首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
青藏高原气候独特,影响高原夏季降水的原因是十分复杂的和多方面的。文中利用1982—2001年的卫星遥感植被归一化指数(NDVI)资料和青藏高原55个实测台站降水资料,应用经验正交分解(EOF)、奇异值分解(SVD)等方法分析了青藏高原冬、春植被变化特征及其与高原夏季降水的联系,得到以下几点初步认识:青藏高原冬、春季植被分布基本呈现东南地区植被覆盖较好,逐渐向西北地区减少的特征。其中高原东南部地区和高原南侧边界地区NDVI值最大,而西北地区和北侧边界地区NDVI较小。EOF分析表明,20年来冬、春季高原植被的变化趋势是总体呈阶段性增加,其中尤以高原北部、西北部(昆仑山、阿尔金山和祁连山沿线)和南部的雅鲁藏布江流域植被增加明显。由SVD方法得到的高原前期NDVI与后期降水的相关性是较稳定的。青藏高原多数区域冬、春植被与夏季降水存在较好的正相关,且这种滞后相关存在明显的区域差异。高原南部和北部区域的NDVI在冬春两季都与夏季降水有明显的正相关,即冬春季植被对夏季降水的影响较显著。而冬季高原中东部玉树地区附近区域的NDVI与夏季降水也存在较明显的负相关,即冬季中东部区域的植被变化对夏季降水的影响也较显著。由此可见,高原前期NDVI的变化特征,可以作为高原降水长期预报综合考虑的一个重要参考因子。  相似文献   

2.
青藏高原湿池的气候特征及其变化   总被引:1,自引:0,他引:1  
利用ERA-Interim再分析资料研究了青藏高原湿池的气候特征及其变化,得出以下主要结论:气候平均状态下,6—9月,整个青藏高原上空相对于全球中高层地区而言是一个垂直深厚的高湿区,称之为青藏高原湿池。利用比湿的相对纬偏值研究了高原湿池的垂直分布特征,通过分析发现,6—9月高原湿池相对于全球同高度地区来说是一个垂直深厚的水汽含量最大值区,不同高度层的水汽含量数值可达纬圈平均值的1倍以上到3倍以上;随着高度的增加,湿池内部比湿相对纬偏值大值区明显地向下游地区倾斜延伸,能从高原上空一直向下游延伸到120°E及以东地区,表明了高原上空的大气水汽含量对周边地区的重要影响。夏季高原湿池主要有三种空间变化模态:全区一致型,东西反向型,南北反向型。定义了一个夏季高原湿池强度指数,分析发现1979—2011年以来夏季高原湿池整体表现出显著的增强趋势,在1997年前后发生了年代际变化,33年期间主要具有3~4年、7~8年左右的振荡周期。夏季青藏高原湿池的增强趋势具有明显的区域差异,总体来说,高原西部增湿强于东部,而对高原西部来说,高空增湿强于近地面,增湿幅度最大值区域主要位于400~200 h Pa附近。最后,综合多种再分析资料以及其他研究学者采用探空观测资料、卫星资料的相关研究结果,分析了所选研究资料的适用性,结果表明ERA-Interim再分析资料对于本研究是适用的,基于该资料得出的研究结论是可信的。  相似文献   

3.
利用NCEP资料计算的1951—1995年青藏高原季风(下称高原季风)指数序列^[1]及长江上游22个测站的气温距平和雨量距平百分率资料,应用MHF(墨西哥帽)小波分析及最大熵谱分析方法,研究了高原夏季风和长江上游夏季气温及降水的时间一频率多层次年际时间尺度变化特征。结果表明,高原夏季风、长江上游夏季气温和降水均存在明显的阶段性变化特征。高原夏季风以22年低频变化和2.5年高频振荡为主,长江上游夏季气温变化以2~3年占优,而长江上游东、西部夏季降水第一主周期则表现为6~8年和2.5年,三者在时间域上存在着显著的相关关系,表明高原季风年代际变化对长江上游气候变化有显著影响。  相似文献   

