首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615–2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.  相似文献   

2.
This research focuses on the evaluation of soil conditions for seismic stations in southern and eastern Romania, their influence on stochastic finite-fault simulations, and the impact of using them on the seismic hazard assessment. First, the horizontal-to-vertical spectral ratios (HVSR) are evaluated using ground motions recorded in 32 seismic stations during small magnitude (M W  ≤ 6.0) Vrancea seismic events. Most of the seismic stations situated in the southern part of Romania exhibit multiple HVSR peaks over a broad period range. However, only the seismic stations in the eastern-most part of Romania have clear short-period predominant periods. Subsequently, stochastic finite-fault simulations are performed in order to evaluate the influence of the soil conditions on the ground motion amplitudes. The analyses show that the earthquake magnitude has a larger influence on the computed ground motion amplitudes for the short- and medium-period range, while the longer-period spectral ordinates tend to be influenced more by the soil conditions. Next, the impact of the previously evaluated soil conditions on the seismic hazard results for Romania is also investigated. The results reveal a significant impact of the soil conditions on the seismic hazard levels, especially for the sites characterized by long-period amplifications (sites situated mostly in southern Romania), and a less significant influence in the case of sites which have clear short predominant periods.  相似文献   

3.
Taiyuan is a city in Shanxi Province, China, and possesses serious seismic hazard. In this study, we constructed a time-dependent seismic hazard model for Taiyuan and the surrounding area based on several major-earthquake seismogenic structures for which historical and paleoseismic event data were available. With the time-dependent model, we calculated the distribution of peak ground acceleration with 10% probability of exceedance in the next 50 years in Taiyuan and the surrounding area, and compared the results with those calculated using the time-independent model. The results showed that the entire area around Taiyuan has a higher seismic hazard with the time-dependent model than that with the time-independent model. The Jiaocheng and Hengshan faults have much higher seismic hazard. Applying the model only to Taiyuan showed that the city has higher seismic hazard with the time-dependent model than that with the time-independent model. In particular, in the western part of Taiyuan, the seismic hazard is quite high because of the proximity of the area to the Jiaocheng Fault.  相似文献   

4.
To investigate the characteristics of earthquake hazard parameters as a means of identifying different zones of seismicity, we have compiled a catalogue of about 1850 moderate to large-sized earthquakes with magnitudes m4.0 or greater in southern Turkey for the time period from 1900 to 1990. Several methods have been applied to the earthquake catalogue to assess seismic hazard. The study area is divided into 77 overlapping cells of 2° size. Theoretical calculations were made for the prediction of maximum magnitude, intensity, b-values, strain energy release and corresponding m3 and peak ground acceleration levels for a given period of time. The resultant seismic hazard for each parameter is depicted as a contour map to indicate lateral variations in areas of seismic source. A combination and evaluation of various hazard parameters resulted in more reasonable estimates of hazard. It is found that the most hazardous seismic zones are the Rhodes and Burdur zones where the level of peak ground acceleration reaches up to 280 cm s-2 for an average return period of 100 years.  相似文献   

5.
The seismic zoning map of Turkey that is used in connection with the national seismic design code (versions issued both in 1997 and 2007) is based on a probabilistic seismic hazard assessment study conducted more than 20 years ago (Gülkan et al. in En son verilere göre haz?rlanan Türkiye deprem bölgeleri haritas?, Report No: METU/EERC 93-1, 1993). In line with the efforts for the update of the seismic design code, the need aroused for an updated seismic hazard map, incorporating recent data and state-of-the-art methodologies and providing ground motion parameters required for the construction of the design spectra stipulated by the new Turkish Earthquake Design Code. Supported by AFAD (Disaster and Emergency Management Authority of Turkey), a project has been conducted for the country scale assessment of the seismic hazard by probabilistic methods. The present paper describes the probabilistic seismic hazard assessment study conducted in connection with this project, incorporating in an area source model, all recently compiled data on seismicity and active faulting, and using a set of recently developed ground motion prediction equations, for both active shallow crustal and subduction regimes, evaluated as adequately representing the ground motion characteristics in the region. The area sources delineated in the model are fully parameterized in terms of maximum magnitude, depth distribution, predominant strike and dip angles and mechanism of possible ruptures. Resulting ground motion distributions are quantified and presented for PGA and 5 % damped spectral accelerations at T = 0.2 and 1.0 s, associated with return periods of 475 and 2475 years. The full set of seismic hazard curves was also made available for the hazard computation sites. The second part of the study, which is based on a fault source and smoothed seismicity model is covered in Demircioglu et al. in Bull Earthq Eng, (2016).  相似文献   

