首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The state of the art in underwater acoustic telemetry   总被引:6,自引:0,他引:6  
Progress in underwater acoustic telemetry since 1982 is reviewed within a framework of six current research areas: (1) underwater channel physics, channel simulations, and measurements; (2) receiver structures; (3) diversity exploitation; (4) error control coding; (5) networked systems; and (6) alternative modulation strategies. Advances in each of these areas as well as perspectives on the future challenges facing them are presented. A primary thesis of this paper is that increased integration of high-fidelity channel models into ongoing underwater telemetry research is needed if the performance envelope (defined in terms of range, rate, and channel complexity) of underwater modems is to expand  相似文献   

2.
A large increase in the reliability of shipboard or stationary underwater acoustic telemetry systems is achievable by using spatially distributed receivers with aperture sizes from 0.35 to 20 m. Output from each receiver is assigned a quality measure based on the estimated error rate, and the data, weighted by the quality measure, are combined and decoded. The quality measure is derived from a Viterbi error-correction decoder operating on each receiver and is shown to perform reliability in a variety of non-Gaussian noise and jamming environments and reduce to the traditional optimal diversity system in a Gaussian environment. The dynamics of the quality estimator allow operation in the presence of high-power impulsive interference by exploiting the signal and noise differential travel times to individual sensors. The spatial coherence structure of the shallow water acoustic channel shows relatively low signal coherence at separations as short as 0.35 m. Increasing receiver spacing beyond 5 m offers additional benefits in the presence of impulsive noise and larger-scale inhomogeneities in the acoustic field. A number of data transmission experiments were carried out to demonstrate system performance in realistic underwater environments  相似文献   

3.
水声信道高速率数据传输技术   总被引:2,自引:0,他引:2  
许肖梅  许鹭芬 《台湾海峡》1997,16(3):325-330
本文介绍近年来水声信道高速率数所传输技术的一些研究进展,并结合本所研究的水声数据遥测,数字语音通讯和视频图像传输实验样机,讨论了具有抗多途干扰的声传输系统在调制信号设计及信号处理上所采用的关键技术。  相似文献   

4.
水声通信中基于小波变换的图像编码研究   总被引:2,自引:0,他引:2  
提出了一种高误比特率传输条件下的图像编码方法,它适用于水声信道的图像传输。针对水下图像的特点,选取合适的小波基和变换参数对图像进行离散小波变换;依据小波系数的能量分布特性,对不同的子带采用不同的量化和定长编码,编码率为0.8比特/像素。水声通信试验表明,在传输误比特率达到10^-2时,仍能得到可接受的图像质量。  相似文献   

5.
The range-averaged intensity model (RAIM) long known as a powerful method for transmission loss estimation in waveguides, is extended to other aspects of the acoustic field: impulse response and angular pattern estimations at a receiver, general time spreading in a waveguide, signal fluctuations, reverberation levels, and ambient noise structure. An example of its application to a SOFAR propagation and detection case is presented. This method appears to be a very efficient and reliable analysis tool for many underwater acoustics configurations: particularly long-range horizontal telemetry and shallow-water sonar  相似文献   

6.
In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of large feedback overhead for channel state information (CSI) in every subcarrier. A novel CSI feedback scheme is proposed based on the theory of compressed sensing (CS). We propose a feedback from the receiver that only feedback the sparse channel parameters. Additionally, prediction of the channel state is proposed every several symbols to realize the AM in practice. We describe a linear channel prediction algorithm which is used in adaptive transmission. This system has been tested in the real underwater acoustic channel. The linear channel prediction makes the AM transmission techniques more feasible for acoustic channel communications. The simulation and experiment show that significant improvements can be obtained both in bit error rate (BER) and throughput in the AM scheme compared with the fixed Quadrature Phase Shift Keying (QPSK) modulation scheme. Moreover, the performance with standard CS outperforms the Discrete Cosine Transform (DCT) method.  相似文献   

7.
Recent advances in autonomous underwater vehicle (AUV) and underwater communication technology have promoted a surge of research activity within the area of signal and information processing. A new application is proposed herein for capturing and processing underwater video onboard an untethered AUV, then transmitting it to a remote platform using acoustic telemetry. Since video communication requires a considerably larger bandwidth than that provided by an underwater acoustic channel, the data must be massively compressed prior to transmission from the AUV. Past research has shown that the low contrast and low-detailed nature of underwater imagery allows for low-bit-rate coding of the data by wavelet-based image-coding algorithms. In this work, these findings have been extended to the design of a wavelet-based hybrid video encoder which employs entropy-constrained vector quantization (ECVQ) with overlapped block-based motion compensation. The ECVQ codebooks were designed from a statistical source model which describes the distribution of high subband wavelet coefficients in both intraframe and prediction error images. Results indicate that good visual quality can be achieved for very low bit-rate coding of underwater video with our algorithm  相似文献   

