首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
土壤微生物生物量研究进展   总被引:36,自引:0,他引:36       下载免费PDF全文
综述了近年来国内外土壤微生物量包括微生物碳、微生物氮、微生物磷和微生物硫及其与碳、氮、磷和硫循环方面的研究进展,着重论述了土壤微生物量C,N,P,S在土壤养分转化循环中的重要性,并就种植、轮作、施肥等农业措施和土壤微生物量与环境的关系包括重金属和农药污染对土壤微生物量的影响进行了探讨。同时,就今后土壤微生物量的研究重点提出了展望。  相似文献   

2.
The biomass growth and nutrient cycling model ForSVA (forest-soil-vegetation-atmosphere model) is used to analyze potential changes in nutrient cycling (Ca, Mg, K, N, S) and forest biomass production in response to four climate-change scenarios. The analysis is done for an old-growth hardwood stand within the Turkey Lakes watershed north of Lake Superior, Ontario. With ForSVA, any effects due to species interactions, competition, and resulting species shifts are not addressed explicitly. Instead, the calculations are based on functional relationships that primarily respond to soil and climate conditions in general, and to structural changes within the forest itself. The simulations cover a period of about 200 years, and suggest that a principal change in annual pattern of soil moisture is to be expected for the UKMO climate scenario, and that this scenario will likely induce a major change of vegetation covertype resulting from major changes in seasonal soil moisture conditions and a general lack of snow during winter. In contrast, the OSU, GISS and GFDL scenarios should not cause a principal change in forest type, but the soil will be somewhat drier than what is currently the case. However, increased precipitation rates and/or air temperatures during summer and spring should, in combination, increase actual evapotranspiration rates, and such increases should increase net primary production. For example, calculations with GFDL suggest that cumulative wood biomass at the Turkey Lakes site can be expected to increase by 25%. Foliage biomass and fine root production can be expected to increase by 70% from current conditions. It is assumed that within-tree allocation of photosynthate is not affected by climate.  相似文献   

3.
A deforestation experiment is performed using the Laboratoire de Meteorologie Dynamique Atmospheric General Circulation Model (LMD GCM) to determine the climatic role of the largest vegetation formation in the Northern Hemisphere, localized mostly north of latitude 45°N, which is called the temperate and boreal forest. For this purpose, an iterative albedo scheme based on vegetation type, snow age, snowfall rate and area of snow cover, is developed for snow-covered surfaces. The results show a cooling of Northern Hemisphere soil and an increase in the snow cover when the forest is removed, as found by previous similar experiments.In our study this cooling is related to different causes, depending on the season. It is linked to modifications in the soil radiative properties, like surface albedo, due to the disappearance of forest, and consequently, to a greater exposure of the snow-covered soil underneath. It is also related to alterations in the hydrological cycle, observed mainly in summer and autumn at middle latitudes. The model shows a strong sensitivity to the coupled surface albedo — soil temperature — fractional snow cover response in the spring. A later and longer snowmelt season is also detected.This study adds to our understanding of climatic variation on longer time scales, since it is widely accepted that the formation and disappearance of different vegetation formations is closely related to climatic evolution patterns, in particular on the time scale of the glacial oscillations.  相似文献   

4.
青藏高原冬春季雪盖对东亚夏季大气环流影响的研究   总被引:17,自引:7,他引:17  
罗勇 《高原气象》1995,14(4):505-512
通过分析青藏高原积雪的基本特征,指出高原冬春季雪盖在东亚夏季气候形成与异常中的重要作用,同时分别总结了高原冬春季积雪对东亚夏季大气环流影响的诊断研究和数值试验进展,提出了高原冬春季雪盖对气候影响的可能机制。  相似文献   