6.
The collaborative project Earthquake Model of the Middle East (EMME, 2010–2015) brought together scientists and engineers from the leading research institutions in the region and delivered state-of-the-art seismic hazard assessment covering Afghanistan, Armenia, Azerbaijan, Cyprus, Georgia, Iran, Iraq, Jordan, Lebanon, Palestine, Pakistan, Syria and Turkey. Their efforts have been materialized in the first homogenized seismic hazard model comprising earthquake catalogues, mapped active faults, strong motions databank, ground motion models and the estimated ground motion values for various intensity measure types and relevant return periods (e.g. 475–5000 years). The reference seismic hazard map of the Middle East, depicts the mean values of peak ground acceleration with a 10% chance of exceedance in 50 years, corresponding to a mean return period of 475 years. A full resolution poster is provided with this contribution.  相似文献   

7.
Southwest Turkey, along Mediterranean coast, is prone to large earthquakes resulting from subduction of the African plate under the Eurasian plate and shallow crustal faults. Maximum observed magnitude of subduction earthquakes is Mw = 6.5 whereas that of crustal earthquakes is Mw = 6.6. Crustal earthquakes are sourced from faults which are related with Isparta Angle and Cyprus Arc tectonic structures. The primary goal of this study is to assess seismic hazard for Antalya area (SW Turkey) using a probabilistic approach. A new earthquake catalog for Antalya area, with unified moment magnitude scale, was prepared in the scope of the study. Seismicity of the area has been evaluated by the Gutenberg-Richter recurrence relationship. For hazard computation, CRISIS2007 software was used following the standard Cornell-McGuire methodology. Attenuation model developed by Youngs et al. Seismol Res Lett 68(1):58–73, (1997) was used for deep subduction earthquakes and Chiou and Youngs Earthq Spectra 24(1):173–215, (2008) model was used for shallow crustal earthquakes. A seismic hazard map was developed for peak ground acceleration and for rock ground with a hazard level of a 10% probability of exceedance in 50 years. Results of the study show that peak ground acceleration values on bedrock change between 0.215 and 0.23 g in the center of Antalya.  相似文献   

8.
南北地震带南段大震活动频繁。已有的研究结果表明,大震近场范围场点的地震危险性与地震破裂面产状及其尺度密切相关。因此,在南北地震带南段需要考虑潜在震源三维特征进行地震危险性分析和地震区划研究。本文在充分搜集大震发震构造资料的基础上,在南北地震带南段构建了考虑震源尺度和产状的潜在震源模型,改进了地震危险性概率分析方法,进而对该地区进行地震区划研究。结果表明,考虑潜在震源三维特征的地震危险性分析结果可以有效地反映南北地震带南段发震构造的产状和尺寸特征,提高地震区划结果的合理性。  相似文献   

9.
Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.  相似文献   

10.
This paper examines four methods by which ground motions can be selected for dynamic seismic response analyses of engineered systems when the underlying seismic hazard is quantified via ground motion simulation rather than empirical ground motion prediction equations. Even with simulation‐based seismic hazard, a ground motion selection process is still required in order to extract a small number of time series from the much larger set developed as part of the hazard calculation. Four specific methods are presented for ground motion selection from simulation‐based seismic hazard analyses, and pros and cons of each are discussed via a simple and reproducible illustrative example. One of the four methods (method 1 ‘direct analysis’) provides a ‘benchmark’ result (i.e., using all simulated ground motions), enabling the consistency of the other three more efficient selection methods to be addressed. Method 2 (‘stratified sampling’) is a relatively simple way to achieve a significant reduction in the number of ground motions required through selecting subsets of ground motions binned based on an intensity measure, IM. Method 3 (‘simple multiple stripes’) has the benefit of being consistent with conventional seismic assessment practice using as‐recorded ground motions, but both methods 2 and 3 are strongly dependent on the efficiency of the conditioning IM to predict the seismic responses of interest. Method 4 (‘generalized conditional intensity measure‐based selection’) is consistent with ‘advanced’ selection methods used for as‐recorded ground motions and selects subsets of ground motions based on multiple IMs, thus overcoming this limitation in methods 2 and 3. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A seismic hazard assessment study of continental Ecuador is presented in this paper. The study begins with a revision of the available information on seismic events and the elaboration of a seismic catalog homogenized to magnitude Mw. Different seismic source definitions are revised and a new area-source model, based on geological and seismic data, is proposed. The available ground motion prediction equations for crustal and subduction sources are analyzed and selected for the tectonic environments observed in Ecuador. A probabilistic seismic hazard assessment approach is carried out to evaluate the exceedance probability of several levels of peak ground acceleration PGA and spectral accelerations SA (T) for periods (T) of 0.1, 0.2, 0.5, 1 and 2s. The resulting hazard maps for continental Ecuador are presented, together with the uniform hazard spectra of four province capital cities. Hazard disaggregation is carried out for target motions defined by the PGA values and SA (1s) expected for return periods of 475 and 2475 years, providing estimates for short-period and long-period controlling earthquakes.  相似文献   

