首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用一次飞机人工增雨外场作业平飞阶段获取的温度资料,对1992年6月21日一次西风槽天气过程的中尺度云团边缘的温度变化进行了分析,对云内和云外温度的垂直变化进行了比较。结果发现,云内温度垂直递减率与大气层温度递减率有差异,逆温发生在较强云团边缘。  相似文献   

2.
A two-dimensional cloud model with bin microphysics was used to investigate the effects of cloud condensation nuclei (CCN) concentrations and thermodynamic conditions on convective cloud and precipitation developments. Two different initial cloud droplet spectra were prescribed based on the total CCN concentrations of maritime (300 cm− 3) and continental (1000 cm− 3) air masses, and the model was run on eight thermodynamic conditions obtained from observational soundings. Six-hourly sounding data and 1-hourly precipitation data from two nearby weather stations in Korea were analyzed for the year 2002 to provide some observational support for the model results.For one small Convective Available Potential Energy (CAPE) ( 300 J kg− 1) sounding, the maritime and continental differences were incomparably large. The crucial difference was the production of ice phase hydrometeors in the maritime cloud and only water drops in the continental cloud. Ice phase hydrometeors and intrinsically large cloud drops of the maritime cloud eventually lead to significant precipitation. Meanwhile negligible precipitation developed from the continental cloud. For the three other small CAPE soundings, generally weak convective clouds developed but the maritime and continental clouds were of the same phases (both warm or both cold) and their differences were relatively small.Model runs with the four large CAPE ( 3000 J kg− 1) soundings demonstrated that the depth between the freezing level (FL) and the lifting condensation level (LCL) was crucial to determine whether a cloud becomes a cold cloud or not, which in turn was found to be a crucial factor to enhance cloud invigoration with the additional supply of freezing latent heat. For two large CAPE soundings, FL–LCL was so deep that penetration of FL was prohibitive, and precipitation was only mild in the maritime clouds and negligible in the continental clouds. Two other soundings of similarly large CAPE had small FL–LCL, and both the maritime and continental clouds became cold clouds. Precipitation was strong for both but much more so in the maritime clouds, while the maximum updraft velocity and the cloud top were slightly higher in continental clouds. Although limited to small CAPE cases, more precipitation for smaller FL–LCL for a selected group of precipitation and thermodynamic sounding data from Korea was in support of these model results in its tendency.These results clearly demonstrated that the CCN effects on cloud and precipitation developments critically depended on the given thermodynamic conditions and not just the CAPE but the entire structure of the thermodynamic profiles had to be taken into account.  相似文献   

3.
A comparison of MODIS-derived cloud amount with visual surface observations   总被引:6,自引:0,他引:6  
Two main sources for global cloud climatologies are visual surface observations and observations made by spaceborne sensors. Satellite observations compared with surface data show in most cases differences ranging from − 15% up to − 1%, depending on sensor and observation conditions. These differences are partially controlled by sensors' cloud detection capabilities — a higher number of spectral bands and higher spatial resolution are believed to allow discrimination of clouds from land/ocean/snow background. A Moderate-Resolution Imaging Spectroradiometer (MODIS) produces images of the atmosphere in 36 spectral bands with a spatial resolution of 250–1000 m, thus having a capacity for cloud detection far more advanced than other operating sensors. In this study, instantaneous MODIS cloud observations were compared with surface data for Poland for January (winter) and July (summer) 2004. It was found that MODIS observed 4.38% greater cloud amount in summer conditions and 7.28% in winter conditions. Differences were greater at night (7–8%) than in daytime (0.5–7%) and correlations ranged between 0.577 (winter night) and 0.843 (winter day, summer day and night).  相似文献   