5.
Scenarios indicate that the air temperature will increase in high latitude regions in coming decades, causing the snow covered period to shorten, the growing season to lengthen and soil temperatures to change during the winter, spring and early summer. To evaluate how a warmer climate is likely to alter the snow cover and soil temperature in Scots pine stands of varying ages in northern Sweden, climate scenarios from the Swedish regional climate modelling programme SWECLIM were used to drive a Soil-Vegetation-Atmosphere Transfer (SVAT)-model (COUP). Using the two CO2 emission scenarios A and B in the Hadley centres global climate model, HadleyA and HadleyB, SWECLIM predicts that the annual mean air temperature and precipitation will increase at most 4.8°C and 315 mm, respectively, within a century in the study region. The results of this analysis indicate that a warmer climate will shorten the period of persistent snow pack by 73–93 days, increase the average soil temperature by 0.9–1.5°C at 10 cm depth, advance soil warming by 15–19 days in spring and cause more soil freeze–thaw cycles by 31–38%. The results also predict that the large current variations in snow cover due to variations in tree interception and topography will be enhanced in the coming century, resulting in increased spatial variability in soil temperatures.  相似文献   

6.
Summary ?This study presents the monthly climatology and variability of the INSAT (Indian National Satellite) derived snow cover estimates over the western Himalayan region. The winter/spring snow estimates over the region are related to the subsequent summer monsoon rainfall over India. The NCEP/NCAR data are used to understand the physical mechanism of the snow-monsoon links. 15 years (1986–2000) of recent data are utilized to investigate these features in the present global warming environment. Results reveal that the spring snow cover area has been declining and snow has been melting faster from winter to spring after 1993. Connections between snow cover estimates and Indian monsoon rainfall (IMR) show that spring snow cover area is negatively related with maximum during May, while snow melt during the February–May period is positively related with subsequent IMR, implying that smaller snow cover area during May and faster snow melt from winter to spring is conducive for good monsoon activity over India. NCEP/NCAR data further shows that the heat low over northwest India and the monsoon circulation over the Indian subcontinent, in particular the cross-equatorial flow, during May are intensified (weakened) when the snow cover area during May is smaller (extensive) and snow melts faster (slower) during the February–May period. The well-documented negative relationship between winter snow and summer rainfall seems to have altered recently and changed to a positive relationship. The changes observed in snow cover extent and snow depth due to global warming may be a possible cause for the weakening winter snow–IMR relationship. Received January 15, 2002; revised May 5, 2002; accepted June 23, 2002  相似文献   

7.
We investigate the response of a climate system model to two different methods for estimating snow cover fraction. In the control case, snow cover fraction changes gradually with snow depth; in the alternative scenarios (one with prescribed vegetation and one with dynamic vegetation), snow cover fraction initially increases with snow depth almost twice as fast as the control method. In cases where the vegetation was fixed (prescribed), the choice of snow cover parameterization resulted in a limited model response. Increased albedo associated with the high snow caused some moderate localized cooling (3–5°C), mostly at very high latitudes (>70°N) and during the spring season. During the other seasons, however, the cooling was not very extensive. With dynamic vegetation the change is much more dramatic. The initial increases in snow cover fraction with the new parameterization lead to a large-scale southward retreat of boreal vegetation, widespread cooling, and persistent snow cover over much of the boreal region during the boreal summer. Large cold anomalies of up to 15°C cover much of northern Eurasia and North America and the cooling is geographically extensive in the northern hemisphere extratropics, especially during the spring and summer seasons. This study demonstrates the potential for dynamic vegetation within climate models to be quite sensitive to modest forcing. This highlights the importance of dynamic vegetation, both as an amplifier of feedbacks in the climate system and as an essential consideration when implementing adjustments to existing model parameters and algorithms.  相似文献   

8.
利用1955-2010年地面气象站积雪深度、降水资料和NCEP再分析资料,采用统计相关,异常指数与相关矢等计算方法,对2010年西南春旱区域性特征、青藏高原积雪视热源特征进行了综合分析,研究了西南春旱典型区域,获得了影响西南地区春季降水的青藏高原积雪视热源关键区。对高原积雪关键区积雪深度与该区域大气视热源的相关性进行了综合分析,发现青藏高原积雪关键区2月的视热源代表性最好。重点分析了青藏高原积雪关键区2月大气视热源与后期西南严重春旱区降水的异常指数年际变化及其相关关系,结果表明,冬季青藏高原积雪关键区积雪浅、整层大气视热源偏高,有利于西南地区春季出现干燥的偏北气流,导致我国西南地区春雨异常偏少。青藏高原积雪关键区视热源对我国西南春旱预测具有明显的指示意义。  相似文献   