12.
张萌  潘华 《地震学报》2022,44(6):1099-1110
为了寻找一种精度较高、超越概率范围较广并且便于应用的方式来表达地震危险性,本文回顾了当前常用的几种地震危险性表达方法,提出基于一个新函数来拟合地震危险性曲线的“特征系数法”,并使用《中国地震动参数区划图》(GB 18306—2015)的基础数据对该函数的拟合效果进行了验证。结果表明,新函数与地震危险性曲线拟合良好,与极值函数相比有明显的提升,能够充分地表达一个场点的地震危险性。另外,本文结果还显示该函数中表征曲线形状的参数k (文中称为特征系数)与场点面临的地震环境有关,k值较低的场点危险性贡献基本来自近场,而k值较高的场点中远距离的贡献是不能忽视的。   相似文献   

13.
The earthquake risk on Romania is one of the highest in Europe, and seismic hazard for almost half of the territory of Romania is determined by the Vrancea seismic region, which is situated beneath the southern Carpathian Arc. The region is characterized by a high rate of occurrence of large earthquakes in a narrow focal volume at depth from 70 to 160 km. Besides the Vrancea area, several zones of shallow seismicity located within and outside the Romanian territory are considered as seismically dangerous. We present the results of probabilistic seismic hazard analysis, which implemented the “logic tree” approach, and which considered both the intermediate-depth and the shallow seismicity. Various available models of seismicity and ground-motion attenuation were used as the alternative variants. Seismic hazard in terms of macroseismic intensities, peak ground acceleration, and response spectra was evaluated for various return periods. Sensitivity study was performed to analyze the impact of variation of input parameters on the hazard results. The uncertainty on hazard estimates may be reduced by better understanding of parameters of the Vrancea source zone and the zones of crustal seismicity. Reduction of uncertainty associated with the ground-motion models is also very important issue for Romania.  相似文献   

14.
本文采用了空间光滑地震活动性模型,该模型无需潜在震源区划分,同时发展了概率地震危险性分析新方法。根据三种地震目录资料建立了三种地震活动性模型,利用高斯光滑函数获得了湖南区域内的比值分布特征,使用了两种典型的衰减模型,计算了50年内超越概率10%的地震动峰值加速度(PGA)分布。其分析结果显示PGA分布特征与中国地震动参数区划图大体一致,部分区域PGA提高,PGA达0.05g的区域显著扩大,其中包括邵阳、湘潭、吉首、怀化等重要城市,而这种PGA分布特征与该地区地震活动性特征是一致的。概率危险性曲线的结果表明常德等地区的潜在地震危险性比湖南区域内其他城市高。表明此模型用于地震危险性计算中是简便易行的,且具有较高的精度。尤其对于地质和地震构造信息缺乏的弱震区和中强震区,该方法作为替代方法并有着广泛的应用价值。  相似文献   

15.
空间光滑地震活动性模型中光滑函数的比较研究   总被引:2,自引:1,他引:1       下载免费PDF全文
徐伟进  高孟潭 《地震学报》2012,34(2):244-256
使用Frankel提出的基于空间光滑地震活动性模型的地震危险性分析方法,选择华南、华北、川滇3个地区的地震记录,比较分析了高斯、幂律和地震分形分布光滑函数3种光滑函数在不同地区的适用性.结果表明,使用交叉验证法可以为高斯光滑函数选取合适的相关距离c值,光滑得到的地震活动性模型能够真实反映研究区域的地震活动特征,根据活动性模型计算得出的峰值加速度(PGA)分布也符合人们对研究区域地震危险性的认识.幂律光滑函数适用于地震活动性较强的地区,且具有容易求取光滑参数的优点.光滑程度较低的幂律光滑函数不适用于地震活动性弱的地区,在该类地区应选择光滑程度较高的高斯光滑函数.地震分形分布光滑函数不适用于地震活动较强且地震活动强度差异较大的地区,其容易过分高估高震级地震对地震危险性的影响,而忽略了低震级地震对地震危险性的贡献.但对于地震活动较弱且地震活动强度差异较小的地区,可使用地震分形分布光滑函数,且同样具有容易求取光滑参数的优点.   相似文献   

