首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
浙江普陀山岩体是我国东南沿海产出的由多阶段岩浆作用形成的典型I_A型复合花岗质杂岩体。锆石U_Pb定年结果显示该杂岩体主要由 3期岩浆侵入活动形成 ,自早至晚分别为石英闪长玢岩 (约 170Ma)、黑云母钾长花岗岩 (约 110Ma)和晶洞钾长花岗岩 (约 90Ma) ,其中黑云母钾长花岗岩是该杂岩体的主体岩性 ,在该类岩石中常发育有丰富的深色闪长质包体。本文重点研究了该杂岩体中的黑云母钾长花岗岩 (寄主岩 )及其中的深色闪长质包体。寄主花岗岩为高演化的I型花岗岩 ,地球化学特征表现为高硅、富碱、准铝或弱过铝质 ,富大离子亲石元素 (如Rb、Th等 )和轻稀土元素 (LREE/HREE =8.5 8~ 13.83) ,具有中强的铕负异常 (δEu =0 .2 9~ 0 .4 3) ,并显著亏损Sr、Ba、P和Ti等。闪长质包体与寄主岩之间主、微量元素表现出混合成因的演化趋势 ,二者具有相似的Nd同位素组成〔εNd(t)值分别为 - 6 .30~ - 6 .6 0和 - 6 .95~ - 7.12〕 ,均表现出壳幔混源花岗岩类岩石的特点。对包体与寄主岩产出构造背景和地球化学特征的综合分析表明 ,该杂岩体中的深色闪长质包体是在伸展引张构造背景下 ,上涌的幔源基性岩浆与其诱发的长英质岩浆混合作用的产物  相似文献   

2.
西准噶尔地区广泛发育古生代中酸性侵入岩,部分岩体中含有暗色微粒包体,这些岩浆岩的年代学、地球化学研究对于西准噶尔地区的岩浆混合作用机制及其区域构造演化的研究具有重要意义。乌散岩体位于西准噶尔中部,岩体包含寄主岩石石英二长岩及暗色包体石英角闪二长岩。石英二长岩中锆石LA-ICP-MS U-Pb谐和年龄为280.0±3.8Ma,表明其成岩时代应为早二叠世。里特曼指数δ为3.27~3.36,寄主岩石属于高钾钙碱性岩石系列。岩石中Rb、Th、K、La、Ce、P、Zr、Hf相对富集,Ta、Nb、Sr、Ti相对亏损,轻重稀土元素分馏明显。在Y+Nb-Rb、Y-Nb构造环境判别图解中,乌散岩体石英二长岩落入板内花岗岩投点范围内,显示具有后碰撞花岗岩的特征。由于该岩体成岩年龄明显晚于该地区蛇绿岩、岛弧火山岩以及含矿斑岩体年龄,而与后碰撞伸展环境中形成的A型花岗岩和双峰式火山岩的形成年龄相近,证明此时该地区大洋可能已经闭合,因此地球化学和区域构造特征指示乌散岩体可能形成于后碰撞构造环境。乌散岩体中暗色微粒包体广泛发育,寄主岩石与包体相互包裹,多为截然接触关系。钾长石斑晶横跨寄主岩石及包体,包体中发育的针状磷灰石,表现出岩浆混合的岩相学特征,寄主岩石与包体中不同矿物的SiO_2含量与其他主量元素含量呈良好的线性关系,表现出较好的亲缘关系,说明两者的矿物成分变化与岩浆混合有关。  相似文献   

3.
黑龙江省张广才岭南部早侏罗世花岗岩具有明显的岩浆混合特征。岩体中暗色微粒包体发育,主要为细粒闪长质岩浆包体,包体形态多样,与寄主岩呈截然、过渡关系。包体的矿物组合明显不平衡,如矿物具有定向排列的特点,斜长石发育自形环带并存在新、老两个世代,发育针状磷灰石。由电子探针对斜长石、角闪石和黑云母等矿物分析结果可知,寄主花岗岩和包体中各主要矿物含量基本一致。岩石地球化学特征研究显示,包体与寄主花岗岩关系密切,两者在稀土元素和微量元素方面也表现为明显的地球化学亲缘关系。这表明张广才岭南部早侏罗世花岗质岩石具有壳幔混合成因特征,暗色微粒包体是由较基性的地幔岩浆进入寄主岩浆中淬火结晶而成,花岗质岩浆的源区主要为新生的地壳物质。  相似文献   

