首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
南海中尺度涡研究进展   总被引:11,自引:0,他引:11  
近20年以来,南海环流及中尺度涡的研究得到了国内外海洋学家相当的重视,取得了许多研究成果。随着高度计资料的广泛应用以及涡分辨率数值模式的发展,南海中尺度涡的研究越趋活跃。简要介绍南海大尺度环流的主要工作,并着重分析南海多涡结构观测以及形成机理研究方面的主要进展。  相似文献   

2.
As one of the most important mesoscale ocean features, the mesoscale eddies are omnipresent and have significant impact on the overlying atmosphere. Based on the comprehensive review of the influence of mesoscale eddies on the atmospheric boundary layer and the local circulation, the corresponding physical mechanisms and their impacts on weather systems were presented systematically. ①Eddy-induced SST anomalies may modify the surface wind speed, horizontal divergence, cloud and precipitation through turbulence heat flux anomalies. Meanwhile, additional secondary circulations arise over the eddies. What is more, there are obvious regional and seasonal differences for atmospheric responses. ② Studies in the South China Sea, the Kuroshio Extension region and the Southern Ocean indicate that atmospheric responses to mesoscale eddies can be explained by the changes of sea level pressure or the vertical momentum transport. These two mechanisms can be distinguished by the phase relationship between the atmospheric anomaly center and the eddy core. Diagnosis on the inner dynamical processes may draw better conclusions. ③The energy conversions are affected by mesoscale eddies, which may affect storm tracks and jet streams, and finally result in distant influences on weather patterns. Moreover, sea temperature anomalies from sea surface to the thermocline associated with mesoscale eddies have significant impacts on the intensification and the maintenance of tropical cyclones.  相似文献   

3.
Mesoscale eddies are active and energetic in the South China Sea (SCS), and play an important role in regulating the multi-scale circulation and mass transportation in the region, especially for those long-lived strong eddies. Using AVISO altimeter data and outermost closed contour sea level anomaly method, this study identified and tracked mesoscale eddies in the northern SCS during 2011-2018, and focused on the temporal and spatial characteristics of mesoscale eddies in recent years. Similarly to previous results in this region, statistical results show that about 8.6 anticyclonic eddies and 4.5 cyclonic eddies (lifetime > 28 days) were born per year. Among them, about 1/3 of the total number are strong eddies (lifetime > 45 days), showing relatively strong dynamic characteristics, such as strong Eddy Kinetic Energy (EKE) and highly nonlinear feature. Statistics also show significant seasonal variability in mesoscale eddies’ birth places, trajectories and distribution of frequency of occurrence. Specifically, anticyclonic eddies mainly form at the north part of Luzon Strait between autumn and winter, and then move southwestward along isobaths. During this period, the largest value of the frequency of occurrence is over 30%. In summer, most of them form in the west off Luzon Island, and then move westward paralleling to latitude lines. In contrast, cyclonic mainly form in the west off Luzon Strait, and then move westward in winter and spring. During this period, the largest value is about 26%. In addition, observation finds that the strong mesoscale eddy pair could generate off the southwest of Taiwan Island. Analysis of the Kuroshio SCS Index (KSI) implies that loop current caused by Kuroshio intrusion is the most important mechanism for the formation of eddy pair.  相似文献   

4.
西北太平洋黑潮延伸体是全球海洋动力过程最复杂、对全球气候变化最敏感和全球海洋渔业产量最大的区域之一,然而,目前对该海区物理、生态及生地化循环等过程的认识仍受限于长期连续海洋观测资料的缺乏。本文回顾了国际上针对黑潮延伸体海区的相关观测情况和取得的主要进展,介绍了近年来我国在该区域观测系统的构建工作及取得的初步成果,包括构建了全球首个西北太平洋黑潮延伸体定点观测系统;发现黑潮延伸体海区海洋涡旋的平流效应对该海区模态水的总潜沉率贡献超过一半,所携带当地的模态水只需要一年半的时间就可到达海盆的西边界;基于潜标首次展示了黑潮延伸体区域3种不同类型次温跃层涡旋流速的直接观测结果,为开展其生成消亡机制及其全球次表层物质能量输运提供了重要的现场观测基础。最后,本文展望了今后观测系统的发展方向,即在跨圈层和多学科交叉方面发展成为我国在西北太平洋重要的深远海综合观测网络。这将为揭示多尺度物理-生物过程耦合、深海能量串级及其气候效应与深海碳循环等领域实现突破提供重要的观测支撑。  相似文献   

