首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
新疆克拉玛依强下坡风暴的机理研究   总被引:1,自引:0,他引:1  
卢冰  史永强  王光辉  岳斌 《气象学报》2014,72(6):1218-1230
利用美国中尺度数值模式 WRF 对2013年3月7—8日克拉玛依强风进行了模拟,对下坡风发生、发展和结束3个阶段的三维结构特征进行了分析,并由此提出克拉玛依强下坡风的形成机制模型:上游地区出现中高层西南风、低层西北风并伴有强冷平流的配置,当风速不断增大时,气流能够翻越加依尔山在背风坡侧形成重力波,重力波相位向气流上游方向倾斜产生非线性效应,促进了波不稳定区域的形成并导致波破碎,形成湍流活跃层,不断把上层的能量向下传播;克拉玛依中低层形成三层夹心的大气层结稳定度分布,出现明显的过渡气流带从而导致强下坡风的形成;南北风分量在低层和中层符号相反,形成了临界层,不断吸收上层波能量并向地面传送,强下坡风暴不断维持发展。最后利用2006—2012年克拉玛依33个强下坡风过程中的探空观测资料对提出的形成机制进行了验证。  相似文献   

2.
The article considers the reasons for the underestimation of the wind speed by the WRF-ARW model when simulating downslope windstorms in the Russian Arctic. Simulation results for the Tiksi windstorm, for which sensitivity tests were carried out, appeared to be weakly dependent on the initial and boundary conditions, topography resolution, and boundary layer parameterization. Wind speed underestimation was mostly related to improper land use and the highly overestimated roughness length, which are used in the model. Reduction of the roughness length in accordance with the observations leads not only to a quantitative change in the wind speed in the boundary layer, but to qualitative changes in the dynamics of the flow. Wind underestimation in simulations with the overestimated roughness was caused by the jet stream unrealistically jumping over the lee slope and wake formation in the station area, while jet stream stayed near the surface and propagated to the station area in simulations with the modified roughness length. Modification of land use and roughness length in Tiksi and other regions where downslope windstorms are observed (Novaya Zemlya, Pevek, Wrangel Island) led to a decrease in wind speed modelling error by more than 2.5 times.  相似文献   

3.
Summary Prior to and following the development of a windstorm in the mountainous coastal area of southern Korea, ground level ozone (O3)-concentrations near Kangnung city, on the lee side of the mountains, show a maximum value at approximately 1300 LST, owing to a photolytic cycle of NO2–NO–O3 during the day and a minimum in concentrations at night as a result of the reverse cycle. During the development period of the windstorm, ozone concentrations are generally high all day, and slightly higher during the night. This distribution pattern of ozone is very different from the typical distribution of ozone in the absence of windstorms. High daytime concentrations of ozone during the windstorm are due to both the increase in the amount of ozone from photochemical reactions involving NOx and the increase in O3-concentration due to a decrease in the convective boundary layer thickness under the influence of downslope windstorm conditions on the lee-side of the mountains. At night, the windstorm increases in intensity as the westerly winds combine with a katabatic wind blowing downslope toward the surface at the coast. This causes momentum transport of air parcels in the upper levels toward the surface at the coast and the development of internal gravity waves, which generate a hydraulic jump directed upward over the coast and the East sea, thereby reducing to very thin the thickness of the nocturnal surface inversion layer (NSIL). The higher O3-concentration at night depends mainly upon the shallow NSIL and on some O3 being transported by the momentum transfer from the upper troposphere toward the ground in windstorm conditions.  相似文献   