4.
青藏高原季风年际变化与长江上游气候变化的联系   总被引:10,自引:0,他引:10  
利用NCEP资料计算的1951 1995年青藏高原季风(下称高原季风)指数序列[1]及长江上游22个测站的气温距平和雨量距平百分率资料,应用MHF(墨西哥帽)小波分析及最大熵谱分析方法,研究了高原夏季风和长江上游夏季气温及降水的时间-频率多层次年际时间尺度变化特征.结果表明,高原夏季风、长江上游夏季气温和降水均存在明显的阶段性变化特征.高原夏季风以22年低频变化和2.5年高频振荡为主,长江上游夏季气温变化以2~3年占优,而长江上游东、西部夏季降水第一主周期则表现为6~8年和2.5年,三者在时间域上存在着显著的相关关系,表明高原季风年代际变化对长江上游气候变化有显著影响.  相似文献   

5.
中国东部夏季降水异常与青藏高原冬季积雪的关系   总被引:2,自引:1,他引:1  
杜银  谢志清  肖卉 《气象科学》2014,34(6):647-655
基于中国740站月降水、积雪、地温资料和NCEP/NCAR再分析月资料,采用相关分析、合成分析和最大协方差法,研究了1979—2008年青藏高原冬季积雪异常与长江中下游夏季降水的关系及其可能的影响机制。结果表明:(1)在年际时间尺度上,青藏高原中北部12月—翌年1月积雪指数与长江中下游夏季降水呈显著正相关。在年代际时间尺度上,1990s—2000s的高原积雪指数与长江中下游夏季降水具有较好的同位相变化特征。表明高原中北部12月—翌年1月积雪指数对长江中下游夏季降水异常具有较好的指示意义,可作为预测长江中下游夏季降水年际年代变化的依据。(2)高原12月—翌年1月积雪异常偏多,是长江中下游夏季洪涝的一个强信号,12月—翌年1月积雪指数正异常年与长江中下游夏季降水正异常年有很好的一致性。(3)高原冬季积雪异常影响长江中下游夏季降水的可能途径是:高原冬季积雪异常通过影响同期及其后春季地温,再由春季地温以某种方式把异常信号维持到夏季。之后,地温异常又改变了局地地气热量交换,导致周围大气环流异常,从而影响到其下游的降水过程。  相似文献   

6.
基于青藏高原低涡和切变线(简称高原低值系统)年鉴、国家气象站地面观测资料及ERA-Interim再分析资料,分析了高原低值系统多、少发年夏季高原地气温差变化的差异及其对我国降水的影响。结果表明:(1)高原夏季地气温差对高原低值系统的发生和移动有明显的影响。在低值系统频发区,多发年的地气温差明显比少发年高。(2)我国西部的青藏高原中部、东北部及西南地区在多发年降水偏多,高原南部和东南部则在少发年降水偏多;我国东部地区,多、少发年降水差异自南至北呈“+”、“?”、“+”、“?”、“+”的差值带分布特征,即华南、江淮流域、华北和东北地区降水在多发年偏多,江南地区和黄淮流域降水则在少发年偏多。(3)高原低值系统多、少发年夏季对流层的环流系统及相应垂直速度、水汽输送变化有明显差异,并影响青藏高原和我国降水的变化。在高原地区,多、少发年之间环流的差异是受高原东部和南部的气流辐合(辐散)场、相应的垂直运动差值上升(下沉)、水汽输送辐合(辐散)区域变化的影响;在东部地区,则是受南海到华南、长江流域、华北到东北为气旋(反气旋)环流系统及其间辐合(辐散)带变化的影响。   相似文献   