5.
地震海洋学研究进展   总被引:1,自引:0,他引:1  
胡毅  刘怀山  陈坚  许江 《地球科学进展》2009,24(10):1094-1104
传统船舶调查获取海洋水体温盐资料的方法在水平方向上分辨率较低,而用反射地震探测海洋水体特性的方法--地震海洋学,能有效提高海水温盐资料在水平方向上的分辨率.概述了近5年来地震海洋学的发展过程,重点介绍了地震海洋学方法在海洋锋面观测、水团边界划分、海洋内波分析、中尺度涡旋等方面的研究成果,以及AVO、全波形反演等反射地震处理方法在海洋水体特性研究中的应用.比较了地震海洋学方法与声层析技术、高频声技术等声学方法应用于海洋水体特性研究的异同.并展望了下一步研究工作的重点:①有关地震反射剖面的各种参数与海洋水体温盐结构物理模型的联系及其定量分析;②以研究海洋水体特性为目标的地震反射剖面的处理方法;③海洋地震调查历史数据的应用.  相似文献   

6.
Anticyclonic and cyclonic mediterranean eddies are formed on continental slopes of the Iberian Peninsula. Cyclonic eddies commonly live for 0.5–1 year at most. Anticyclonic eddies (meddies) live for 4–5 years, on average, but there are eddies of 7–8 years in age drifting at the distance of up to 6000 km from the region of its formation. According to the results of observations, in some regions of the Atlantic Ocean, the meddies are destructed partially or completely after contact with submarine mountains. However, it is impossible to trace evolution of the lens moving over the submarine obstacle by the field data. We studied the modeled influence of variable-height submarine hills on movement of cyclonic and anticyclonic intrathermocline eddies by the contour dynamics method. The evolution of lenses appeared to be quite sensitive to variations in hill height. Cyclonic and anticyclonic lenses interact with the hill in different ways. The data of unique field observations of Mediterranean lenses in the North Atlantic are confirmed by the results of our model experiments. Hence, it is possible to predict basic, similar to real, scenarios of interaction of intrathermocline eddies under conditions of complex bottom relief in the context of the three-layered ocean model.  相似文献   

7.
The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to delineate the crustal thermal structure along a 230 km long Deep Seismic Sounding (DSS) profile in the north Cambay basin. In this work P-wave velocities obtained from the DSS studies have been converted into heat generation values for the computation of temperature distribution. The model result reveals the Curie isotherm at a depth of ≈22 km and Moho temperature at around 900‡C.  相似文献   

8.
In the northeastern portion of the Atlantic Ocean, at depths of 500–1500 m, there are regular intrathermocline eddies that are characterized by high temperature and salinity. As these eddies interact with the ambient medium, they can transmit a dynamic signal to the ocean surface. These eddies are clearly identifiable on altimetric maps showing variations in the ocean’s surface level obtained by satellites. Such observations allow recording not only the complex interaction pattern of surface cyclonic and anticyclonic eddies, but also the processes of merging and separation of intrathermocline eddies.  相似文献   

9.
Stresses and effective viscosities in the asthenosphere to a depth of 400 km are calculated on the basis of Weertmans “temperature method” i.e., on relating viscosity to the ratio of the temperature to the melting point (=homologous temperature). Some oceanic and continental geotherms and two melting point—depth curves, the dry pyrolite solidus and the forsterite90 melting curve are used for the conversion of the homologous temperature to the effective viscosity. Two creep laws are considered, the linear, grain-size-dependent Nabarro—Herring (NH) creep law, and a power creep law, in which the creep rate is proportional to the third power of the stress. A plate tectonic model yields creep rates of 2 · 10−14 s−1 for the oceanic and 3 · 10−15 s−1 for the continental asthenosphere. These values are held constant for the calculations and may be valid for regions inside plates.The dry pyrolite mantle model results in high homologous temperatures in the asthenosphere below oceans (0.9), very low stresses (a few bars and lower) and shows a low viscosity “layer” of about 200-km thickness. Below continental shields the homologous temperature has a maximum value of 0.73, stresses are around 5–20 bar and the low-viscosity region is thicker and less pronounced than in the oceanic case. The Fo90 mantle model generally gives lower homologous temperatures (maximum value below oceans beside active ridges 0.75). The stresses in the asthenosphere beneath oceans vary from a few bars to about 50 bar and below continents to about 100 bar. The low-viscosity region seems to reach great depths without forming a “channel”. The Figs. 1 and 2 show the approximate viscosity—depth distribution for the two mantle models under study.Assuming a completely dry mantle and a mean grain size of 5 mm, power law creep will be the dominating creep process in the asthenosphere. However, grains may grow in a high-temperature—low-stress regime (i.e., below younger oceans), an effect which will further diminish the influence of NH creep. In the upper 100–150 km of the earth some fluid phases may affect considerably creep processes.  相似文献   