9.
利用MODIS/Terra积雪产品MOD10A2较系统地分析了2000~2014年西藏高原(以下简称高原)积雪面积和覆盖率的时空变化特点,并与同期主要气象要素之间的关系进行了研究。主要结论如下:(1)高原平均积雪面积是19.0×104km2,占整个高原面积的15.8%,其中冬季最大,为高原总面积的23%,其次是春季(22%)和秋季(16%),夏季最小(5%);(2)过去14a高原年平均积雪面积呈现微弱减少态势,其中秋冬两季积雪面积略显上升趋势,春季略有减少,夏季减少趋势显著,积雪面积变化与气温之间存在负相关关系,与同期降水量之间的关系不大;(3)2000~2014年,羌塘高原北部和西南喜马拉雅山脉积雪覆盖率增加趋势明显,而在那曲东南部、喜马拉雅山脉东段和阿里地区北部积雪覆盖率减少趋势明显;(4)高原积雪覆盖变率具有明显的空间差异,且由春秋两季主导,秋季年际变率要大于春季,高原中东部和周围高大山脉及其附近是高原积雪覆盖年际变率最大的区域,而雅鲁藏布江中下游谷地、藏东南干暖河谷以及藏北高原中西部是年际变率最小的地区;(5)积雪年际变率大值区是高原主要的牧区和雪灾频发区,是高原积雪监测和防灾减灾的重点。   相似文献   

10.
利用MODIS积雪资料以及同期气象资料,分析了2000—2009年玛纳斯河流域积雪面积年内、年际变化及其与同期气温和降水的关系,结果表明:玛纳斯河流域积雪面积在4个不同分带上随季节变化各不相同,其中,带1变化最剧烈,受气候影响最为显著;带2、带3积雪的增加和减少都比较平缓;带4受气候影响最小。从年际波动来看,带1积雪面积随季节变化更为明显,带4在四季变化中均较平稳。对整个流域积雪面积与气候资料的相关分析表明:冬季,流域积雪变化对降水更敏感;而春季,气温是影响流域积雪面积变化的更主要的因素。  相似文献   

11.
春季欧亚积雪异常影响中国夏季降水的数值试验   总被引:7,自引:0,他引:7       下载免费PDF全文
 利用NCAR的新一代GCM CAM3.1版本模式,研究了欧亚大陆春季积雪异常对北半球大气环流和中国夏季降水的影响。结果表明,春季积雪异常通过改变其后夏季的土壤湿度和温度分布,造成对流层厚度场的异常,激发一个从欧洲西部到东亚的500 hPa高度场异常波列。我国南、北方处于符号相反的高度场异常区,同时降水也呈现南北相异的态势,这表明春季欧亚积雪异常是影响我国夏季降水分布的一个重要因子。  相似文献   

12.
Snow is an important environmental factor in alpine ecosystems, which influences plant phenology, growth and species composition in various ways. With current climate warming, the snow-to-rain ratio is decreasing, and the timing of snowmelt advancing. In a 2-year field experiment above treeline in the Swiss Alps, we investigated how a substantial decrease in snow depth and an earlier snowmelt affect plant phenology, growth, and reproduction of the four most abundant dwarf-shrub species in an alpine tundra community. By advancing the timing when plants started their growing season and thus lost their winter frost hardiness, earlier snowmelt also changed the number of low-temperature events they experienced while frost sensitive. This seemed to outweigh the positive effects of a longer growing season and hence, aboveground growth was reduced after advanced snowmelt in three of the four species studied. Only Loiseleuria procumbens, a specialist of wind exposed sites with little snow, benefited from an advanced snowmelt. We conclude that changes in the snow cover can have a wide range of species-specific effects on alpine tundra plants. Thus, changes in winter climate and snow cover characteristics should be taken into account when predicting climate change effects on alpine ecosystems.  相似文献   