4.
Summary ?We have investigated the effects of shear and sharp gradients in static stability and demonstrated how a mountain wave and its associated surface winds can be strongly influenced. Linear theory for two-dimensional, nonrotating stratified flow over an isolated mountain ridge with positive shear and constant static stability shows that the horizontal wind speeds on both the lee and upslope surfaces are suppressed by positive shear. The critical F(=U/Nh where U is the basic wind speed, N the Brunt-Vaisala frequency, and h the mountain height) for the occurrence of wave breaking decreases when the strength of the positive shear increases, while the location for the wave-induced critical level is higher in cases with larger positive shear. The linear theory is then verified by a series of systematic nonlinear numerical experiments. Four different flow regimes are found for positive shear flow over a two-dimensional mountain. The values of critical F which separate the flow regimes are lower when the strength of the positive shear is larger. The location of stagnation aloft from numerical simulations is found to be quite consistent with those predicted by linear theory. We calculate the strongest horizontal wind speed on the lee surface (U max), the smallest horizontal wind speed on the upslope surface (U min), the reflection (Ref), and the transmission (Tran) coefficients for different combinations of the stability ratio between the upper and lower layers (i.e. and z 1 (interface height) in a two-layer atmosphere from linear analytical solutions. Both Ref and Tran are found to be functions of log() but not the interface height (z 1). Ref is larger when is much different from 1, no matter whether it is larger or smaller than 1. However, Tran decreases when log() increases and approaches 0 when log() is large. The magnitude of the largest U max (smallest U min) increases (decreases) as the absolute value of log() increases. It is found that the largest U max occurs when the nondimensional z 1 is near for cases with a less stable upper layer or when z 1 is near for cases with a more stable upper layer. These results are confirmed by nonlinear numerical simulations. We find that linear theory is very useful in qualitative analysis of the possibility of high-drag state for different stability profiles. The location of stagnation aloft in a two-layer atmosphere from numerical simulations agrees very well with those predicted by linear theory. The above findings are applied to investigate the Boulder severe downslope windstorm of 11 January 1972. We find that the windstorm cannot develop if the near mountain-top inversion is located at a higher altitude (e.g.,  km). However, if there exists a less stable layer right below the tropopause, the windstorm can develop in the absence of a low-level inversion. These results indicate the importance of partial reflection due to the structured atmosphere in influencing the possibility of severe downslope windstorms, although partial reflection may not be the responsible mechanism for the generation of windstorms. Received September 25, 1999/Revised February 9, 2000  相似文献   

5.
地形对于气流运动影响的数值研究   总被引:7,自引:3,他引:7  
建立了二维、非静力平衡的数值模式,研究地形对上游气流的阻挡以及大振幅背风波谷与下坡风的形成。结果表明:地形的阻挡效应受地形高度、大气层结及地形非对称性等因子的影响。数值试验与理论分析都证明地形越高、层结越稳定时阻挡作用越强;同样条件下,迎风坡坡度大的地形容易对气流形成阻挡。此外,分析了地形高度、大气层结、地形非对称性以及基本入流大小对背风波谷及下坡风强度影响的规律,并通过一次实际观测对数值模拟结果进行了检验。  相似文献   

6.
为了研究风场对背风波的影响,针对边界层附近为弱稳定层结的背风波,建立了一个三维三层的理论模型和线性计算模式,分析了各层中风速和风向的变化对背风波特征的影响,揭示了气流过孤立山脉产生背风波的有利风场条件。结果表明:背风波的波长、振幅等特征对各层风速和风向的变化具有相当的敏感性,波长随着低、高层风速的增大而增大,随着中层风速的增大先减小后增大;振幅随着低、中层风速的增大先增大后减小,随着高层风速的增大而增大。此外,风速和上下层风向切变的增大均使背风波的形态逐渐由横波型转为辐散型,但是上下层风向的切变对背风波形态的影响比风速更为显著。  相似文献   

7.
Summary Numerical experiments are performed for inviscid flow past an idealized topography to investigate the formation and development of lee mesolows, mesovortices and mesocyclones. For a nonrotating, low-Froude number flow over a bell-shaped moutain, a pair of mesovortices form on the lee slope move downstream and weaken at later times. The advection speed of the lee vortices is found to be about two-thirds of the basic wind velocity, which is due to the existence of a reversed pressure gradient just upstream of the vortices. The lee vortices do not concur with the upstream stagnation point in time, but rather form at a later time. It is found that a pair of lee vortices form for a flow withFr=0.66, but take a longer time to form than in lower-Froude number flows. Since the lee vortices are formed rather progressively, their formation may be explained by the baroclinically-induced vorticity tilting as the mountain waves become more and more nonlinear.A stationary mesohigh and mesolow pressure couplet forms across the mountain and is produced in both high and low-Froude number flows. The results of the high Froude number simulations agree well with the classical results predicted by linear, hydrostatic mountain wave theory. It is found that the lee mesolow is not necessarily colocated with the lee vortices. The mesolow is formed by the downslope wind associated with the orographically forced gravity waves through adiabatic warming. The earth's rotation acts to strengthen (weaken) the cyclonic (anticyclonic) vortex and shifts the lee mesolow to the right for an observer facing downstream. The cyclonic vortex then develops into a mesocyclone with the addition of planetary vorticity at later times. For a flow over a steeper mountain, the disturbance is stronger even though the Froude number is kept the same.For a southwesterly flow past the real topography of Taiwan, there is no stagnation point or lee vortices formed because the impinging angle of the flow is small. A major mesoscale low forms to the southeast of the Central Mountain Range (CMR), while a mesohigh forms upstream. For a westerly flow past Taiwan, a stagnation point forms upstream of the mountain and a pair of vortices form on the lee and move downstream at later times. The cyclonic vortex then develops into a mesocyclone. A mesolow also forms to the southeast of Taiwan. For a northeasterly flow past Taiwan, the mesolow forms to the northwest of the mountain. Similar to flows over idealized topographies, the Taiwan mesolow is formed by the downslope wind associated with mountain waves through adiabatic warming. A conceptual model of the Taiwan southeast mesolow and mesocyclone is proposed.With 16 Figures  相似文献   