10.
路基冻胀问题严重影响寒区高速铁路的安全服役,而成冰相变过程是解释冻胀机制的关键。基于介观尺度的格子Boltzmann方法,将修正的孔隙水冻结温度算法与焓法固液相变格子Boltzmann模型相结合,模拟了悬浮液滴冻结和冻土孔隙水成冰两个过程,分别揭示了液态水在自由状态和孔隙束缚状态下冰水相变的细观机制。计算结果表明:土体孔隙中冰晶由中心向外生长的过程与悬浮在空气中的液滴冻结过程截然不同,并且孔隙水越接近颗粒表面,其冻结温度越低。相同粒径颗粒按照不同排列方式得到的冻结特征曲线(soil freezing characteristic curves,简称SFCC)具有明显差异;不同粒径的SFCC随着颗粒增大残余水含量逐渐变少,形态更加陡峭。通过与文献试验结果对比,验证了格子Boltzmann方法的有效性,表明该方法能够为研究多孔介质水气迁移与相变过程提供介观尺度的新手段。  相似文献   

11.
雨海盆地是月球正面最大、月球上研究程度最高的多环结构撞击盆地,已有很多学者对其多环结构的边界进行恢复研究,但在多环结构最初始形状、多环位置/数量、盆地大小等方面,至今未能达成共识。本文利用GRAIL自由空气重力异常数据、LOLA激光测高数据进行了多源数据的融合,结果表明,雨海盆地是具有偏心圆的三环结构特点,其直径从外到内分别为1 500 km、1 100 km、665 km。基于欧拉反演结果研究表明,在雨海撞击盆地中部存在两种不同深度、构造运动性质及方向的断裂构造,即:(1)深度大于40 km,向下逐渐向内倾斜、延伸的深部断裂构造;(2)深度在40 km以内,由月表向下逐渐向外倾斜、延伸的浅部断裂构造。结合物质成分及地球物理特征的研究,雨海地区的地质构造演化过程可分为两个阶段:(1)在月球早期阶段(45~38.5亿年),主要以内动力地质作用即岩浆洋冷凝过程为主,形成了雨海盆地深度在40 km以下逐渐向内倾斜、延伸的构造断裂,其为本区在月球早期深部岩浆洋产生、分异及运移提供了通道,该构造断裂代表了雨海盆地撞击前的月球早期深部岩浆洋的构造地质演化阶段;(2)在月球晚期阶段(≤38.5亿年),主要以内、外动力地质作用并重,形成了雨海盆地深度在40 km以内逐渐向外倾斜、延伸的构造断裂,其应为本区不同期次的玄武质岩浆喷出或溢流到月表提供了运移通道,该构造断裂代表了雨海盆地撞击后的月球晚期不同期次玄武质岩浆喷发、充填溢流的月海岩浆活动作用的构造地质演化阶段。  相似文献   

12.
This study examines the role of the parameterization of convection, planetary boundary layer (PBL) and explicit moisture processes on tropical cyclone intensification. A high-resolution mesoscale model, National Center for Atmospheric Research (NCAR) model MM5, with two interactive nested domains at resolutions 90 km and 30 km was used to simulate the Orissa Super cyclone, the most intense Indian cyclone of the past century. The initial fields and time-varying boundary variables and sea surface temperatures were taken from the National Centers for Environmental Prediction (NCEP) (FNL) one-degree data set. Three categories of sensitivity experiments were conducted to examine the various schemes of PBL, convection and explicit moisture processes. The results show that the PBL processes play crucial roles in determining the intensity of the cyclone and that the scheme of Mellor-Yamada (MY) produces the strongest cyclone. The combination of the parameterization schemes of MY for planetary boundary layer, Kain-Fritsch2 for convection and Mixed-Phase for explicit moisture produced the best simulation in terms of intensity and track. The simulated cyclone produced a minimum sea level pressure of 930 hPa and a maximum wind of 65 m s−1 as well as all of the characteristics of a mature tropical cyclone with an eye and eye-wall along with a warm core structure. The model-simulated precipitation intensity and distribution were in good agreement with the observations. The ensemble mean of all 12 experiments produced reasonable intensity and the best track.  相似文献   