7.
关于青藏高原季风,现有研究分别从近地层的热低压、气旋式环流切变以及风场的涡度和散度等角度定义了高原季风指数,但现有指数均更多地关注高原空间场的对比,而没有考虑风场的冬、夏转换特征。因此,在之前的工作中,基于风场季节变率指数,从高原近地层冬、夏风场对比的角度定义了一种新的高原季风指数,这里对该指数进行改进和简化,以便于其的进一步推广。为了验证改进的效果,使用ERA-interim再分析数据计算高原季风指数,并比较了不同高原季风指数年变化和年际变化的差异及其与夏季降水相关的差异。结果表明:(1)改进后的高原季风指数物理含义清楚,弥补了原指数计算复杂的不足。(2)物理基础的差异使得新指数在8月达到峰值,不同于其他指数在6月达到峰值。整体而言,不同高原季风指数和高原降水的年变化特征均有较高的一致性。(3)新指数能够较好地表征高原季风与高原夏季降水东、西反相的相关系数分布特征,且不同于其他指数在高原一致的相关系数分布特征,对于高原地区降水,尤其是高原东南部人口相对密集地区的降水预测具有较好的指示意义。   相似文献   

8.
利用NCEP 1950—2004年逐日再分析资料,采用倒算法,对青藏高原大气热源的长期变化进行了计算,结果发现,青藏高原及附近地区上空大气春夏季热源在过去50年里,尤其是最近20年,表现为持续减弱的趋势。而1960—2004年青藏高原50站的冬春雪深却出现了增加,尤其是春季雪深在1977年出现了由少到多的突变。用SVD方法对高原积雪和高原大气热源关系的分析表明,二者存在非常显著的反相关关系,即高原冬春积雪偏多,高原大气春夏季热源偏弱。高原大气春夏季热源和中国160站降水的SVD分析表明,高原大气春夏季热源和夏季长江中下游降水呈反相关,与华南和华北降水呈正相关;而高原冬春积雪和中国160站降水的SVD分析显示,高原冬春积雪和夏季长江流域降水呈显著正相关,与华南和华北降水呈反相关。在年代际尺度上,青藏高原大气热源和冬春积雪与中国东部降水型的年代际变化(南涝北旱)有很好的相关。最后讨论了青藏高原大气热源影响中国东部降水的机制。青藏高原春夏季热源减弱,使得海陆热力差异减小,致使东亚夏季风强度减弱,输送到华北的水汽减少,而到达长江流域的水汽却增加;同时,高原热源减弱,使得副热带高压偏西,夏季雨带在长江流域维持更长时间。导致近20年来长江流域降水偏多,华北偏少,形成"南涝北旱"雨型。高原冬春积雪的增加,降低了地表温度,减弱了地面热源,并进而使得青藏高原及附近地区大气热源减弱。  相似文献   

9.
本文利用1981~2020年观测数据和ERA5再分析资料,将青藏高原腹地三江源和东南重要水汽通道河湾区作为典型研究区域,分析了降水不同时间尺度变化特征及其典型强弱年对高原季风环流系统的响应,结果表明:(1)三江源和河湾区降水的季节变化均呈双峰型分布,峰值出现在7月初和8月下旬。夏季降水在21世纪初发生年代际转折,尤其是三江源降水量在近20年增加明显。两个高原季风指数DPMI(Dynamic Plateau Monsoon Index)和ZPMI(Zhou Plateau Monsoon Index)的夏季风爆发时间均超前于河湾区和三江源降水的明显增加期。三江源夏季降水年际变化与两个高原夏季风指数有较好的相关性。三江源与河湾区虽然相邻很近,但三江源夏季降水受高原季风影响程度远大于河湾区。当高原夏季风增强(减弱)时,三江源降水量偏多(少)。(2)三江源降水偏多年,南亚高压偏东偏强,低层高原主体低压异常,有利于西南风和东南风在三江源区域交汇,南方暖湿空气能够深入高原腹地导致水汽辐合偏强。河湾区降水偏多年,河湾区及整个高原主体附近高度场并没有明显异常,河湾区的水汽输送主要有两条路径,一条来自孟...  相似文献   