8.
Acoustic telemetry--An overview   总被引:1,自引:0,他引:1  
Acoustic telemetry from underwater submersibles and sensors has been pursued ever since it was recognized that the ocean could support signal transmission. While it has been evident that some form of communication is possible, the ocean has proved to be a distressingly difficult medium in which to achieve high data rates. High data rate transmission requires a wide bandwidth which is severely constrained in the ocean because of the absorption of high-frequency energy. Moreover, the ocean is a very reverberant environment with both time and frequency spreading of signals; this further limits data transmission rates. The net effect of the bandwidth and reverberation constraints has led to either acoustic telemetry systems with low data rates or to the use of tethered systems. Over the years, various forms of acoustic communication systems have been developed. These have included direct AM and SSB for underwater telephones, FM for sensor data, FSK and DPSK for digital data, and parametric sonars for narrow-beam systems. As offshore operations have increased, several other systems have been proposed and/or built to respond to particular needs. In this paper, we review the underwater channel and the limitations that it imposes upon acoustic telemetry systems. We then survey some of the systems that have been built (excluding military systems) and indicate how they use various communication system principles to overcome these limitations.  相似文献   

9.
Underwater acoustic communications (UAC) at the reverberation-limited range results in severely distorted information signals. Wide-band signals are subject to both intermodal and intramodal-type of dispersions. The underwater acoustic channel impulse response and the sidelobes strongly depend on the waveguide structure and the source and receiver positions. The motion and displacement from this position, as well as other environmental variabilities impose a real-time adaptivity for the receiver operation to keep track of the fluctuations. To increase the system's reliability and data rate, there is a need to employ adaptive equalizers and diversity techniques to improve the margins against noise, and intersymbol interference (ISI). Blind adaptive equalization (BAE) is the ideal adaptive compensation when operating point-to-multipoint networks, and centralized communication systems in general. Inherent optimum multiple resonant modes within the ocean acoustic waveguide can be exploited judiciously via a new proposed parallel data multicarrier modulation (MCM) scheme by sending data over the multiple subcarriers. MCM might eventually obviate equalization which introduces higher-order computational complexity to the receiver. The above modulation eliminates multipaths and allows operation at multiples of the single-carrier transmission rate. The system's immunity to distortions such as ISI, fast fades, and impulsive noises, is increased due to incorporation of symbol guard space. Direct comparisons with single carrier schemes (such as higher-order statistics (HOS)-based equalization) are of great interest, since the proposed new receiver configuration has low-complexity to provide a compact, portable and low-power practical acoustic modem. Finally, network topology issues are considered to determine optimum network architectures for underwater acoustic LANs. A central topology (CT) supported by BAE and MCM transmission is proposed  相似文献   

10.
This paper deals with the basic modeling problem in underwater acoustics that is the characterization of the channel between a transmitter and a receiver. The problem is analyzed here using an array of sensors that receive PSK signals emitted by several sources. Data come from an experiment realized by a physical system situated in the Mediterranean Sea. In order to identify the multipath channel, we need to access the propagation time delay and the angle of arrival of each propagation ray. However, many of these acoustic ray paths are too close to be separated by classic processing methods (matched filter, beamforming, etc.); new methods with better resolution must be applied in order to analyze the experimental signals and to determine their arrival time on the array of sensors. After a presentation of this problem, we will first discuss high-resolution methods that are usually applied in the localization problem; we will then focus on wavelet packet analysis which provides good results by improving the temporal resolution of acoustic signals  相似文献   

11.
A key research area in underwater acoustic (UWA) communication is the development of advanced modulation and detection schemes for improved performance and range-rate product. In this communication, we propose a variable-rate underwater data transmission system based on direct sequence spread spectrum (DSSS) and complementary code keying (CCK), particularly for shallow-water acoustic channels with severe multipath propagation. We provide a suboptimum receiver that consists of a bidirectional decision feedback equalizer (BiDFE) to cancel both postcursor and precursor intersymbol interference (ISI). We also develop iterative signal processing and time-reversal (TR) diversity processing to mitigate the effect of error propagation in BiDFE. We present performance analysis on bit error rate (BER) for different data rates. Our works show that this new variable-data-rate DSSS-CCK is a suitable candidate for UWA communications over varying channel conditions and distance.   相似文献   