16.
罗守占 《华南地震》2019,39(3):71-76
传统考虑后期使用年限的地震动参数研究,在建筑物抗震设计中的应用,缺乏地震危险性分析和建筑物损伤指数分析,应用性差。提出新的地震动参数在建筑物抗震设计中的应用方法,以地震危险性分析为基础,通过水平地震动加速度衰减关系方程,求得建筑场地水平向基岩峰值加速度和反应谱,以此得到地震动加速度反应谱方程,利用该方程获得地震动反应谱参数,采用变形和线性组合构建损伤指数模型,获取地震波作用下地震动参数对建筑物损伤程度。实验结果表明,利用所提方法得到的地震动反应谱最小误差为0.563,小于允许误差4.0;在50年超越概率63%的条件下地震动参数值分别为0.26、0.095,所提方法可在规定误差范围内得到地震动反应谱参数值,其进行建筑物抗震设计精度和应用性高。  相似文献   

17.
This paper compares the seismic demands obtained from an intensity‐based assessment, as conventionally considered in seismic design guidelines, with the seismic demand hazard. Intensity‐based assessments utilize the distribution of seismic demand from ground motions that have a specific value of some conditioning intensity measure, and the mean of this distribution is conventionally used in design verification. The seismic demand hazard provides the rate of exceedance of various seismic demand values and is obtained by integrating the distribution of seismic demand at multiple intensity levels with the seismic hazard curve. The seismic demand hazard is a more robust metric for quantifying seismic performance, because seismic demands from an intensity‐based assessment: (i) are not unique, with different values obtained using different conditioning intensity measures; and (ii) do not consider the possibility that demand values could be exceeded from different intensity ground motions. Empirical results, for a bridge‐foundation‐soil system, illustrate that the mean seismic demand from an intensity‐based assessment almost always underestimates the demand hazard value for the exceedance rate considered, on average by 17% and with a large variability. Furthermore, modification factors based on approximate theory are found to be unreliable. Adopting the maximum of the mean values from multiple intensity‐based assessments, with different conditional intensity measures, provides a less biased prediction of the seismic demand hazard value, but with still a large variability, and a proportional increase the required number of analyses. For an equivalent number of analyses, direct computation of the seismic demand hazard is a more logical choice and provides additional performance insight. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The characteristics of seismic ground motions in southern China are difficult to determine statistically due to a lack of strong ground motion data. In this study, a stochastic finite-fault ground motion model was adopted to simulate the seismic ground motions at bedrock for southern China, based on parameters derived from small and medium earthquakes that have occurred in the region. From these, the response spectra was estimated. A set of ground motion attenuation relations hipswas then developed based on simulated peak ground motions and response spectral parameters through regression, which would be applicable for use in engineering practice. Through comparisons, it was demonstrated that the proposed ground motion relationships are generally consistent with those obtained from other reported ground motion attenuation models for southern China.  相似文献   

19.
周红  王文静 《地震学报》2022,44(5):853-867
针对夏垫断裂开展了MW≥7.5地震动预测研究。首先基于全破裂模式设定震源(使其尽可能涵盖夏垫断裂的未知信息)模拟得到夏垫断裂发生MW≥7.5地震时研究区域内的地面地震动场,进而依据分位数筛选出各场点的地震动空间分布,讨论了包含不确定震源下的加速度峰值和速度峰值的分布特征,结果显示当夏垫断裂发生MW7.9地震时,通州城区、北京中心城区均会发生强烈的运动。之后对比讨论了仿真震源下MW7.5地震所引起的地面运动场的空间变化,结果显示对于同等震级而言,两种震源的模拟结果可以相互印证。   相似文献   

20.
From recent lessons, it is evident that earthquake prediction is immature and impractical as of now. Under the circumstances, seismic hazard analysis is considered a more practical approach for earthquake hazard mitigation, by estimating the annual rate of earthquake ground motions (or seismic hazard) based on seismicity and other geological evidences. Like other earthquake studies for the high-seismicity region around Taiwan, this study aims to conduct a new seismic hazard assessment for the region using the well-established FOSM (first-order second-moment) algorithm, on the record of 55,000 earthquakes observed in the past 110 years. The new seismic hazard analysis from a different perspective shows that the annual rate for earthquake-induced PGA to exceed the current design value (i.e., 0.23g) in two major cities in Taiwan should be relatively low, with it no greater than 0.0006 per year. Besides, the FOSM estimates were found very close to those with Monte Carlo Simulation (MCS), mainly because the skewness of the three random variables (i.e., earthquake magnitude, location, and model error) considered in the probabilistic analysis is not very large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号