8.
Downslope windstorms at Kvísker in Southeast Iceland are explored using a mesoscale model, observations and numerical analysis of the atmosphere. Two different types of gravity-wave induced windstorms are identified. At the surface, their main difference is in the horizontal extent of the lee-side accelerated flow. Type S (Short) is a westerly windstorm, which is confined to the lee-slopes of Mount ?r?faj?kull, while a Type E (Extended) windstorm occurs in the northerly flow and is not confined to the lee-slopes but continues some distance downstream of the mountain. The Type S windstorm may be characterized as a more pure gravity-wave generated windstorm than the Type E windstorm which bears a greater resemblance to local flow acceleration described by hydraulic theory. The low-level flow in the Type E windstorm is of arctic origin and close to neutral with an inversion well above the mountain top level. At middle tropospheric levels there is a reverse vertical windshear. The Type S windstorm occurs in airmasses of southerly origin. It also has a well-mixed, but a shallower boundary-layer than the Type E windstorms. Aloft, the winds increase with height and there is an amplified gravity wave. Climate projections indicate a possible decrease in windstorm frequency up to the year 2050.  相似文献   

9.
Summary Hydrostatic and nonhydrostatic simulation models are employed to study the intensification of a terrain drag-induced dryline. The study develops a multi-stage theory for the evolution of the dryline including the concentration of potential vorticity accompanying meso-gamma scale dryline bulges.The numerical simulations indicate three fundamental stages of dryline intensification all of which are either directly or indirectly a result of the terrain-drag on the mid/upper-tropospheric jet stream by the Front Range of the Colorado Rocky Mountains. The first stage involves the downward momentum flux accompanying a large amplitude hydrostatic mountain wave which induces a downslope windstorm along the lee slopes. The surge of momentum (i.e., the dry, warm air associated with the downslope windstorm) propagates down the leeslope and modifies an existing weak dryline boundary. As the downslope windstorm initiates an undular bore along the lee slopes, the high momentum gradient which propagates downstream accompanying the bore, as well as the strong lower tropospheric sinking motions ahead of the bore, contract the scale of the surface moisture boundary between the dry air from above the leeslope and the moist air over the High Plains. This process further strengthens the dryline.The second stage involves the coupling of the terrain drag-induced along-stream ageostrophic front within the midtroposphere to the boundary layer through a thermally-indirect circulation. As the along-stream ageostrophic circulation intensifies within the middle troposphere down-stream from the mountain wave, sinking air parcels originating above 40 kPa descend to below 60 kPa over the High Plains where surface pressures are, only 85 kPa. These descending air parcels within the upstream branch of the along-stream ageostrophic thermally-indirect circulation contain high values of momentum and very low dewpoint values. As the planetary boundary layer (PBL) deepens due to surface warming during the morning hours, momentum and dry air from the midtropospheric along-stream ageostrophic front are entrained into the PBL. This process amplifies the bore-induced hydrostatic dryline bulge via low-level ageostrophic confluence.Finally, regions of low Richardson number (arising from strong vertical shears) within the amplifying midtropospheric along-stream ageostrophic thermally-indirect circulation become preferred regions for the development of non-hydrostatic evanescent internal gravity waves. These waves are embedded within the hydrostatic along-stream front above the low-level dryline and are accomapanied by very significant values of vertical momentum flux which act to focus the meso-gamma scale structure of the dryline into smaller scale bulges where low-level winds and vorticities are very high. This meso-gamma scale process follows the hydrostatic tilting and vortex tube stretching which creates meso-beta scale maxima of mid-lower tropospheric vorticity. The turbulent momentum fluxes accompanying wavebreaking within the nonhydrostatic dryline bulge create very large (i.e., stratospheric values of) potential vorticity near 70 kPa due to the nonconservation of potential vorticity on isentropic surfaces.With 30 Figures  相似文献   