4.
诸广山加里东期桂东及上堡黑云母花岗闪长岩体中的微花岗岩类包体包括同源包体和析离体。同源包体与寄主岩的暗色矿物组成不同,主要含角闪石;析离体与寄主岩中的暗色矿物组成相同,主要含黑云母。包体与寄主岩的矿物、岩石化学、地球化学及产状特征对比表明,这两种包体的形成涉及到岩浆内部组分的相互扩散、岩浆的熔离、对流及派生岩浆的相互混合。形成微花岗岩类包体的偏基性岩浆大多数是中酸性岩浆自身演化的产物。微花岗岩类包体的形成是岩浆结晶过程的记录。  相似文献   

5.
南岭中段的锡田岩体燕山期岩石以斑状黑云母二长花岗岩为主,岩体中广泛发育暗色微粒包体?暗色微粒包体为岩浆结构,大多数具有塑性外形,发育淬冷边?反向脉,存在多种不平衡结构和矿物组合,如钾长石环斑?石英眼斑?针状磷灰石等,显示岩浆混合特征?岩石地球化学方面,暗色微粒包体具有比寄主岩贫硅?贫碱,富K?Fe?Mg?Ca?Ti 特征;暗色微粒包体及寄主岩富集轻稀土元素(LREE/HREE=2.6~8.8),具有中-强的铕负异常(δEu=0.09~0.74)以及具有相似的稀土元素配分曲线和微量元素蛛网图;在主要氧化物含量Harker 图解中投点多呈直线变异趋势,反映了两者具有密切的亲缘关系,利用共分母和不共分母图解进行判别,暗色微粒包体与寄主岩具岩浆混合特征,在MgO-TFeO判别图解中也指示包体为岩浆混合成因?上述岩相学和元素地球化学特征表明暗色微粒包体是基性岩浆侵入到酸性岩浆中淬冷形成的,指示锡田岩体存在两种岩浆的混合作用?通过LA-ICP-MS锆石U-Pb 定年,得到寄主岩形成年龄(150.04±0.52)Ma,暗色包体形成年龄(145.09±0.63)Ma,二者年龄在测试误差范围内一致,显示岩浆混合作用发生的时间大致为晚侏罗世?  相似文献   

6.
南岭中段的锡田岩体燕山期岩石以斑状黑云母二长花岗岩为主,岩体中广泛发育暗色微粒包体。暗色微粒包体为岩浆结构,大多数具有塑性外形,发育淬冷边、反向脉,存在多种不平衡结构和矿物组合,如钾长石环斑、石英眼斑、针状磷灰石等,显示岩浆混合特征。岩石地球化学方面,暗色微粒包体具有比寄主岩贫硅、贫碱,富K、Fe、Mg、Ca、Ti特征;暗色微粒包体及寄主岩富集轻稀土元素(LREE/HREE=2.6~8.8),具有中-强的铕负异常(δEu=0.09~0.74)以及具有相似的稀土元素配分曲线和微量元素蛛网图;在主要氧化物含量Harker图解中投点多呈直线变异趋势,反映了两者具有密切的亲缘关系,利用共分母和不共分母图解进行判别,暗色微粒包体与寄主岩具岩浆混合特征,在MgO-TFeO判别图解中也指示包体为岩浆混合成因。上述岩相学和元素地球化学特征表明暗色微粒包体是基性岩浆侵入到酸性岩浆中淬冷形成的,指示锡田岩体存在两种岩浆的混合作用。通过LA-ICP-MS锆石U-Pb定年,得到寄主岩形成年龄(150.04±0.52)Ma,暗色包体形成年龄(145.09±0.63)Ma,二者年龄在测试误差范围内一致,显示岩浆混合作用发生的时间大致为晚侏罗世。  相似文献   

7.
西秦岭教场坝岩体岩浆混合成因的新认识   总被引:3,自引:0,他引:3  
教场坝岩体是一岩浆多次脉动形成的复式深成岩体,由3个单元组成,它是岩浆混合作用形成的混合花岗岩,在混染较强的花岗闪长岩中分布有大量的镁铁质包体.寄主岩化学成份贫SiO2,富FeO* Mgo,铝饱和度(A/CNK)>1.0,岩石为过铝质类型,KzO/Na2O>1.0;镁铁质包体(MME)富SiO2,贫FeO* MgO,铝饱和度(A/CNK)<1.0,K2O/Na2O<1.0,二者均为钙碱性系列,两者间有明显的物质交换.包体与寄主岩石微量元素均富集大离子亲石元素Ba,Sr,Rb,Sm,Be及高场强元素Nb,Th等,亲铁元素Co,Cr,Ni也相对富集,但二者演化规律不同;稀土元素总量寄主岩相对较低(REE=254.78×10-6),稀土配分模式发育明显的铕负异常,δEu值较低(平均0.48);镁铁质包体稀土总量相时较高(REE=298.75×10-6),配分模式发育极微弱的铕负异常,δEu值较高(平均0.78).研究表明:镁铁质包体具幔源型花岗岩类特征,而寄主岩石二长花岗岩具壳源型花岗岩特征,包体与寄主岩石具不同的岩浆来源.氧同素显示镁铁质包体中有大量地壳物质的加入,教场坝岩体的形成与岩浆混合作用有关,是酸性岩浆与基性岩浆混合的产物.  相似文献   