13.
利用MODIS积雪资料以及同期气象资料,分析了2000-2009年玛纳斯河流域积雪面积年内、年际变化及其与同期气温和降水的关系,结果表明:玛纳斯河流域积雪面积在4个不同分带上随季节变化各不相同,其中,带1变化最剧烈,受气候影响最为显著;带2、带3积雪的增加和减少都比较平缓;带4受气候影响最小.从年际波动来看,带1积雪面积随季节变化更为明显,带4在四季变化中均较平稳.对整个流域积雪面积与气候资料的相关分析表明:冬季,流域积雪变化对降水更敏感;而春季,气温是影响流域积雪面积变化的更主要的因素.  相似文献   

14.
The seasonal cycle of snow cover in Eastern Siberia is characterized, and synoptic preconditions of snow accumulation in winter and snow ablation in spring are determined using daily datasets. It was ascertained that cyclone activity has a strong impact on the occurrence of abundant snowfalls in Eastern Siberia. Negative anomalies of sea level pressure (SLP) usually spread westward or southwestward from the place of recorded substantial snowfalls, and they are associated with positive anomalies of air temperature located to the east or northeast of SLP depressions. Cyclonic circulation causes inflow of relatively warm and humid southern air masses originating from the Pacific Ocean, to the eastern parts of cyclones. During the days with snow ablation in spring much lower SLP anomalies occur than during snow accumulation in winter. This may suggest smaller influence of air circulation on snow cover reduction in spring and higher impact of insolation; both result in strong positive anomalies of air temperature which extend over entire Asia. These findings imply that the position, intensity, and dimension of pressure patterns are crucial for determining the location and intensity of rapid changes in snow cover depth during the snow cover season in Eastern Siberia.  相似文献   

15.
青藏高原冬春季积雪异常对中国春夏季降水的影响   总被引:27,自引:3,他引:27  
利用1956年12月~1998年12月共42a,青藏高原及其附近地区78个积雪观测站的雪深和我国160站月降水的距平资料,分析了其气候特征,并用SVD方法分析了冬春季积雪异常与春夏季我国降水异常的关系。用区域气候模式RegCM2模拟了青藏高原积雪异常的气候效应并检验了诊断分析的结果。分析表明,雪深异常,尤其是冬季雪深异常是影响中国降水的一个因子。研究证明,高原冬季雪深异常对后期中国区域降水的影响比春季雪深异常的影响更为重要。数值模拟的结果表明,高原雪深和雪盖的正异常推迟了东亚夏季风的爆发日期,减弱了季风强度,造成华南和华北降水减少,而长江和淮河流域降水增加。冬季雪深异常比冬季雪盖异常和春季雪深异常对降水的影响更为显著。机理分析指出,高原及其邻近地区的积雪异常首先通过融雪改变土壤湿度和地表温度,从而改变了地面到大气的热量、水汽和辐射通量。由此所引起的大气环流变化又反过来影响下垫面的特征和通量输送。在湿土壤和大气之间,这样一种长时间的相互作用是造成后期气候变化的关键过程。与干土壤和大气的相互作用过程有本质差别。  相似文献   

16.
青藏高原冬春雪深分布与中国夏季降水的关系   总被引:2,自引:0,他引:2  
利用SSMR和SSM/I卫星遥感雪深反演资料,通过与高原测站雪深观测资料的对比分析,揭示了高原雪深的时空分布特征,在此基础上对积雪异常年中国夏季降水异常和大气环流进行了对比分析。结果表明,卫星遥感雪深资料可较真实反映出高原积雪的状况,并可反映出高原西部积雪的变化;高原冬、春季积雪EOF分解第1模态具有相同的空间分布,反映了高原冬、春季积雪分布具有相当的一致性,而春季积雪的第2模态则反映高原积雪的东西差异;冬、春季雪深EOF第1模态的时间序列与中国夏季降水的相关分析表明,大致以长江为界,我国东部地区呈现出南涝北旱的分布模态,春季高原东(西)部多(少)雪与东(西)部少(多)雪年的夏季,我国东部降水表现出长江以南(北)地区为大范围的降水偏多(少)。  相似文献   

