首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Severe downslope windstorms occurred on 5 April 2005 in the Taebaek Mountain Range, located in the eastern coast of Korea, are examined using the Weather Research and Forecasting (WRF) model. Strong winds are observed at Gangneung and Yangyang during two separate periods with a rapidly decreasing period in between. These downslope windstorms are reproduced in the simulation reasonably well, although the rapidly decreasing surface wind speed after the second windstorm could not be captured at Yangyang. It is found that the generation mechanisms of the downslope windstorms in these two periods are somewhat different. The severe wind in the first period is likely due to the reflection of the mountain waves from a critical level that locates near z = 8–9 km. Upward-propagating waves and reflected downward-propagating waves interact constructively in a duct between the critical level and the surface, resulting in strong surface wind. In the second period, the hydraulic-jump theory can be applied in that the wave breaking above the downstream induces a well-mixed region, and severe downslope wind is developed beneath this turbulent region as the streamlines descend along the downstream. Simultaneous lee wave structure is also reproduced during the second windstorm period. The sensitivity of the downslope wind speed to the change in the land-cover map showed that the absorption of trapped lee waves in the boundary layer reduces the downslope wind speed significantly after the second windstorm at Gangneung, improving the model performance, although with no significant impact at Yangyang.  相似文献   

2.
A simple new model is proposed to predict the distribution of wind velocity and surface shear stress downwind of a rough-to-smooth surface transition. The wind velocity is estimated as a weighted average between two limiting logarithmic profiles: the first log law, which is recovered above the internal boundary-layer height, corresponds to the upwind velocity profile; the second log law is adjusted to the downwind aerodynamic roughness and local surface shear stress, and it is recovered near the surface, in the equilibrium sublayer. The proposed non-linear form of the weighting factor is equal to ln(z/z 01)/ln(δ i /z 01), where z, δ i and z 01 are the elevation of the prediction location, the internal boundary-layer height at that downwind distance, and the upwind surface roughness, respectively. Unlike other simple analytical models, the new model does not rely on the assumption of a constant or linear distribution for the turbulent shear stress within the internal boundary layer. The performance of the new model is tested with wind-tunnel measurements and also with the field data of Bradley. Compared with other existing analytical models, the proposed model shows improved predictions of both surface shear stress and velocity distributions at different positions downwind of the transition.  相似文献   

3.
新疆克拉玛依强下坡风暴的机理研究   总被引:1,自引:0,他引:1  
卢冰  史永强  王光辉  岳斌 《气象学报》2014,72(6):1218-1230
利用美国中尺度数值模式 WRF 对2013年3月7—8日克拉玛依强风进行了模拟,对下坡风发生、发展和结束3个阶段的三维结构特征进行了分析,并由此提出克拉玛依强下坡风的形成机制模型:上游地区出现中高层西南风、低层西北风并伴有强冷平流的配置,当风速不断增大时,气流能够翻越加依尔山在背风坡侧形成重力波,重力波相位向气流上游方向倾斜产生非线性效应,促进了波不稳定区域的形成并导致波破碎,形成湍流活跃层,不断把上层的能量向下传播;克拉玛依中低层形成三层夹心的大气层结稳定度分布,出现明显的过渡气流带从而导致强下坡风的形成;南北风分量在低层和中层符号相反,形成了临界层,不断吸收上层波能量并向地面传送,强下坡风暴不断维持发展。最后利用2006—2012年克拉玛依33个强下坡风过程中的探空观测资料对提出的形成机制进行了验证。  相似文献   

