter optimization using the CNOP-P method. The results show that for the 32 model parameters, at a given optimization time and with greater parameter uncertainty, the patterns of the two types of parameter uncertainties are different. The different patterns represent physical processes of soil wetness. This implies that the variations in soil wetness (surface layer and root zone) are the primary reasons for uncertainty in the maintenance or degradation of grassland ecosystems, especially for the soil moisture of the surface layer. The above results show that the CNOP-P method is a useful tool for discussing the abovementioned problems.  相似文献   

18.
Investigating the spatial and temporal variance in productivity along natural precipitation gradients is one of the most efficient approaches to improve understanding of how ecosystems respond to climate change. In this paper, by using the natural precipitation gradient of the Inner Mongolian Plateau from east to west determined by relatively long-term observations, we analyzed the temporal and spatial dynamics of aboveground net primary productivity (ANPP) of the temperate grasslands covering this region. Across this grassland transect, ANPP increased exponentially with the increase of mean annual precipitation (MAP) (ANPP=24.47e0.005MAP, R2=0.48). Values for the three vegetation types desert steppe, typical steppe, and meadow steppe were: 60.86 gm-2a-1, 167.14 gm-2a-1 and 288.73 gm-2a-1 respectively. By contrast, temperature had negative effects on ANPP. The moisture index (K ), which takes into ac- count both precipitation and temperature could explain the spatial variance of ANPP better than MAP alone (ANPP=2020.34K1.24, R2=0.57). Temporally, we found that the inter-annual variation in ANPP (cal- culated as the coefficient of variation, CV) got greater with the increase of aridity. However, this trend was not correlated with the inter-annual variation of precipitation. For all of the three vegetation types, ANPP had greater inter-annual variation than annual precipitation (PPT). Their difference (ANPP CV/PPT CV) was greatest in desert steppe and least in meadow steppe. Our results suggest that in more arid regions, grasslands not only have lower productivity, but also higher inter-annual variation of production. Climate change may have significant effects on the productivity through changes in precipitation pattern, vegetation growth potential, and species diversity.  相似文献   

19.
Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau   总被引:9,自引:0,他引:9  
Alpine cold ecosystem with permafrost environment is quite sensitive to climatic changes and the changes in permafrost can significantly affect the alpine ecosystem. The vegetation coverage, grassland biomass and soil nutrient and texture are selected to indicate the regime of alpine cold ecosystems in the Qinghai-Tibet Plateau. The interactions between alpine ecosystem and permafrost were investigated with the depth of active layer, permafrost thickness and mean annual ground temperature (MAGTs). Based on the statistics model of GPTR for MAGTs and annual air temperatures, an analysis method was developed to analyze the impacts of permafrost changes on the alpine ecosystems. Under the climate change and human engineering activities, the permafrost change and its impacts on alpine ecosystems in the permafrost region between the Kunlun Mountains and the Tanggula Range of Qinghai-Tibet Plateau are studied in this paper. The results showed that the per- mafrost changes have a different influence on different alpine ecosystems. With the increase in the thickness of active layer, the vegetation cover and biomass of the alpine cold meadow exhibit a significant conic reduction, the soil organic matter content of the alpine cold meadow ecosystem shows an exponential decrease, and the surface soil materials become coarse and gravelly. The alpine cold steppe ecosystem, however, seems to have a relatively weak relation to the permafrost environment. Those relationships resulted in the fact that the distribution area of alpine cold meadow decreased by 7.98% and alpine cold swamp decreased by 28.11% under the permafrost environment degradation during recent 15 years. In the future 50 years the alpine cold meadow ecosystems in different geomorphologic units may have different responses to the changes of the permafrost under different climate warming conditions, among them the alpine cold meadow and swamp ecosystem located in the low mountain and plateau area will have a relatively serious degradation. Furthermore, from the angles of grassland coverage and biological production the variation characteristics of high-cold eco- systems in different representative regions and different geomorphologic units under different climatic conditions were quantitatively assessed. In the future, adopting effective measures to protect permafrost is of vital importance to maintaining the stability of permafrost engineering and alpine cold eco- systems in the plateau.  相似文献   

20.
刘胜  陈宇炜 《湖泊科学》2017,29(6):1412-1420
于2014年10月到2015年5月鄱阳湖退水期,利用密闭箱—气相色谱法对鄱阳湖北部星子县洲滩两种代表性的植被群落——薹草(Carex cinerascens)和藜蒿(Artemisia selengensis)进行CO_2通量的对比观测,结果表明:薹草和藜蒿湿地的生态系统呼吸具有明显季节变化模式,其最小值均出现在冬季,最大值均出现在春季,平均值分别为3291.80和2581.89mg CO_2/(m~2·h),退水期薹草和藜蒿湿地累积的CO_2通量分别为213.71±2.27和176.39±11.48 t CO_2/hm~2.较高的生物量是薹草湿地CO_2通量高于藜蒿湿地的原因.5 cm土温是影响薹草和藜蒿湿地CO_2通量季节变化最重要的影响因子,藜蒿湿地生态系统呼吸的温度敏感性指数(Q10)高于薹草湿地.水分、植物生物量和湿地CO_2通量之间无显著相关性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号