8.
新疆西准噶尔夏尔莆岩体中微粒镁铁质包体特征及意义   总被引:2,自引:0,他引:2  
夏尔莆岩体寄主岩石为闪长岩-花岗闪长岩-二长花岗岩组合,其中镁铁质微粒包体十分发育.包体个体大小悬殊.多密集成群、成带状分布,具明显塑性变形特征.包体与寄主岩石或界线截然或渐变过渡.包体中发育斜长石异常环带、针状磷灰石和来自寄主岩石中的长石捕虏晶,包体中不平衡矿物间的共生现象普遍.岩相学特征表明为基性岩浆和酸性岩浆经岩浆混合作用而成.这一新认识为探讨夏尔莆岩体及达尔布特花岗岩带成因提供新佐证.  相似文献   

9.
本文对青海南山构造带西段黑马河花岗杂岩体中的石英闪长岩和花岗闪长岩以及花岗闪长岩中的暗色微粒包体进行了详细的岩石学、岩石地球化学和LA-ICP-MS锆石U-Pb年代学研究。结果表明,花岗闪长岩及暗色微粒包体的结晶年龄分别为244.4±1.1 Ma和243.0±1.2 Ma,表明岩体形成于中三叠世早期。石英闪长岩和花岗闪长岩为准铝质高钾钙碱性系列,暗色微粒包体为高钾钙碱性—钾玄岩系列,稀土元素配分曲线均具有轻重稀土明显分异的右倾特征,具弱负Eu异常(δEu=0.65~0.83),富集大离子亲石元素(Cs、Rb、Th、K)和Pb,亏损高场强元素(Nb、Ta、Ti)和P、Ba负异常。岩相学和岩石地球化学特征指示黑马河花岗杂岩体具壳幔岩浆混合特征,形成于活动大陆边缘的俯冲环境,石英闪长岩为受俯冲流体交代的地幔楔部分熔融产生的基性岩浆演化的产物,花岗闪长岩则源自壳源岩浆与少量幔源岩浆的混合。黑马河花岗杂岩体是中三叠世早期宗务隆洋向南俯冲消减的岩浆记录。  相似文献   

10.
勐养侵入岩体位于滇西腾冲地块梁河县南勐养镇一带,主要由黑云母二长花岗岩和花岗闪长岩组成,其中发育闪长质包体。闪长岩包体与寄主岩石黑云母二长花岗岩和花岗闪长岩之间呈渐变过渡关系。锆石U-Pb LA-ICP-MS定年表明,黑云母二长花岗岩形成年龄为127.7Ma±0.7Ma,花岗闪长岩形成年龄为115.2Ma±1.1Ma。闪长岩包体形成年龄为122.6Ma±0.8 Ma。表明该花岗岩体的形成时代属于早白垩世。地球化学特征研究表明,闪长岩包体为准铝质、钙碱性系列,具有低SiO2、高MgO、高K20和Mg#的特征。Sm/Nd为0.18~0.20,ΣLREE/ΣHREE=2.91~4.64,Eu存在弱到中等程度的负异常。相对富集U,Th,Rb,Ba等大离子亲石元素(LILE),亏损Tb,Nb,Zr,Hf等高场强元素(HFSE);反映勐养闪长岩包体岩浆成分主要为幔源的特点。根据地球化学特征和微量元素构造判别图解判别结果表明,勐养早白垩世侵入岩形成于碰撞后岩浆弧环境。闪长岩包体的原生岩浆应是地幔橄榄岩部分熔融的产物。黑云二长花岗岩浆可能来源于本区中晚元古代高黎贡山群为代表的地壳物质的部分熔融。花岗闪长岩为幔源岩浆与高黎贡山群古老地壳部分熔融的岩浆混合的产物。腾冲地块早白垩世侵入岩与班公湖—怒江—泸水—瑞丽洋盆的闭合、洋壳向南西俯冲及板块间的碰撞造山作用密切相关。  相似文献   