4.
Downslope windstorms at Kvísker in Southeast Iceland are explored using a mesoscale model, observations and numerical analysis of the atmosphere. Two different types of gravity-wave induced windstorms are identified. At the surface, their main difference is in the horizontal extent of the lee-side accelerated flow. Type S (Short) is a westerly windstorm, which is confined to the lee-slopes of Mount ?r?faj?kull, while a Type E (Extended) windstorm occurs in the northerly flow and is not confined to the lee-slopes but continues some distance downstream of the mountain. The Type S windstorm may be characterized as a more pure gravity-wave generated windstorm than the Type E windstorm which bears a greater resemblance to local flow acceleration described by hydraulic theory. The low-level flow in the Type E windstorm is of arctic origin and close to neutral with an inversion well above the mountain top level. At middle tropospheric levels there is a reverse vertical windshear. The Type S windstorm occurs in airmasses of southerly origin. It also has a well-mixed, but a shallower boundary-layer than the Type E windstorms. Aloft, the winds increase with height and there is an amplified gravity wave. Climate projections indicate a possible decrease in windstorm frequency up to the year 2050.  相似文献   

5.
For the first time, the exchange coefficient of heat CH has been estimated from eddy correlation of velocity and virtual temperature fluctuations using sonic anemometer measurements made at low wind speeds over the monsoon land atJodhpur (26°18' N, 73°04' E), a semi arid station. It shows strong dependence on wind speed, increasing rapidly with decreasing wind speed, and scales according to a power law CH = 0.025U10 -0.7 (where U10 is the mean wind speed at 10-m height). A similar but more rapid increase in the drag coefficient CDhas already been reported in an earlier study. Low winds (<4 m s-1) are associated with both near neutral and strong unstable situations. It is noted that CH increases with increasing instability. The present observations best describe a low wind convective regime as revealed in the scaling behaviour of drag, sensible heat flux and the non-dimensional temperature gradient. Neutral drag and heat cofficients,corrected using Monin–Obukhov (M–O) theory, show a more uniform behaviour at low wind speeds in convective conditions, when compared with the observed coefficients discussed in a coming paper.At low wind convective conditions, M-O theory is unable to capture the observed linear dependence of drag on wind speed, unlike during forced convections. The non-dimensional shear inferred from the present data shows noticeable deviations from Businger's formulation, a forced convection similarity. Heat flux is insensitive to drag associated with weak winds superposed on true free convection. With heat flux as the primary variable, definition of new velocity scales leads to a new drag parameterization scheme at low wind speeds during convective conditionsdiscussed in a coming paper.  相似文献   

6.
Summary In this paper, we evaluate the applicability of flux-gradient relationships for momentum and heat for urban boundary layers within the Monin-Obukhov similarity (MOS) theory framework. Although the theory is widely used for smooth wall boundary layers, it is not known how well the theory works for urban layers. To address this problem, we measured the vertical profiles of wind velocity, air temperature, and fluxes of heat and momentum over a residential area and compared the results to theory. The measurements were done above an urban canopy whose mean height zh is 7.3 m. 3-D sonic anemometers and fine wire thermocouples were installed at 4 heights in the region 1.5zh < z < 4zh. We found the following: (1) The non-dimensional horizontal wind speed has good agreement with the stratified logarithmic profile predicted using the semi-empirical Monin-Obukov similarity (MOS) function, when it was scaled by the surface friction velocity that is derived from the shear stress extrapolated to the roof-top level. (2) The scaled gradient of horizontal wind speed followed a conventional semi-empirical function for a flat surface at a level (z/zh = 2.9), whereas, in the vicinity of the canopy height was larger than the commonly-used empirical relationship. (3) The potential temperature profile above the canopy shows dependency on the atmospheric stability and the scaled gradient of temperature is in good agreement with a conventional shear function for heat. In the case of heat, the dependency on height was not found. (4) The flux-gradient relationship for momentum and heat in the region 1.5zh < z < 4zh was rather similar to that for flat surfaces than that for vegetated canopies.  相似文献   