4.
Aqueous concentrations of ionic species observed in cloud water studies often have been in conflict with expectations from model predictions. These inconsistencies result from the size-dependent chemical composition of cloud drops during different stages in the lifetime of a cloud. To study this phenomenon, droplets of clouds need to be collected in different size ranges with high resolution in space and time. The only possibility for this kind of study is the use of an aircraft. Therefore, during the last several years, an attempt was made to develop a mobile cascade impactor, which can be installed outside an aircraft. The cloud water sampled in different size fractions can be transferred into the interior of the aircraft during the measuring flight. The collector is able to sample two size fractions. For continental clouds, the cutoffs are chosen to be >5 and >13.5 μm in diameter. For maritime clouds, the cutoff for the first stage could be shifted to 18.6 μm by lowering the nozzle speed. Prior to field application, the collector was characterized with the aid of “calibration fogs” produced in the laboratory with different drop sizes and different chemical compositions. The characterization included the examination of the cutoffs and the reliability of the sampling procedure with regard to the subsequent chemical analysis. With a collection period of 2 min, collection rates in the order of 0.1–1 cm3 min−1 can be obtained. The collector characterized in this manner was successfully used during measuring flights in clouds over northern Germany. Preliminary concentrations of NH4+, SO42− and Cl found in the two size fractions of the cloud drops are presented.  相似文献   

5.
逐时云迹风资料同化对暴雨预报的模拟试验   总被引:5,自引:1,他引:4  
文中基于不同的云迹风同化方案,用GRAPES模式对2005年7月11-12日长江中下游一次暴雨强降水过程进行了云迹风资料同化试验及数值模拟,通过对比分析不同方案所得的分析场及预报场的差异,研究逐时云迹风资料三维变分同化对分析场及暴雨预报的影响.首先,根据连续性原理及双通道各层次云迹风资料的误差分析,分3个步骤对7月11日00:00-12:00 UTC共12个时次的双通道云迹风资料进行了初步的质量控制;然后,把经过质量控制的云迹风资料放入基于GRAPES 3D-VAR三维变分同化方案开发的逐小时循环同化系统中进行同化,将得出的分析场与单一时次未经质量控制的云迹风资料同化得出的分析场进行对比,探讨了逐时云迹风资料同化对数值预报分析场的影响;最后,把同化后的分析场作为初始场,用 GRAPES模式对 2005年7月11-12日长江流域暴雨过程做24 h降水预报试验,分析两个同化方案所模拟得到的预报场的差异.结果表明,经资料的筛选、同经纬度单点通道的选择及资料的稀疏化3个步骤控制后,各层次云迹风资料的误差有明显减小;加入经质量控制的逐时云迹风资料其三维变分同化可以提高分析场中风压场及水汽场的质量;而且在暴雨预报试验中可以相对更准确地预报暴雨落区及雨强.  相似文献   

6.
We analyze the effects of flat and bumpy top, fractional and internally inhomogeneous cloud layers on large area-averaged thermal radiative fluxes. Inhomogeneous clouds are generated by a new stochastic model: the tree-driven mass accumulation process (tdMAP). This model is able to provide stratocumulus and cumulus cloud fields with properties close to those observed in real clouds. A sensitivity study of cloud parameters is done by analyzing differences between 3D fluxes simulated by the spherical harmonic discrete ordinate method and three “standard” models likely to be used in general circulation models: plane-parallel homogeneous cloud model (PPH), PPH with fractional cloud coverage model (FCPPH) and independent pixel approximation model (IPA). We show that thermal fluxes are strong functions of fractional cloud coverage, mean optical depth, mean geometrical thickness and cloud base altitude. Fluctuations of “in-cloud” horizontal variability in optical depth and cloud-top bumps have negligible effects in the whole. We also showed that PPH, FCPPH and IPA models are not suitable to compute thermal fluxes of flat top fractional inhomogeneous cloud layer, except for completely overcast cloud. This implies that horizontal transport of photon at thermal wavelengths is important when cloudy cells are separated by optically thin regions.  相似文献   