11.
义敦岛弧形成于晚三叠世大规模俯冲造山作用过程中,位于松潘甘孜地体和羌塘地体之间。稻城边部岩体是义敦岛弧带内规模巨大的复式花岗质岩体,由花岗岩、花岗闪长岩和钾长花岗岩组成。大量暗色镁铁质微粒包体发育于花岗闪长岩和钾长花岗岩中,且其与寄主岩石的接触界线明显。暗色镁铁质微粒包体具有细粒结构,发育石英眼构造、针状磷灰石和具环带结构的斜长石斑晶。文中以稻城岩体寄主岩石和暗色微粒包体中斜长石、黑云母和角闪石为研究对象,开展岩相学和电子探针原位化学成分分析,厘定了矿物形成的物理化学条件,探讨了岩浆混合作用过程及其形成的构造环境。研究表明:花岗闪长岩和暗色微粒包体中的斜长石主要为中长石,其核部呈浑圆状;前者核部的An值(21~50)显著高于幔部(21~34);后者则发育典型的突变环带,An值(29~44)呈波状变化且相对集中。暗色微粒包体与寄主花岗闪长岩中斜长石的An值部分重叠表明二者形成过程中存在含量的岩浆混合作用。斜长石环带中的An值随Al2O3、FeO、MgO和CaO含量的升高而升高,但随SiO2、Na2O和K2O含量的升高而降低。寄主岩石和暗色微粒包体中角闪石富镁铁,阳离子特征为:CaB=1.56~1.75,Ti=0.08~0.13,属于钙质角闪石,具壳源特征,其结晶温度分别为697~725 ℃和680~705 ℃。花岗闪长岩中黑云母的Mg/(Mg+Fe2+)为0.37~0.45,显示出富Fe贫Ca、Mg,属于典型的岩浆成因黑云母。黑云母TiO2含量变化范围为3.54%~4.62%,Al2O3含量变化范围为13.89%~15.15%;黑云母的氧化系数为0.08~0.11,Mg#为0.39~0.46,MF值为0.36~0.44,单位分子中阳离子数AlⅥ为0.03~0.11,以单位分子中Ti和Al阳离子数计算的黑云母结晶温度为584~624 ℃,表明其结晶温度较高,具壳幔混源特征。稻城岩体是以壳源为主的壳幔混源成因的I型花岗岩,暗色微粒包体是由镁铁质岩浆与长英质岩浆不同程度的混合作用形成的。  相似文献   

12.
Mafic microgranular enclaves (MMEs) are widespread in the Horoz pluton with granodiorite and granite units. Rounded to elliptical MMEs have variable size (from a few centimetres up to metres) and are generally fine-grained with typical magmatic textures. The plagioclase compositions of the MMEs range from An18?CAn64 in the cores to An17?CAn29 in the rims, while that of the host rocks varies from An17 to An55 in the cores to An07 to An33 in the rims. The biotite is mostly eastonitic, and the calcic-amphibole is magnesio-hornblende and edenite. Oxygen fugacity estimates from both groups?? biotites suggest that the Horoz magma possibly crystallised at fO2 conditions above the nickel?Cnickel oxide (NNO) buffer. The significance of magma mixing in their genesis is highlighted by various petrographic and mineralogical characteristics such as resorption surfaces in plagioclases and amphibole; quartz ocelli rimmed by biotite and amphibole; sieve and boxy cellular textures, and sharp zoning discontinuities in plagioclase. The importance of magma mixing is also evident in the amphiboles of the host rocks, which are slightly richer in Si, Fe3+ and Mg in comparison with the amphiboles of MMEs. However, the compositional similarity of the plagioclase and biotite phenocrysts from MMEs and their host rocks suggests that the MMEs were predominantly equilibrated with their hosts. Evidence from petrography and mineral chemistry suggests that the adakitic Horoz MMEs could be developed from a mantle-derived, water-rich magma (>3 mass%) affected by a mixing of felsic melt at P >2.3?kbar, T >730°C.  相似文献   