7.
Summary Prior to and following the development of a windstorm in the mountainous coastal area of southern Korea, ground level ozone (O3)-concentrations near Kangnung city, on the lee side of the mountains, show a maximum value at approximately 1300 LST, owing to a photolytic cycle of NO2–NO–O3 during the day and a minimum in concentrations at night as a result of the reverse cycle. During the development period of the windstorm, ozone concentrations are generally high all day, and slightly higher during the night. This distribution pattern of ozone is very different from the typical distribution of ozone in the absence of windstorms. High daytime concentrations of ozone during the windstorm are due to both the increase in the amount of ozone from photochemical reactions involving NOx and the increase in O3-concentration due to a decrease in the convective boundary layer thickness under the influence of downslope windstorm conditions on the lee-side of the mountains. At night, the windstorm increases in intensity as the westerly winds combine with a katabatic wind blowing downslope toward the surface at the coast. This causes momentum transport of air parcels in the upper levels toward the surface at the coast and the development of internal gravity waves, which generate a hydraulic jump directed upward over the coast and the East sea, thereby reducing to very thin the thickness of the nocturnal surface inversion layer (NSIL). The higher O3-concentration at night depends mainly upon the shallow NSIL and on some O3 being transported by the momentum transfer from the upper troposphere toward the ground in windstorm conditions.  相似文献   

8.
We investigated the flux footprints of receptors at different heights in the convective boundary layer (CBL). The footprints were derived using a forward Lagrangian stochastic (LS) method coupled with the turbulent fields from a large-eddy simulation model. Crosswind-integrated flux footprints shown as a function of upstream distances and sensor heights in the CBL were derived and compared using two LS particle simulation methods: an instantaneous area release and a crosswind linear continuous release. We found that for almost all sensor heights in the CBL, a major positive flux footprint zone was located close to the sensor upstream, while a weak negative footprint zone was located further upstream, with the transition band in non-dimensional upwind distances −X between approximately 1.5 and 2.0. Two-dimensional (2D) flux footprints for a point sensor were also simulated. For a sensor height of 0.158 z i, where z i is the CBL depth, we found that a major positive flux footprint zone followed a weak negative zone in the upstream direction. Two even weaker positive zones were also present on either side of the footprint axis, where the latter was rotated slightly from the geostrophic wind direction. Using CBL scaling, the 2D footprint result was normalized to show the source areas and was applied to real parameters obtained using aircraft-based measurements. With a mean wind speed in the CBL of U = 5.1 m s−1, convective velocity of w * = 1.37 m s−1, CBL depth of z i = 1,000 m, and flight track height of 159 m above the surface, the total flux footprint contribution zone was estimated to range from about 0.1 to 4.5 km upstream, in the case where the wind was perpendicular to the flight track. When the wind was parallel to the flight track, the total footprint contribution zone covered approximately 0.5 km on one side and 0.8 km on the other side of the flight track.  相似文献   

9.
The damage caused by windstorms to forest ecosystems is often very heterogeneous. In order to improve the stability of forested landscapes, it is of great importance to identify the factors responsible for this spatial variability. The structure of the landscape itself may play a role, through possible influences of canopy heterogeneities on the development of turbulence. For the purpose of investigating the role of landscape fragmentation on turbulence development, we used a numerical flow model with a k–ε turbulence scheme model, previously validated in simple cases with well-defined surface changes (roughness change and forest edge flow). A series of two- and three-dimensional simulations were performed over a heterogeneous urban forested park in Europe, which was severely damaged in various places by the Lothar windstorm in December 1999. The model shows the development of a region of strong turbulence, resulting from the generation of large wind shear at the top of the canopy. A sensitivity study shows how the location, extension and intensity of the region depend on canopy characteristics such as the leaf density, the nature of the edge or the presence of gaps and clearings. Simulations performed in conditions representative of the windstorm show that the location of the damaged areas corresponds very closely to the regions where the turbulent kinetic energy was above a certain threshold.  相似文献   

10.
Low-level katabatic wind profiles, which have shapes similar to those of the low-level jet (LLJ) wind profiles, are often observed during strong winds in the summer period at Mizuho Station, which is located at 70°42 S, 44°20 E in East Antarctica. The profiles may be classified according to the height of the maximum wind speed, z m , found below 30 m height. The behavior of z m and of conditions in the layer above z mare explained well by the normalized frequency, f N = Nz/U at 30 m, whose value can be used to predict the existence of a LLJ wind profile. Subsidence and inertial oscillations above z m are related closely to the height and time variations of z m. Thus, not only effects emanating upward from surface but also momentum and heat transported downward from above are significant for the evolution of z m.  相似文献   