12.
Multichannel Detection for Wideband Underwater Acoustic CDMA Communications   总被引:4,自引:0,他引:4  
Direct-sequence (DS) code-division multiple access (CDMA) is considered for future wideband mobile underwater acoustic networks, where a typical configuration may include several autonomous underwater vehicles (AUVs) operating within a few kilometers of a central receiver. Two receivers that utilize multichannel (array) processing of asynchronous multiuser signals are proposed: the symbol decision feedback (SDF) receiver and the chip hypothesis feedback (CHF) receiver. Both receivers use a chip-resolution adaptive front end consisting of a many-to-few combiner and a bank of fractionally-spaced feedforward equalizers. In the SDF receiver, feedback equalization is implemented at symbol resolution, and receiver filters, including a decision-directed phase-locked loop, are adapted at the symbol rate. This limits its applicability to the channels whose time variation is slow compared to the symbol rate. In a wideband acoustic system, which transmits at maximal chip rate, the symbol rate is down-scaled by the spreading factor, and an inverse effect may occur by which increasing the spreading factor results in performance degradation. To eliminate this effect, feedback equalization, which is necessary for the majority of acoustic channels, is performed in the CHF receiver at chip resolution and receiver parameters are adjusted at the chip rate. At the price of increased computational complexity (there are as many adaptive filters as there are symbol values), this receiver provides improved performance for systems where time variation cannot be neglected with respect to the symbol rate [e.g., low probability of detection (LPD) acoustic systems]. Performance of the two receivers was demonstrated in a four-user scenario, using experimental data obtained over a 2-km shallow-water channel. At the chip rate of 19.2 kilochips per second (kc/s) with quaternary phase-shift keying (QPSK) modulation, excellent results were achieved at an aggregate data rate of up to 10 kb/s  相似文献   

13.
对当前典型的水下无线通信网进行分析,针对水声、光、射频3种通信模式在水下无线通信中的优缺点,提出基于软件无线电技术的多模式自适应水下无线通信网络的概念及其框架结构,并对其中的自适应调制解调方式展开研究.结合MAC层协议,提出一种跨层的自适应调制解调解决方案,即通过收发双方的握手信息携带当前信道状态,由发射方根据握手信息,判断双方通信距离,预计信道未来状态,结合需要传输的数据量,自适应选择合适的通信模式和调制方式,并利用握手信号通知接收方,从而实现在通信网络范围内数据或指令的快速可靠传输.  相似文献   

14.
To prevent grounding of ships and collisions between ships in shallow coastal waters, an underwater data collection and communication network (ACME) using underwater sounds to encode and transmit data is currently under development. Marine mammals might be affected by ACME sounds since they may use sound of a similar frequency (around 12 kHz) for communication, orientation, and prey location. If marine mammals tend to avoid the vicinity of the acoustic transmitters, they may be kept away from ecologically important areas by ACME sounds. One marine mammal species that may be affected in the North Sea is the harbour seal (Phoca vitulina). No information is available on the effects of ACME-like sounds on harbour seals, so this study was carried out as part of an environmental impact assessment program. Nine captive harbour seals were subjected to four sound types, three of which may be used in the underwater acoustic data communication network. The effect of each sound was judged by comparing the animals' location in a pool during test periods to that during baseline periods, during which no sound was produced. Each of the four sounds could be made into a deterrent by increasing its amplitude. The seals reacted by swimming away from the sound source. The sound pressure level (SPL) at the acoustic discomfort threshold was established for each of the four sounds. The acoustic discomfort threshold is defined as the boundary between the areas that the animals generally occupied during the transmission of the sounds and the areas that they generally did not enter during transmission. The SPLs at the acoustic discomfort thresholds were similar for each of the sounds (107 dB re 1 microPa). Based on this discomfort threshold SPL, discomfort zones at sea for several source levels (130-180 dB re 1 microPa) of the sounds were calculated, using a guideline sound propagation model for shallow water. The discomfort zone is defined as the area around a sound source that harbour seals are expected to avoid. The definition of the discomfort zone is based on behavioural discomfort, and does not necessarily coincide with the physical discomfort zone. Based on these results, source levels can be selected that have an acceptable effect on harbour seals in particular areas. The discomfort zone of a communication sound depends on the sound, the source level, and the propagation characteristics of the area in which the sound system is operational. The source level of the communication system should be adapted to each area (taking into account the width of a sea arm, the local sound propagation, and the importance of an area to the affected species). The discomfort zone should not coincide with ecologically important areas (for instance resting, breeding, suckling, and feeding areas), or routes between these areas.  相似文献   