7.
The climate and natural variability of the large-scale stratospheric circulation simulated by a newly developed general circulation model are evaluated against available global observations. The simulation consisted of a 30-year annual cycle integration performed with a comprehensive model of the troposphere and stratosphere. The observations consisted of a 15-year dataset from global operational analyses of the troposphere and stratosphere. The model evaluation concentrates on the simulation of the evolution of the extratropical stratospheric circulation in both hemispheres. The December–February climatology of the observed zonal mean winter circulation is found to be reasonably well captured by the model, although in the Northern Hemisphere upper stratosphere the simulated westerly winds are systematically stronger and a cold bias is apparent in the polar stratosphere. This Northern Hemisphere stratospheric cold bias virtually disappears during spring (March–May), consistent with a realistic simulation of the spring weakening of the mean westerly winds in the model. A considerable amount of monthly interannual variability is also found in the simulation in the Northern Hemisphere in late winter and early spring. The simulated interannual variability is predominantly caused by polar warmings of the stratosphere, in agreement with observations. The breakdown of the Northern Hemisphere stratospheric polar vortex appears therefore to occur in a realistic way in the model. However, in early winter the model severely underestimates the interannual variability, especially in the upper troposphere. The Southern Hemisphere winter (June–August) zonal mean temperature is systematically colder in the model, and the simulated winds are somewhat too strong in the upper stratosphere. Contrary to the results for the Northern Hemisphere spring, this model cold bias worsens during the Southern Hemisphere spring (September–November). Significant discrepancies between the model results and the observations are therefore found during the breakdown of the Southern Hemisphere polar vortex. For instance, the simulated Southern Hemisphere stratosphere westerly jet continuously decreases in intensity more or less in situ from June to November, while the observed stratospheric jet moves downward and poleward.This paper was presented at the Third International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 4–8 Sept. 1995 under the auspice of the Max Planck Institute for Meteorology, Hamburg. Editor for these papers is L. Dümenil.  相似文献   

8.
Using synthetic geometrical clouds and radiative microwave model, we examine the possibility to correct the estimations of liquid water path (LWP) or rain rate with cloud cover measurement. This information may be gotten by co-localized measurements of microwave and infrared/visible measurements on new satellites (TRMM, ADEOS 2, …). In a first step, the effects of fractional cloud cover on microwave brightness temperatures (TB) are investigated in three typical cases of nonprecipitating and precipitating (stratiform and convective) clouds. The beam-filling error (BFE) on brightness temperatures may be analyzed with the known spatial variability using 1D or 3D radiative transfer model. Relationships between BFE and subpixel cloud fraction (CF) are discussed according to the cloud type. We tested several parameters that characterize the horizontal cloud inhomogeneity within a radiometer field of view. BFE was found very sensitive to cloud type and inhomogeneity and is maximum for raining cloud with open spatial structure. In order to account for the uncertainty introduced by the spatial distribution, dependence of BFE on textural-based parameters is also discussed using homogeneity, entropy and an indicator of CF horizontal gradient.  相似文献   

9.
青藏高原对流云团东移发展的不稳定特征   总被引:12,自引:1,他引:12       下载免费PDF全文
利用1998年6~7月的逐时GMS红外TBB资料、T106的客观分析资料以及沿长江5个站的探空资料,对青藏高原上的对流云团东移维持发展的环流背景条件进行了分析。研究表明:高层气流辐散、低层气流辐合的垂直结构,高低空急流的引导作用,高原东南部和长江流域充沛的水汽条件以及大气层结的不稳定性是造成青藏高原上空对流云团东移的前提条件。  相似文献   

10.
杨磊  才奎志  孙丽  陈宇  张岳 《湖北气象》2020,39(2):125-135
应用葵花8号卫星资料,结合NCEP FNL再分析、GNSS遥感水汽、风廓线雷达、全国智能网格实况融合分析资料,对2017年7月14日和2018年8月7日沈阳两次暴雨过程(分别简称过程Ⅰ和过程Ⅱ)中对流云特征进行了比较分析,重点探讨了对流云的触发维持机制与影响降水特征差异的因素。结果表明:(1)两次过程分别为局地突发暴雨和区域性极端暴雨,沈阳市区暴雨均由两个对流云团引发,对流云团合并使得降水持续。过程Ⅱ云团合并发生在其移动方向的后侧,具有后向传播特征,合并云团沿其长轴方向移动影响沈阳市,使降水时间延长。(2)在降水前至降水初期,过程Ⅰ对流云顶和水汽层顶快速上升且云顶迅速超过水汽层顶,而过程Ⅱ亮温下降缓慢。短时强降水发生前红外和水汽亮温同步快速降至-60℃,可作为提前预判对流云团产生短时强降水的参考指标。10 min雨量大于10 mm的对流云云顶集中分布在红外亮温低于-55℃、亮温差为-5~0℃的范围。(3)两次过程中,沈阳市分别位于东北冷涡后部和副热带高压北缘。过程Ⅰ,探空曲线呈“X”型,CAPE高达2584 J·kg^-1,造成对流云深厚,云底以下干层导致雨滴蒸发,使降水强度减弱,该过程高强度降水仅发生在对流云团合并加强阶段。过程Ⅱ,云底到地面湿层明显,保证了雨滴降至地面,产生相同量级降水的云团的TBB比过程Ⅰ高。(4)强降水发生前,地面风场存在明显辐合,当大气可降水量2 h内跃增8 mm时,站点出现强降水;局地水汽跃增可能是低空西南气流偏南分量增大或偏北冷空气侵入到暖湿空气中所致。  相似文献   