13.
The granulation brightnesses and convective velocities in the solar photosphere between the levels of formation of the continuum radiation and the temperature minimum are examined. Spectral images of the granulation observed in lines of neutral and ionized iron with high spatial (0.5″) and temporal (9 s) resolutions were obtained using the German Vacuum Tower Telescope in Izana (Tenerife, Spain). A correlation analysis shows that the granules and intergranules change their relative brightness at a height near 250 km, and a general reversal of the velocity occurs near a height of 490 km, where the material above granules begins to predominantly descend, and the material above intergranules, to ascend. The maximum correlation coefficient between the velocity and the line brightnesdoesnot exceed 0.75. The properties of the brightness and velocity are analyzed in a sixteen-column model. Four sorts of motions are most typical and efficient. In the first two, only the sign of the relative contrast of the material changes (an efficiency of 46%). This occurs, on average, at a height of 270 km. In the last two motions, both the sign of the contrast and the direction of the motion are reversed near a height of 350 km (an efficiency of 28%). All the observed dependences are compared with theoretical relations obtained in a three-dimensional hydrodynamical model, with deviations from local thermodynamic equilibrium included in the calculation of the spectral-line profiles. This model can satisfactorily reproduce all the basic features of the convective velocities and intensities. It is concluded that the convective motions maintain their column structure throughout the photosphere, right to the level of the temperature minimum. This makes a separation of the photosphere into two regions with different granulation brightnesses and convective motions unjustified.  相似文献   

14.
The thickness and geothermal gradient of Archean continental crust are critical factors for understanding the geodynamic processes in Earth's early continental crust. Archean tonalite-trondhjemite-granodiorite (TTG) gneisses provide one of the potential indicators of paleo-crustal thickness and geothermal gradient because crust-derived TTG melts are generally thought to originate from partial melting of mafic rocks at the crustal root. In the Western Shandong Province (WSP) of the North China Craton (NCC), two episodes of Neoarchean TTG magmatism are recognized at ~2.70 Ga and ~2.55 Ga which were sourced from partial melting of juvenile crustal components. The ~2.70 Ga TTG gneisses show highly fractionated rare earth element (REE) patterns (average (La/Yb)N = 39), whereas the ~2.55 Ga TTG gneisses have relatively less fractionated REE patterns (average (La/Yb)N = 18). Petrogenetic evaluation suggest that the magmatic precursors of the TTG gneisses of both episodes originated from partial melting of juvenile crustal materials at different crustal depths with residual mineral phases of Grt, Cpx, Amp, Pl and Ilm. Together with the garnet proportion in the residue, the P–T pseudosections of equilibrium mineral assemblages, and the temperature calculated from Titanium-in-zircon thermometer, we estimate the Neoarchean crustal thicknesses as 44–51 km with geothermal gradients of 17 to 20 °C/km for the ~2.70 Ga TTG gneisses whereas the ~2.55 Ga TTG gneisses show lesser crustal thicknesses of 35–43 km with geothermal gradients of 19 to 26 °C/km, with an approximately 10 km difference in crustal thickness. Our estimates on the thicknesses and geothermal gradients of the Neoarchean crust are similar to those (~41 km, ~20 °C/km) of the modern average continental crust, indicating that a modern-style plate tectonic regime may have played an important role in the formation and evolution of the Neoarchean continental crust in the NCC.  相似文献   

15.
The long-term buffering of the oceans   总被引:1,自引:0,他引:1  
The dissolved constituents being carried to the oceans by rivers cannot all be removed by sedimentary processes, including authigenesis. Direct introduction of formation waters to the oceans has no significant effect. Reaction of seawater with basaltic rocks is, however, potentially capable of removing the excess cations by a combination of low-temperature weathering (removing K+), and higher temperature hydrothermal reaction (removing Na+ and Mg2+), although these processes seem to release more silica than can be conveniently accounted for. Although these are essentially kinetic rather than equilibrium buffer mechanisms, they appear to be sufficient to have maintained a constant seawater composition (except for SiO2) during the Phanerozoic.  相似文献   