15.
The life duration of underwater cooperative network has been the hot topic in recent years. And the problem of node energy consuming is the key technology to maintain the energy balance among all nodes. To ensure energy efficiency of some special nodes and obtain a longer lifetime of the underwater cooperative network, this paper focuses on adopting precoding strategy to preprocess the signal at the transmitter and simplify the receiver structure. Meanwhile, it takes into account the presence of Doppler shifts and long feedback transmission delay in an underwater acoustic communication system. Precoding technique is applied based on channel prediction to realize energy saving and improve system performance. Different precoding methods are compared. Simulated results and experimental results show that the proposed scheme has a better performance, and it can provide a simple receiver and realize energy saving for some special nodes in a cooperative communication.  相似文献   

16.
High-speed phase coherent communications in the ocean channel are made difficult by the combined effects of large Doppler fluctuations and extended, time-varying multipath. In order to account for these effects, we consider a receiver which performs optimal phase synchronization and channel equalization jointly. Since the intersymbol interference in some underwater acoustic channels spans several tens of symbol intervals, making the optimal maximum-likelihood receiver unacceptably complex, we use a suboptimal, but low complexity, decision feedback equalizer. The mean squared error multiparameter optimization results in an adaptive algorithm which is a combination of recursive least squares and second-order digital phase and delay-locked loops. The use of a fractionally spaced equalizer eliminates the need for explicit symbol delay tracking. The proposed algorithm is applied to experimental data from three types of underwater acoustic channels: long-range deep water, long-range shallow water, and short-range shallow water channels. The modulation techniques used are 4- and 8-PSK. The results indicate the feasibility of achieving power-efficient communications in these channels and demonstrate the ability to coherently combine multiple arrivals, thus exploiting the diversity inherent in multipath propagation  相似文献   

17.
Two computer models are presented, one for short-range and one for long-range propagation of acoustic signals through an underwater channel from a transmitter to a receiver. In the short-range model, the received signal is due to a direct path (steady component) and a random path (diffused component) that could be the result of boundary scattering. For the long-range case, the received signal is the superposition of a number of time-delayed, randomly propagated components arriving by different paths. Both models assume perfect transmitter-receiver synchronization but use realistic channel time delays. They demonstrate the time-varying characteristics of underwater acoustic channels and are used in simulations to evaluate the performance of the detection technique  相似文献   

18.
针对 UUV 任务结束或能源不足时自主回收的需求,深入研究了 UUV 中远程水声定位与遥测遥控导引技术,完成了水声定位与遥测遥控导引系统方案设计,重点研究了 MFSK、OFDM、扩频等水声遥测遥控调制方式。 通过分析和对比,设计了一种正交混合扩频调制方式,并采用相干二维搜索技术,提高扩频技术多普勒补偿能力。 开展了湖上静态与动态跑船试验,试验数据结果表明:水声水平定位精度优于 0. 5%,水声遥测遥控系统解算误码率达到了 10-3 数量级,可有效引导 UUV 回收作业。  相似文献   

19.
Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging.This paper presents a novel method for realizing the field monitoring of channel siltation in real time.The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle.By use of the multipath propagation structure of underwater acoustic channel,the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths.Bistatic transducer pairs are employed to transmit and receive the acoustic signals,and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver.The WRELAX (Weighted Fourier transform and RELAX) algorithm is used to obtain the high resolution estimation of multipath time delay.To examine the feasibility of the presented method and the accuracy and precision of the developed system,a series of sea trials are conducted in the southwest coast area of Dalian City,north of the Yellow Sea.The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM,and the uncertainty is smaller than ±0.06 m.Compared with the existing means for measuring the silt thickness,the present method is innovative,and the system is stable,efficient and provides a better real-time performance.It especially suits monitoring the narrow channel with rapid changes of siltation.  相似文献   

20.
A tutorial review of adaptive equalization techniques for combating intersymbol interference in high-speed digital communications over time-dispersive channels is given. Various equalizer structures and the associated adaptive algorithms, including both fractionally spaced and symbol-spaced equalizers, are presented. Also considered is the application of adaptive equalization techniques to underwater acoustic telemetry channels  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号