11.
南半球中高纬度区域不同类型云的辐射特性   总被引:1,自引:0,他引:1  
利用CloudSat的2B-CLDCLASS-LIDAR云分类产品和2B-FLXHR-LIDAR辐射产品4 a(2007-2010年)的数据,定量分析了单层云(高云、中云、低云)和3种双层云(如:高云与中云共存、高云与低云共存以及中云与低云共存)在南半球中高纬度(40°-65°S)的云量、云辐射强迫和云辐射加热率。其中云辐射加热率定义为有云时的大气加热率廓线与晴空大气加热率廓线的差值。结果表明:研究区域盛行单层低云和单层中云,其云量分别为44.1%和10.3%。并且,中云重叠低云在双层云中云量也是最大(8.7%)。不同类型云的云量也显著影响着其云辐射强迫。单层低云在大气层顶、地表以及大气中的净云辐射强迫分别是-64.8、-56.5和-8.4 W/m2,其绝对值大于其他类型云。虽然单层的中云在大气层顶和地表的净辐射强迫也为负值,但其在大气中的净云辐射强迫为正值(2.3 W/m2)。最后,讨论了不同类型云对大气中辐射能量垂直分布的影响。所有类型云的短波(或长波)云辐射加热率都随高度升高表现为由负值转为正值(或由正值转为负值)。对于大部分云,其净云辐射加热率主要由长波云辐射加热率决定。这些研究结果旨在为模式中云重叠参数化方案在区域的适用性评估及改进提供观测依据。   相似文献   

12.
It is shown that the medium scale cloud cluster is u major one of precipitation systems from analysing the rainstorms along the Changjiang River during the plum rain period of 1980-1983. The medium-scale cloud clusters do not always correspond to the moving vortex, but they are in good agreement with the convergence center for the divergent component of wind at 850 hPa. The favourable environmental conditions for the genesis and development of medium-scale cloud cluster, such as the large-scale circulation situation, patterns of temperature and moisture, potential instability, and the structure of cloud cluster are given. A model on large seaie clond pattern for the genesis of medium scale cloud cluster is presented.  相似文献   

13.
An algorithm for computation of cloud motion winds has been developed at the National Satellite Meteorological Center in China. Since 1997, it has been applied to calculate the cloud motion winds for a 1.25 lat. 1.25 long. mesh over the northwest Pacific region with the satellite data from GMS-5. The development of the tropical cyclones is studied. It shows that the tropical cyclone is usually intrigued by the westerly jet streams at the upper levels of the troposphere, which may be caused by mid-latitude troughs well extending into the tropics. During the prime season of summer, the westerly flowing equatorward of the TUTT may also be a cause for the generation of typhoons.  相似文献   

14.
Frequency distributions of cloud base height and cloud type of low clouds observed between May and October 1998 at Mt. Brocken (Germany) have been derived from ceilometer measurements and synoptic observations. The summit at 1142 m a.s.l. was about 50% of that time in cloud. During daytime, Stratus clouds were the dominant cloud type (65%), whereas Cumulus clouds amounted to 27% and Stratocumulus clouds to 8%. Evidence was found that the increase of the cloud base height observed at Mt. Brocken continues since the end of the 1980s. An example for a clear anticorrelation between the liquid water content (LWC) of the cloud and the height above cloud base is shown. Other results of this detailed case study of a cloud event on October 8, 1998 concerning phase partitioning of water-soluble inorganic compounds, black carbon (BC) and organic carbon (OC) between the liquid and the interstitial phase will also be presented. The observed ion-specific increase in the solute mass per cubic meter of air with decrease of the distance between sampling position and cloud base was caused mainly by entrainment of air from the below-cloud layer. As expected, for sulfate, ammonia and nitrate, high scavenging coefficients (>0.8) were found. OC exhibits a high scavenging fraction of between 0.4 and 0.7; the value for black carbon (0.2–0.4) implies that soot was possibly to some extent internally mixed in the cloud condensation nuclei (CCN). Simultaneous measurements during a cloud event of HNO2 and HNO3 in the gas phase and N(III) and N(V) in the liquid phase were made for the first time.  相似文献   