10.
李菲  段安民 《大气科学》2011,35(4):694-706
利用2008年多种台站观测和再分析资料,通过相关分析和合成分析,详细讨论了青藏高原夏季风季节内变化及其与印度夏季风和东亚夏季风降水之间的关系.结果表明:2008年高原夏季风爆发偏早,降水偏多,季风活动有明显的季节内振荡特征、其准双周振荡特征与东亚夏季风指数和印度全区降水振荡周期相似.高原夏季风强(弱)时,印度全区及我国...  相似文献   

11.
甘南高原雷暴的气候特征   总被引:2,自引:0,他引:2  
王建兵 《干旱气象》2007,25(4):51-55
利用甘南州8个气象站自建站到2005年的雷暴资料,对雷暴的时空分布特征进行了分析,发现甘南州雷暴多发区位于西南部的玛曲、碌曲到东北部的合作之间;从年际变化看,大部分地方的年雷暴天数呈明显下降趋势,特别是1990年代中期后,这种下降趋势更明显,但各地雷暴初终间日数的变化并不明显;夏季雷暴天气出现最多,出现最多的月份是7月,雷暴次数约占全年雷暴次数的20.2%。春末夏初5月下旬到6月上旬、6月下旬和7月中下旬、8月下旬是各月的雷暴高发时段;甘南雷暴1天中的盛发期在12~20时,14~15时是雷暴出现的峰值时段。  相似文献   

12.
青藏高原大气臭氧研究   总被引:3,自引:0,他引:3  
除多 《气象》2001,27(4):3-6
总结了国内外有关青藏高原大气臭氧方面开展的研究工作,并简要地介绍了1996-1999年利用NILUV观测仪器在拉萨地区进行臭氧和紫外辐射观测的初步结论。  相似文献   

13.
利用1998年5-8月“南海季风试验”期间观测站的探空及地面资料,计算并分析了高原及邻近地区大尺度大气热源和水汽汇的日变化特征及其与高原环流的关系。初步结果表明:中南半岛-高原东部的大气热源在早上弱,傍晚较强;南海北部-华南-华中的热源在早上强,傍晚弱。水汽汇的日变化与热源基本相似。傍晚高原东部上升运动明显增强,高原及其南侧的局地经向季风环流增强;高原东部下游地区傍晚的上升运动减弱或变为下沉,形成一个西升东降的局地日变热力纬向环流。1998年夏季长江中偏上游的致洪暴雨和华南的降水主要集中在夜间至午后。  相似文献   

14.
青藏高原冬春雪深分布与中国夏季降水的关系   总被引:2,自引:0,他引:2  
利用SSMR和SSM/I卫星遥感雪深反演资料,通过与高原测站雪深观测资料的对比分析,揭示了高原雪深的时空分布特征,在此基础上对积雪异常年中国夏季降水异常和大气环流进行了对比分析。结果表明,卫星遥感雪深资料可较真实反映出高原积雪的状况,并可反映出高原西部积雪的变化;高原冬、春季积雪EOF分解第1模态具有相同的空间分布,反映了高原冬、春季积雪分布具有相当的一致性,而春季积雪的第2模态则反映高原积雪的东西差异;冬、春季雪深EOF第1模态的时间序列与中国夏季降水的相关分析表明,大致以长江为界,我国东部地区呈现出南涝北旱的分布模态,春季高原东(西)部多(少)雪与东(西)部少(多)雪年的夏季,我国东部降水表现出长江以南(北)地区为大范围的降水偏多(少)。  相似文献   

15.
利用2000~2016年MODIS地表反照率和ECMWF/ERA-Interim再分析资料,选取有代表性的高原季风指数DPMI,统计分析了青藏高原地表反照率与高原季风之间的联系,结果表明:1)11月高原地表反照率大小与次年高原夏季风爆发存在密切关系:11月高原地表反照率偏低(高),次年4月高原夏季风爆发偏早(晚),强度偏强(弱)。2)可能的影响机制为:当前期11月高原地表反照率偏低时,后期高原主体对大气的感热加热信号更强,从而引起4月高原上空近地面层上升运动明显加强,这有利于热量向高空传输,导致对流层加热作用加强,高原上空对流层温度偏高,使得高原季风环流系统加强,最终导致高原季风季节变化相应提前;反之亦然。  相似文献   