11.
The aerodynamic effects of various configurations of an urban array were investigated in a wind-tunnel experiment. Three aerodynamic parameters characterising arrays—the drag coefficient (C d ), roughness length (z o) and displacement height (d)—are used for analysis. C d is based on the direct measurement of the total surface shear using a floating element, and the other two parameters are estimated by logarithmic fitting of the measured wind profile and predetermined total drag force. The configurations of 63 arrays used for measurement were designed to estimate the effects of layout, wind direction and the height variability of the blocks on these parameters for various roughness packing densities. The results are summarised as follows: (1) The estimated C d and z o of the staggered arrays peak against the plan area index (λ p ) and frontal area index (λ f ), in contrast with values for the square arrays, which are less sensitive to λ p and λ f . In addition, the square arrays with a wind direction of 45° have a considerably larger C d , and the wind direction increases z o/H by up to a factor of 2. (2) The effect of the non-uniformity of roughness height on z o is more remarkable when λ f exceeds 20%, and the discrepancy in z o is particularly remarkable and exceeds 200%. (3) The effect of the layout of tall blocks on C d is stronger than that of short blocks. These results indicate that the effects of both wind direction and the non-uniformity of the heights of buildings on urban aerodynamic parameters vary greatly with λ p and λ f ; hence, these effects should be taken into account by considering the roughness packing density.  相似文献   

12.
In this paper we study the effect of atmospheric stability on the growth of surface gravity waves. To that end we numerically solved the Taylor-Goldstein equation for wind profiles which deviate from a logarithmic form because stratification affects the turbulent momentum transport. Using Charnock's relation for the roughness height z 0 of the wind profile, it is argued that the growth rate of the wave depends on the dimensionless phase velocity c/u * (where u * is the friction velocity) and a measure of the effect of atmospheric stability, namely the dimensionless Obukhov length gL/u * 2, whereas it only depends weakly on gz t /u * 2 (where z t is the roughness height of the temperature profile). Remarkably for a given value of u * /c, the growth rate is larger for a stable stratification (L > 0) than for an unstable one (L < 0). We explain why this is the case. If, on the other hand, one considers the growth rate as a function of c/U 10 (where U 10 is the windspeed at 10 m), the situation reverses for c/U 10 < 1. For practical application in wave prediction models, we propose a new parameterization of the growth rate of the waves which is an improvement of the Snyder et al. (1981) proposal because the effect of stability is taken into account.  相似文献   

13.
Based on the Lagrangian change equation of vertical vorticity deduced from the equation of threedimensional Ertel potential vorticity(PV e),the development and movement of vortex are investigated from the view of potential vorticity and diabatic heating(PV-Q).It is demonstrated that the asymmetric distribution in the vortex of the non-uniform diabatic heating in both vertical and horizontal can lead to the vortex’s development and movement.The theoretical results are used to analyze the development and movement of a Tibetan Plateau(TP) vortex(TPV),which appeared over the TP,then slid down and moved eastward in late July 2008,resulting in heavy rainfall in Sichuan Province and along the middle and lower reaches of the Yangtze River.The relative contributions to the vertical vorticity development of the TPV are decomposed into three parts:the diabatic heating,the change in horizontal component of PV e(defined as PV 2),and the change in static stability θ z.The results show that in most cases,diabatic heating plays a leading role,followed by the change in PV 2,while the change of θ z usually has a negative impact in a stable atmosphere when the atmosphere becomes more stable,and has a positive contribution when the atmosphere approaches neutral stratification.The intensification of the TPV from 0600 to 1200 UTC 22 July 2008 is mainly due to the diabatic heating associated with the precipitation on the eastern side of the TPV when it uplifted on the up-slope of the northeastern edge of the Sichuan basin.The vertical gradient of diabatic heating makes positive(negative) PV e generation below(above) the maximum of diabatic heating;the positive PV e generation not only intensifies the low-level vortex but also enhances the vertical extent of the vortex as it uplifts.The change in PV e due to the horizontal gradient of diabatic heating depends on the vertical shear of horizontal wind that passes through the center of diabatic heating.The horizontal gradient of diabatic heating makes positive(negative) PV e generation on the right(left) side of the vertical shear of horizontal wind.The positive PV e generation on the right side of the vertical shear of horizontal wind not only intensifies the local vertical vorticity but also affects direction of movement of the TPV.These diagnostic results are in good agreement with the theoretic results developed from the PV-Q view.  相似文献   