10.
利用中尺度模式WRF3.3对太行山东麓焚风典型个例进行了数值模拟。结果表明,太行山东麓焚风的发生和移动与山脉背风波密切相关。由此建立了太行山东麓焚风的概念模型:西北或偏西气流途经山西盆地、山西境内的山脉或高原,再越过太行山,在其东麓形成背风波。背风波的下沉气流气温按干绝热方式上升,同时下沉气流也会对低层大气产生压缩增温效应,使得太行山东麓产生焚风。背风波即为重力波,可以伴随着下沉气流向下游移动,正变温区同时也向东移动。变温区移动的速度和重力波的传播速度相同。背风波的产生,需要Scorer数向上足够的减小,而且不连续,即要求大气是稳定的且存在明显的风速切变。  相似文献   

11.
The bora event observed in Novorossiysk on February 6–8, 2012 was analyzed using the WRF numerical model of regional atmospheric circulation. The main meteorological parameters are reproduced. It is demonstrated that the maximum wind speed is reached in the area of the lee slope directly over the bay. It is obtained that the bora development is accompanied by intensive waves associated with the flowing around coastal mountains whose regime changes in time. Computed and measured changes in the surface wind speed are in a good agreement.  相似文献   

12.
Summary This study addresses simulation of the local bora wind and its properties as reflected on typical trajectories. Trajectory calculations are implemented in the Eta Model. The Eta Model has a vertical coordinate which permits a step-like representation of mountains and quasi-horizontal coordinate surfaces, the so-called eta coordinate. A realistic real data simulation of a bora wind case in achieved using the model with a 28 km horizontal resolution and 16 layers in the vertical. Numerical experiments with different mountain heights and shapes in the bora wind region are performed. These are motivated by observational indications and theoretically based expectations that a certain intermediate mountain elevation is required for generation of downslope windstorms with bora wind properties. Three-dimensional trajectories over various mountains mimicing real mountains but differing primarily in elevation are calculated and analysed. The maximum bora wind speed is predicted as expected through three-dimensional channels in the step mountain representations. The results illustrate and are in agreement with the observational evidence that mountain barriers of the elevation of about 1000 m are a necessary requirement for the occurrence of the bora-type downslope windstorms.With 10 Figures  相似文献   

13.
1.IntroductionTheimportanceoforographiceffectsonfrontwasrecognizedintheearly20thcentury.Butforthecomplexityofthisproblem,theinvestigationoforographiceffectsonfrontfromdynamicalviewpointisnottakenuntilthe1980s.Bannon(1983)derivedanalyticalsolutionsforthequasi--geostrophicfrontforcedbyahorizontalwinddeformationfieldthatmovesoveratwo--dimensionalmountainridge.Thesolutionsshowthatasacoldfrontapproachestheridge,itweakens,relativetotheflat--bottomsolution,andthefrontstrengthensasitmovesdowntothelees…  相似文献   

14.
条件不稳定湿大气中三维理想地形上空对流的动力学特征   总被引:5,自引:1,他引:4  
董继立  谈哲敏 《气象学报》2008,66(3):293-309
条件不稳定湿大气情况下,气流经过三维地形可以形成不同性质的对流系统以及不同特征的地形流结构,其对流系统、地形流的性质主要取决于地形上空的对流触发、对流-地形流-重力波三者之间的相互作用,同样这些过程对于地形降水的性质、分布起重要的作用.根据不同湿Fr数(Froude number),湿条件不稳定大气经过三维小尺度山地上空时其对流和地形流动存在4种不同的流域(flow regirnes):(1)下游传播对流模态;(2)上游传播和下游传播共存对流模态;(3)山峰附近准静止和下游传播共存对流模态;(4)下坡稳定和下游传播对流共存模态.地形上空对流系统主要可以通过两种不同机制形成:(1)地形直接的抬升或减速作用;(2)在地形流形成后,由于地形流本身特性(如上游分离、背风涡旋和下坡重力波破碎)触发.在较大的Fr数情况下,地形上空对流生成后反过来可以破坏上、下游的地形流结构,但对背风坡的重力波破碎影响较小.不同初始对流有效位能(CAPE)不仅可以影响对流系统的传播、发展,而且可以影响整体地形流性质.较低的初始CAPE有利于地形流的形成,此时对流对地形流结构特征的影响相对较小,其流场性质与低Fr数流域性质相似.  相似文献   