15.
杨晓霞  夏凡  张骞  侯淑梅  刘畅 《气象科技》2018,46(3):605-618
利用各种观测资料和NCEP/NCAR 1×1°再分析资料,对2012年7月30日夜间和31日夜间鲁西北连续两天强降雨天气进行诊断和对比分析。结果表明:强降水产生在西风槽前和副热带高压边缘的偏南暖湿气流中,西风槽稳定少动,台风在东南沿海北上,副高加强北抬,为鲁西北连续两天的强降水提供了天气尺度背景。925hPa及以下的低层,来自于渤海的偏东气流和来自于华东沿海的东南气流同时向鲁西北强降水区输送水汽,低层比湿大,CAPE和K指数较高。第1次强降水产生在偏南气流的暖区中,降水强度大,维持时间短。第2次强降水期间,低层有冷空气锲入,把暖湿气流抬升,前期为对流性降水,中后期转为稳定性降水,降水强度小,维持时间较长。850hPa及以下倒槽式切变线和中尺度低涡环流是造成强降水的中尺度影响系统,近地面层来自于渤海的东北气流与来自于东南沿海的东南暖湿气流形成中尺度涡旋,产生气旋式辐合上升,触发对流不稳定能量释放。对流云团在鲁西北形成长形的中尺度对流系统(MCS),稳定少动,有明显的列车效应和后向传播特征。强降水具有较强的日变化,夜间发展增强,白天减弱。  相似文献   

16.
The present study aims at studying the role played by high-frequency wind variability, wave reflection and easterly wind anomalies in the western Pacific in the onset, growth and termination phases of the 1997–1998 El Niño using the Trident intermediate coupled model and observations. While the anomalous strength of the trade winds in 1996 favored the initiation of a warm event in 1997 (via western Pacific boundary Rossby wave reflection), the actual timing of the onset and the amplitude of the event resulted from the large March 1997 wind event. Once initiated, high-frequency westerly winds strongly contributed to the rapid growth of the warm event and to the displacement of the eastern edge of the warm-pool. Moreover, both easterly and westerly high-frequency wind variability in 1997–1998 contributed to the amplitude of the event, set the evolution of the warm event and potentially influenced the equatorial Pacific conditions at least one year after the El Niño event. In addition, eastern boundary reflection also significantly contributed to the amplitude and duration of the warm event, whereas its termination was a combination of various factors: reflection of upwelling Rossby waves at the western boundary and large easterly wind anomalies observed in the western Pacific from November 1997 to early 1998. These factors were sufficient to terminate the event and to switch temperature anomalies from warm to cold. To conclude, understanding the coupling between the high- and low-frequency wind variability, i.e., studying ENSO as a multi-scale phenomenon, will certainly lead to a better comprehension of the diversity of its behavior and potentially to an improvement of its predictability.  相似文献   