14.
Summary In this study, the response of a dynamically unstable shear flow with a critical level to periodic forcing is presented. An energy argument is proposed to explain the upshear tilt of updrafts associated with disturbances in two-dimensional stably stratified flows. In a dynamically unstable flow, the energy equation requires an upshear tilt of the perturbation streamfunction and vertical velocity whereU z is positive. A stability model is constructed using an iteration method. An upshear tilt of the vertical velocity and the streamfunction fields is evident in a dynamically unstable flow, which is required by energy conversion from the basic shear to the growing perturbation wave energy according to the energy argument. The momentum flux profile indicates that the basic flow is decreased (increased) above (below) the critical level. Thus, the shear instability tends to smooth the shear layer. Following the energy argument, a downshear tilt of the updraft is produced in an unstably stratified flow since the perturbation wave energy is negative. The wave energy budget indicates that the disturbance is caused by a thermal instability modified by a shear flow since the potential energy grows faster than the kinetic energy.With 4 Figures  相似文献   

15.
Wind speed was measured at a height of 1 cm above the ground and at several other heights in and above a canopy of tall fescue grass (Festuca arundinacea) using single hot-wire and triple hot-film anemometers. The plant area density in the canopy was concentrated close to the ground, with 75% of the plant area standing belowz=15 cm, wherez is height above the ground. The frequency distributions of horizontal wind speeds,s, were sharply skewed towards positive values at all measurement heights, but were most highly skewed near the ground where the coefficient of skewness ranged from 1.6 to 2.9. Above mid-canopy height, the frequency distribution ofs was described reasonably well by a Gumbel extreme value distribution. Average wind speed,S, decreased exponentially with depth into the canopy with an exponential scale length of abouth/2.8, whereh is the height of the canopy. Atz=1 cm, the value ofS was about 11% of the surface-layeru *. The standard deviation of the fluctuations of the vertical and horizontal components of the wind speed also decreased exponentially with depth inside the canopy with a scale length of abouth/2.5.Inside the canopy, the Eulerian integral time scales for the vertical ( w ) and horizontal ( u ) components of wind speed were about 0.1 s and 1.0 s, respectively, and were approximately constant with height. Above the canopy, these time scales increased sharply and, atz=2.25h, w and u were approximately 1.0 and 3.0s, respectively. Turbulence length scales in the vertical and downwind directions, u and w ·U, respectively, were approximately 1 cm for heights between 1 to 10 cm above the ground inside the canopy, while atz=2.25h, they were about 55 cm and 277 cm. Relatively quiescent periods (lulls) in the air close to the ground were interrupted frequently by gusts. The frequency of occurrence of gusts appears to be correlated with the value of the local shear near the top of the canopy.  相似文献   

16.
The effect of topographical slope angle and atmospheric stratification on turbulence intensities in the unstably stratified surface layer have been parameterized using observations obtained from a three-dimensional sonic anemometer installed at 8 m height above the ground at the Seoul National University (SNU) campus site in Korea for the years 1999–2001. Winds obtained from the sonic anemometer are analyzed according to the mean wind direction, since the topographical slope angle changes significantly along the azimuthal direction. The effects of the topographical slope angle and atmospheric stratification on surface-layer turbulence intensity are examined with these data. It is found that both the friction velocity and the variance for each component of wind normalized by the mean wind speed decrease with increase of the topographical slope angle, having a maximum decreasing rate at very unstable stratification. The decreasing rate of the normalized friction velocity (u * /U) is found to be much larger than that of the turbulence intensity of each wind component due to the reduction of wind shear with increase in slope angle under unstable stratification. The decreasing rate of the w component of turbulence intensity (σ w /U) is the smallest over the downslope surface whereas that of the u component (σ u /U) has a minimum over the upslope surface. Consequently, σ w /u * has a maximum increasing rate with increase in slope angle for the downslope wind, whereas σ u /u * has its maximum for the upslope wind. The sloping terrain is found to reduce both the friction velocity and turbulence intensity compared with those on a flat surface. However, the reduction of the friction velocity over the sloping terrain is larger than that of the turbulence intensity, thereby enhancing the turbulence intensity normalized by the friction velocity over sloping terrain compared with that over a flat surface.  相似文献   