16.
中国地区卷云分布特征的星载激光雷达遥感   总被引:1,自引:0,他引:1  
利用2006年6月至2008年5月CALIOP(Cloud-Aerosol LIdar with Orthogonal Polarization)水平分辨率25 km云层产品来研究中国地区的卷云分布特征.所采用的3条基于卷云气候态的质量控制标准能够有效的剔除CALIOP云种分类产品中判别误差.通过卷云水平分布的研究发现...  相似文献   

17.
青藏高原地区地表及行星反射率   总被引:5,自引:3,他引:5       下载免费PDF全文
文章讨论了利用ISCCP卫星观测资料确定青藏高原地区地表反射率的方法,在无积雪地区和季节,地表反射率可以ISCCP可见光反射率为基础,在模式计算过程中,假定紫外反射率以及红外与可见光反射率的比值分别为常数。敏感性试验表明,由这两个假设所产生的误差并不显著。在有积雪地区或季节,地表平均反射率可直接由ISCCP可见光反射率表示。试验结果与地面实际观测作了比较,除沙漠区外,两者比较一致。文中还计算了高原晴天行星反射率。经与ERBE卫星观测比较,发现从5月至9月高原周围沙漠区气溶胶对辐射平衡有较显著的影响。而在其  相似文献   

18.
青藏高原近期气候变化研究进展   总被引:1,自引:0,他引:1  
本文对近期关于青藏高原地区气候变化的研究进行了回顾。结果表明,在过去的几十年间,青藏高原地区的气候发生了明显的变化。主要表现为:1)温度呈上升趋势;降水和积雪呈增加趋势,多年冻土呈退化状态;温度和降水的变化不仅有季节性的差异,还存在区域性的差异。2)区域气候模式RegCM对青藏高原地区温度和降水有一定的模拟能力,但存在系统性的误差。文中还对在青藏高原气候变化方面的研究不足进行了讨论。   相似文献   

19.
青海东北部春季系统性降水高层云系微物理结构分析   总被引:14,自引:11,他引:14  
利用1977-1979年5-6月青海东北部系统性降水高层的云滴谱飞机观测资料,统计分析了该云系云滴群体特征量及微物理结构特点。云特征量的滴浓度,含水量,平均直径,最大直径随高度的分布表明,降水高层云系垂直微结构配置或云水凝物相态可划分为4个不同发展分层,在海拔约5.0km高度上存在一活跃增长层可能是高层发生降水的一个重要特征层,同时分析了云液态含水量随云温的分布特征及与降水的关系。  相似文献   

20.
青藏高原对流时空变化与东亚环流的关系   总被引:7,自引:3,他引:4  
根据1980~1998年逐日TBB和NCEP/NCAR再分析资料,探讨青藏高原对流(TBB)时空分布与东亚环流及天气气候的关系.研究指出,青藏高原主体地区(28°N~34°N,80°E~102°E)的对流冬弱、夏强,存在显著的6月和10月突变现象.夏季亚洲地区最强的对流出现在青藏高原上空,呈现为高原西部(28°N~34°N,82°E~94°E)和东部(27°N~34°N,104°E~110°E)型.夏季青藏高原上空对流弱,850 hPa风场上高原南、北侧的东亚地区分别呈现西风距平,夏季中国易出现南北二条雨带; 夏季高原上空对流强,850 hPa风场上的西风距平出现在东亚30°N附近,夏季易出现江淮流域雨带.夏季江淮流域洪涝年(如1980、1993、1996、1998年)与青藏高原东、西部对流同时加强有关; 夏季江淮流域干旱年(如1992、1994、1997年)与青藏高原东、西部对流同时减弱有关.20世纪90年代,江淮流域洪涝与干旱事件频繁发生可能与青藏高原东、西部对流强度变化出现同位相的年代际变化趋势有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号