15.
Summary In this paper, an attempt has been made to examine the effect of static stability on the pattern of three dimensional (3-D) baroclinic lee wave across a meso-scale elliptical barrier. For this purpose first a 3-D meso scale lee wave model has been developed. Then the model is applied to the Western Ghats (WG) using real time radio sonde data of Santacruz (19°7′N, 72°51′E) (here after SCZ), a station on the windward side of WG, on the days when dynamic and thermodynamic conditions of the atmosphere were favourable to generate lee waves. It is found that the pattern of 3-D baroclinic lee wave is very much sensitive to the value of the static stability parameter N2. It is found that during southwest monsoon season trapped lee waves are convergent type (contours of perturbation vertical velocity w′ are crescent shaped convex down wind) and during winter they are divergent type (contours of w′ are crescent shaped concave down wind). The study shows that for a given profile of wind, the value of N2 must exceed certain threshold value to obtain divergent type lee wave, otherwise convergent type lee waves are found. It is also found that in the southwest monsoon season, when atmosphere is neutrally stratified, a single divergent lee wave corresponds to a single transverse lee wave, whereas in the winter season, when atmosphere is strongly stratified, a single divergent lee wave corresponds to a number of transverse lee wave. Furthermore, in the former case long (or short) divergent lee wave corresponds to short (or long) transverse lee wave, whereas in the later case long (or short) divergent lee wave, in general, corresponds to long (or short) transverse lee wave. This revised version was published online in November 2004 with corrected captions of Figs. 1 and 2.  相似文献   

16.
The wave drag is considered for downslope windstorms in Novorossiysk, on Novaya Zemlya, and in Pevek. The research is based on the results of numerical simulation with the WRF-ARW model. Special attention is paid to the evaluation of the contribution that wave processes make to the overall dynamics of the phenomenon (based on the ratio of wave and orographic drag) and to the specific features of wave drag for different downslope windstorms.  相似文献   

17.
Analyzed are the experimental data on the range of the sea wind waves obtained using a laser meter of hydrospheric pressure variations in 2007, 2010, 2011, and 2012 at different points of the shelf of the Sea of Japan. It is demonstrated that the variations of wind wave periods at their leaving the zone of cyclonic action can be associated not only with the dispersion but also with the Doppler effect and variations of the wind speed and wind direction in the zone of cyclonic action. Carried out was the analysis of the results of the processing of experimental data of the laser meter of hydrospheric pressure variations and the mobile laser meter of hydrospheric pressure variations; this analysis revealed that the transformation of wind waves with the decrease in the period and energy takes place in the case of their movement along the shelf of the decreasing depth.  相似文献   

18.
Summary Numerical simulations of four mountain wave events over the Colorado Rockies were carried out with a two-dimensional hydrostatic model including a turbulent mixing parameterization in order to investigate the effect of surface friction. Surface friction was found to play a major role in modulating and even in some cases preventing the wave amplification mechanism from producing severe downslope windstorms.With 8 Figures  相似文献   

19.
水汽空间分布对大气船舶重力波影响的数 值试验   总被引:4,自引:0,他引:4  
李子良 《气象学报》2006,64(3):308-314
利用中尺度数值模式ARPS模拟研究了水汽在山脉重力波和大气船波的产生和演变中的作用。研究发现水汽和非绝热效应对大气船波的影响与水汽的空间分布有关,大气船波的产生和演变对水汽的空间分布具有极端的敏感性,在一定条件下水汽的引入有可能减少大气船波的活动。对于3层模式结构的气流过山而言,如果初始的水汽分布在中层大气,则水汽和非绝热效应对大气船波的影响较小,而如果初始的水汽分布在中下层大气,则引入水汽后减少了大气船波的强度,但是如果初始的水汽分布在整个模式大气层,则水汽的引入减少了大气船波的活动。  相似文献   

20.
An analysis of 3 years' (1967–70) radiosonde wind data on the windward (Salt Lake City, Utah) and lee (Denver, Colorado) sides of mountains indicates that at these two stations: (1) the distributions of the kinetic energy of the mean and turbulent motions are similar above the mountain top; (2) below the mountain top, on the windward side, mountains tend to divert the component of the mean motion normal to the mountains to that parallel to the mountains; (3) the meridional eddy transport of westerly momentum is affected by the presence of the mountains to a higher level to the lee of the mountains than upwind of them; (4) the production of turbulent energy is higher below the mountain top in the vicinity of mountains than it is for the zonal average; (5) high frequencies of the motion show a more pronounced contribution in the meridional motion in the windward side, but in the zonal motion in the lee of the mountains; (6) disturbances of 1–2 day periods can be maintained deep into the valley, whereas disturbances of longer periods reduce their amplitudes rapidly with decreasing height from the mountain top; (7) the cospectra of the wind velocities show that the southward/northward transport of westerly momentum results from a southward/northward contribution from most frequencies. The main contributions come from eddies with periods longer than two days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号