17.
Summary This paper investigates the influence of the planetary boundary-layer (PBL) parameterization and the vertical distribution of model layers on simulations of an Alpine foehn case that was observed during the Mesoscale Alpine Programme (MAP) in autumn 1999. The study is based on the PSU/NCAR MM5 modelling system and combines five different PBL schemes with three model layer settings, which mainly differ in the height above ground of the lowest model level (z 1). Specifically, z 1 takes values of about 7 m, 22 m and 36 m, and the experiments with z 1 = 7 m are set up such that the second model level is located at z = 36 m. To assess if the different model setups have a systematic impact on the model performance, the simulation results are compared against wind lidar, radiosonde and surface measurements gathered along the Austrian Wipp Valley. Moreover, the dependence of the simulated wind and temperature fields at a given height (36 m above ground) on z 1 is examined for several different regions. Our validation results show that at least over the Wipp Valley, the dependence of the model skill on z 1 tends to be larger and more systematic than the impact of the PBL scheme. The agreement of the simulated wind field with observations tends to benefit from moving the lowest model layer closer to the ground, which appears to be related to the dependence of lee-side flow separation on z 1. However, the simulated 2 m-temperatures are closest to observations for the intermediate z 1 of 22 m. This is mainly related to the fact that the simulated low-level temperatures decrease systematically with decreasing z 1 for all PBL schemes, turning a positive bias at z 1 = 36 m into a negative bias at z 1 = 7 m. The systematic z 1-dependence is also observed for the temperatures at a fixed height of 36 m, indicating a deficiency in the self-consistency of the model results that is not related to a specific PBL formulation. Possible reasons for this deficiency are discussed in the paper. On the other hand, a systematic z 1-dependence of the 36-m wind speed is encountered only for one out of the five PBL schemes. This turns out to be related to an unrealistic profile of the vertical mixing coefficient. Correspondence: Günther Z?ngl, Meteorologisches Institut der Universitat München, 80333 München, Germany  相似文献   

18.
Results of field measurements of the swell-induced undulation of the wind speed taken from a Black Sea platform are presented. The wind speed and its fluctuations were measured at several heights between 1.3 and 21 m above the mean sea level under various wind and swell conditions. Parameters of the swell-induced undulations were derived from cross spectra of the wind-speed fluctuations and the sea-surface displacement. As found, the phase and the amplitude of the wind speed undulation in the layer from k p z = 0.1 to k p z = 3 (k p is the swell wavenumber) are in good agreement with the theory of inviscid shear flow over a wavy surface. The main feature of the vertical profile of the swell-induced undulation is the exponential attenuation of its amplitude with height typical for the potential flow over the fast running waves. At the lowest levels the potential undulations are significantly distorted by the wind-speed variations caused by the vertical displacements of the shear airflow relative to a fixed sensor. No direct impact of swell on the mean properties of the turbulent boundary layer at k p z > 0.1 is revealed. In particular, the mean wind-speed profile and spectra of the horizontal velocity in the inertial subrange obey Monin-Obukhov similarity theory.  相似文献   

19.
Turbulence in the nocturnal boundary layer(NBL) is still not well characterized, especially over complex underlying surfaces. Herein, gradient tower data and eddy covariance data collected by the Beijing 325-m tower were used to better understand the differentiating characteristics of turbulence regimes and vertical turbulence structure of urban the NBL. As for heights above the urban canopy layer(UCL), the relationship between turbulence velocity scale(VTKE) and wind speed(V) was con...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号