17.
选取青藏高原东部地区1967~2010年61个测站的积雪数据,分析比较了整年和不同季节高原积雪的年代际变化特征及其与降雪和气温的关系,结果表明:除了秋季以外,高原东部积雪表现出“少雪-多雪-少雪“的显著年代际变化特征,80年代末发生的由少到多突变仅在冬季积雪中表现显著,20世纪末发生的由多到少突变在冬春两季积雪中均表现显著;降雪和气温的变化是影响高原东部积雪的重要因素,降雪变化的影响更加显著,尤其是秋季降雪;在冬春季降雪偏多时段,降雪的变化主导着积雪的变化;在冬春季降雪偏少时段,气温变化的影响增大,某些时段会超过降雪,甚至达到主导积雪变化的程度。   相似文献   

18.
利用2002-2016年MODIS逐日积雪遥感产品(MOD10A1、MYD10A1),采用日产品合成法、临近日分析法、空间滤波法和相邻时间合成法,生成天山山区逐日晴空积雪遥感产品数据集,研究分析了天山山区积雪时空分布特征。结果表明:近15a,天山山区平均积雪覆盖面积变化不明显,呈略微减少趋势,但主要表现为年际间的波动变化;分季节来看,天山山区积雪覆盖面积冬季 > 秋季> 春季 > 夏季;积雪面积从9月开始积累,1月达到峰值,占天山总面积的50±25%,3月开始消融,8月达到最低值,仅占天山总面积的为3.5±2%。;天山山区大部分区域积雪开始时间在第300天之后,积雪结束时间在第40~150天左右,海拔较高的区域积雪开始时间较早;天山山区平均积雪日数小于60天的不稳定积雪区主要分布在天山南坡、北坡边缘地带,占整个天山面积的44.57%,平均积雪日数在60~300天之间的区域占比为53.4%,主要分布在天山中部和北坡部分区域,平均积雪日数大于300天的永久积雪区,主要分布在海拔3800以上区域,占天山面积的2.03%。  相似文献   

19.
藏北高原地面加热场的季节变化   总被引:18,自引:12,他引:18  
利用五道梁1993年9月~1995年8月的辐射收支资料,分析了该地区地面加热场的季节变化特征,结果表明:春,秋季地面加热场强度有明显的急增加减过程,正是加热场的这种突变引起了季节的明显转换,冬季地面积雪多的年从那面加热场强度较弱,第二年夏季加热场强度则较强;地面加热场强度的季节变化明显,夏季强,冬季弱;冬季地面积雪时间较长时,由于地表反射率增大,地中释放的土壤热通量较无雪时减少,可能造成该地区地面  相似文献   

20.
欧亚大陆季节增(融)雪盖面积变化特征分析   总被引:3,自引:0,他引:3  
利用美国冰雪资料中心(National Snow and Ice Data Center)提供的近40年逐周的卫星反演雪盖资料,定义了各季节新增(融化)雪盖而积指数(fresh snow extent),即增/融雪覆盖率P_(FSE)、增/融雪面积A_(FSE)、欧亚大陆北部增/融雪面积之和T_(FSE),针对欧亚大陆各季节平均的雪盖面积本身(snow extent,P_(SE)、A_(SE)、T_(SE)和其增(融)雪盖面积,分析比较二者的变化特征.结果表明,欧亚大陆各季节平均的雪盖面积和相应增(融)雪盖面积不论是气候态分布还是其年际、十年际变化均有明显不同,其中以冬、春季差别更为明显;夏、秋季二者虽有较好的一致性,但增(融)雪盖面积的变率明显强于雪盖而积本身;另外,冬季欧洲新增雪盖对欧业北部冬季雪盖面积以及其后的春季雪盖都有较显著的影响,而春季欧洲和中纬度亚洲地区的融雪则受到冬、春两季雪盖情况的影响.进一步分析欧亚大陆冬、春两季增(融)雪盖与ENSO关系显示,二者除在个别地区(两伯利业北部、欧洲中东部以及青藏高原)存在较明显关系外,整体上,欧亚大陆北部雪盖变化既不受控于ENSO,也不会显著影响ENSO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号