16.
全球地幔三维结构模型及动力学研究新进展   总被引:10,自引:0,他引:10  
介绍了地幔三维地震模型及地球动力学最新进展,特别是1995年7月IUGG第21届大会展示的新成果。地幔三维速度分布主要由全球数字地震台网资料求得。100km深度速度分布主要与板块构造有关,350km深度显示了大陆与海洋的差异,1900km深度表现环太平洋的高速异常带。  相似文献   

17.
In the recent decades, a large amount of anthropogenic heat has been absorbed and stored in the Southern Ocean. Results from observations and climate models' simulations both show that the Southern Ocean displays large warming in the upper and subsurface ocean that maximizes at 45°~40°S. However, the underlying mechanisms and evolution processes of the Southern Ocean temperature changes remain unclear, leaving the Southern Ocean to be a hotspot of climate change studies in the recent years. The present study summarized the current progress in the observations and numerical modeling of long-term temperature changes in the Southern Ocean. The effects of changes in wind, surface heat flux, sea-ice and other factors on the ocean temperature changes were presented, along with the introduction to the role of oceanic mean circulation and eddies. The present study further proposed that a deepening of the understanding in the Southern Ocean temperature change may be achieved by investigating the fast and slow responses of the Southern Ocean to external radiative forcing, which are respectively associated with the fast adjustments of the ocean mixed-layer and the slow evolution of the deep ocean. Specifically, the striking and fast mixed-layer ocean warming north of 50°S is tightly related to the surface heat absorption over upwelling regions and wind-driven meridional heat transport, resulting in enhanced warming around 45°S. While in the slow response of the Southern Ocean temperature, the enhanced ocean warming shifts southward and downward, mainly associating with the heat transfer from oceanic eddies. The Southern Ocean temperature has pronounced climatic effects on many aspects, such as global energy balance, sea-level rise, ocean stratification changes, regional surface warming and atmospheric circulation changes. However, large model biases/deficiencies in simulating the present-day climatology and essential ocean dynamic processes last in generations of climate models, which are the main challenge in advancing our understanding in the mechanisms for the Southern Ocean climate changes. Therefore, to achieve reliable future projections of the Southern Ocean climate, substantial efforts will be needed to improve the model performances and physical understanding in the relative role of various processes in ocean temperature changes at different time scales.  相似文献   

18.
THE CRUSTAL STRUCTURE BENEATH THE EASTERN QINGHAI  相似文献   

19.
生态模型在河口管理中的应用研究综述   总被引:1,自引:0,他引:1  
河口作为河流和海洋的交汇地,具有生态交错带特性,其在自然和人类活动双重压力下发生着演变.生态模型是研究生态系统结构、功能及其时空演变规律以及生物过程对于生态系统的影响及其反馈机制的重要手段.采用不同方法对生态模型进行分类,综述各类生态模型的特性、优缺点及应用领域.讨论建模过程中模型变量与函数、模型整合及时空尺度、模型参数取值及不确定等关键技术问题.分析各类生态模型在河口生态工程设计、生态系统修复、生态系统评价、系统决策支持等管理领域的应用.尽管中国河口生态模型构建及应用已有一些成果,但与国外相比,在理论生态学及数据积累方面仍有一定差距.  相似文献   

20.
海洋生物地球化学模式研究进展   总被引:4,自引:1,他引:3  
海洋生物地球化学模式是定量认识物质的海洋生物地球化学循环、理解其控制机制以及预测体系变动的重要手段。20世纪90年代以来,该研究领域的进展主要体现在海洋生物地球化学循环的物理输送和生态动力学过程以及年际、年代际变动的模拟3个方面。物理过程模拟方面的进展,集中在寡营养海区上层海水营养盐的供应机制问题上,在经典的上升流、垂直扩散之外,提出涡旋可能构成一种重要的物理输入过程。而生态动力学过程的模拟方面,90年代前期考虑食物网基本结构,由浮游植物、浮游动物和细菌三大类群构成生物状态变量,氮和磷营养盐以及颗粒碎屑构成其他状态变量;90年代后期,开始引入铁和硅的限制问题,考虑不同浮游植物和浮游动物群落结构的影响,特别是浮游植物粒级结构变化的预测可能是未来该领域力图解决的一个技术问题。年际变化的模拟,多围绕ENSO事件对初级生产的影响及其机制问题展开;年代际和地质年代尺度的体系变动问题仍存在争论,相对缺乏有效的数值模拟研究。该研究领域未来应加强生物—化学过程的函数表达、物理模式、中尺度过程、边界交换以及资料获取技术等方面的研究,以应对目前面临的诸多问题与挑战。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号