17.
利用日本气象厅葵花-8卫星亮温资料、欧洲中心ERA5(the fifth generation of European Centre for Medium-Range Weather Forecasts Reanalysis)再分析资料,根据时间尺度分解的局地能量诊断方法,本文从能量学多个角度研究了2016年6月5日00时(协调世界时,下同)至6日15时(持续40小时)一次东移并引发强降水的高原对流云团,得到了以下主要结论。本次事件中,高原东移对流云团在不同阶段的主要影响系统有所不同。移出高原前,其主要受高原涡和高原短波槽的共同影响,随着云团移出高原,高原涡消亡,而高原短波槽则随时间发展加强,成为东移云团的最主要影响系统。高原东移对流云团具有显著的深对流特征,自西向东引发了一系列的降水,移出高原后,其对流重心显著降低,降水达到最强。不同阶段高原东移对流云团的能量转换特征显著不同。云团位于高原上时(第一阶段),背景场通过动能的降尺度能量级串为造成强降水的扰动流直接提供能量,这是此阶段扰动流动能维持的主要方式;云团移出高原过程中(第二阶段),降水凝结潜热明显增强,由此制造的扰动有效位能也显著增强。在垂直运动配合下,扰动有效位能斜压释放所制造的动能是本阶段造成强降水扰动流动能维持的最主要能量来源;云团移出高原后(第三阶段),背景场对造成强降水扰动流的影响再次增强,但是不同于第一阶段的直接影响方式,该阶段背景场的作用是以一种间接的影响方式出现。其首先通过有效位能的降尺度级串将背景场的有效位能转换为扰动流的有效位能,然后通过扰动有效位能的斜压能量释放为扰动流的动能维持不断地提供能量。此外,本阶段内还出现了扰动流向背景场动能的升尺度级串供给(即扰动流的反馈),但其强度不足以对背景场的演变产生显著影响。  相似文献   

18.
Summary The NOAA Aeronomy Laboratory has developed a 915 MHz lower tropospheric wind profiler designed primarily for measuring wind in the planetary boundary layer of the tropics. In recent years the profiler has been used in many field programs worldwide. The profiler is being deployed by the Aeronomy Laboratory at several locations in the tropics to provide long-term measurements for the Tropical Ocean Global Atmosphere (TOGA) program and the Global Ocean Atmosphere Land Surface (GOALS) program. In the absence of precipitating cloud systems the profiler observes winds routinely up to altitudes of 3 to 6 km in the tropics depending primarily on humidity. In the presence of precipitating cloud systems, however, the profiler height coverage is substantially increased due to the presence of hydrometeors to which the profiler is sensitive at its wavelength of 33 cm. In this paper we examine the application of the 915 MHz profiler to the diagnosis and classification of precipitating cloud systems in the tropics. Preliminary results from Christmas Island confirm that at least half of tropical rainfall is stratiform in nature being associated with mesoscale convective systems. The 915 MHz profiler provides a means for the development of a climatology of tropical precipitating cloud systems. Such a climatology is needed to specify diabatic heating rates in large-scale numerical weather prediction and climate models. It should also help develop improved rain retrieval algorithms from satellite observations.With 10 Figures  相似文献   

19.
A wave dynamics for the super cloud clusters associated with the tropical intraseasonal oscillation is constructed. Under the present framework, the basic state of super cloud clusters is considered to be a large-scale convergence of the zonal wind. This convergence is created by a nonlinear diabatic Kelvin wave front, which moves eastward slowly without change of shape. When interacting with free equatorial waves with n=−1, 0, 1 and 2, this basic flow will suppress those waves which move eastward except for free Kelvin waves, and permit westward propagating modes such as the mixed Rossby-gravity wave, the inertio-gravity waves with n=1 and 2 to appear in the large-scale convergent region. Among these waves, only fast modes, that is, inertio-gravity waves with n=1 and 2 are regarded to be responsible for the presence of cloud clusters which move westward within a super cloud cluster, while the multiplicity of the occurrences of super cloud clusters, which move eastward within the large-scale convergent region, is due to the superposition of free Kelvin wave upon these inertio-gravity waves.  相似文献   

20.
A resistance model to calculate the deposition of cloud droplets on a coniferous forest and some improved parameterizations of the indispensable input parameters are described. The deposition model is adapted to the coniferous forest at the Kleiner Feldberg site and verified by the data of a drip water monitoring station below the forest canopy. The measurements of liqud water content, wind speed and trace substance compounds in cloud water of the Ground-based Cloud Experiment (GCE) at Kleiner Feldberg in 1990 are used to calculate the cloud water deposition fluxes and the deposition of trace substances via cloud water interception. The calculated deposition of trace substances via cloud water interceptions is three to six times higher than via rain during the experiment. On a long term data basis the yearly amount of cloud water deposition is 180 mm year–1 at Kleiner Feldberg site (840 m a.s.l.) while the precipitation amount is 1030 mm year–1. Due to higher trace substance concentrations in cloud water compared to rain the ionic deposition via cloud water interception and via precipitation were assessed to be of comparable magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号