13.
The Zhoukoudian pluton in the North China craton is a circular granodiorite intrusion containing porphyritic diorite dykes (PDDs), porphyritic granodiorite dykes (PGDs) and abundant mafic microgranular enclaves (MMEs), which provide an excellent opportunity to study fractional crystallization and magma mixing. The PDDs and PGDs are located in the western part of the pluton with the PDDs intruded by the PGDs. The dykes have similar mineral assemblages although plagioclase in the PDDs has higher anorthite content than the PGDs. Linear relationships between the SiO2 and most major and trace element contents, as well as a positive trend of initial 87Sr/86Sr ratios and a negative trend of epsilon Nd values with increasing SiO2 contents for the dykes suggest that both types were formed by assimilation and fractional crystallization of a common parental magma. Major oxide mass balance and trace element Rayleigh fractionation modeling points to early separation of garnet (11 %), clinopyroxene (27 %), orthopyroxene (16 %), plagioclase (25 %), biotite (19 %), and apatite (2 %) and late fractionation of hornblende (25 %), plagioclase (46 %), biotite (25 %), apatite (1 %), and magnetite (3 %). Most MMEs occur within the transitional granodiorite of the Zhoukoudian pluton. Zoned MMEs, dyke-like MME swarms, local presence of concave margins, veins and enclaves of host granodiorite within some MMEs, and several MMEs surrounded by the biotite-rich granodiorite support their formation by multiple magma mixing events, which finally resulted in different whole-rock major oxides and compatible elements, but homogeneous mineral major oxides (except zoned plagioclase), whole-rock incompatible elements and Sr-Nd isotopes between the MMEs and their host granodiorite. We suggest that multiple magma mixing events might also cause complexly zoned plagioclase in the Zhoukoudian pluton. Relative calcic, irregular or patchy cores and dusty zoned mantles from the zoned plagioclase crystals and their relatively low anorthite content indicate multiple mixing events between mafic/intermediate and felsic magmas. The mafic/intermediate end-members could be represented by the diabase dykes and the PDDs. Therefore, the dykes and MMEs in the Zhoukoudian pluton are genetically linked.  相似文献   

14.
斜长石作为主要造岩矿物,是研究岩石成因、示踪岩浆演化和岩浆混合过程的有效工具.对冈底斯带曲水岩基始新世花岗闪长岩、二长花岗岩、闪长岩脉和暗色包体中的斜长石进行了阴极发光图像结构特征、电子探针主量元素和LA-ICP-MS微量元素成分的分析,揭示了斜长石复杂环带的成因和相关的岩浆过程.该区斜长石的阴极发光图像呈现出多种颜色且与其An值相对应,随着An值降低依次为绿色、蓝色和暗灰色或暗红色等,并发育补丁状环带、筛状环带、韵律环带等.花岗闪长岩、二长花岗岩中斜长石的An值具有相似的变化范围(20~55),而闪长岩脉和暗色包体中An值的变化范围较大(25~85),表明曲水岩基经历了复杂的开放过程.微量元素结果表明:花岗闪长岩与闪长岩脉和暗色微粒包体具有相同的Sr含量范围(600×10^-6~1 100×10^-6);而二长花岗岩的Sr含量(1 000×10^-6~2 400×10^-6)整体高于前者.以上研究表明,花岗闪长岩中阴极发光呈现绿色的核部或幔部是偏中性岩浆注入寄主岩岩浆混合的结果;具有高Sr含量的二长花岗岩认为是高Sr含量的岩浆结晶形成的;闪长岩脉和暗色微粒包体中的筛状结构斜长石为寄主岩捕掳晶.  相似文献   

15.
The Daocheng batholiths, located in the east of the Yidun arc, consist of granite, granodiorite and K-feldspar granite. Abundant massive mafic microgranular enclaves (MMEs) mainly developed within the granodiorite and K-feldspar granite, and they have clear contacts with the hosted granites. The MMEs are characterized by the quartz eye structure, quenched apatite, and plagioclases phenocrysts with obvious oscillatory zones. Petrographical studies on MMEs and host granites, zoned plagioclase and whole-rock geochemical analysis were carried out to identify the presence of magma mixing. Combined with the previous studies on the whole-rock Sr-Nd-Hf isotopic signatures, the petrogenesis of Daocheng batholith was discussed. The zoned plagioclases from MMEs have An contents varying between 29 and 44, while those from the host granites have An contents of 21~50. The compositional variations and corrosion structure of plagioclase are probably related to magma mixing. Geochemically, the MMEs have relatively low SiO2 contents (56.34~60.91wt%), high Al2O3 contents of 16.06~17.98wt%, and are enriched in magnesium and iron, belonging to metalumnious series (A/CNK=0.82~0.98). The Daocheng batholith belongs to high-K calc-alkaline series, which have high alkaline contents (Na2O+K2O=6.25~7.79wt%) and low CaO contents (1.40~3.22wt%). Furthermore, both the MMEs and hosted granites are enriched in LILEs (K, Rb and Pb) and LREEs and depleted in HFSEs (Nb, Ta, Zr, Hf, P and Ti), showing affinities of typical arc magmas. Compared with the host granites, the MMEs are characterized by lower (La/Yb)N ratios of 1.99 to 2.46, and much more obvious Eu depletions (Eu/Eu*=0.30~0.50). The host granites have Rb/Sr ratios ranging from 1.0 to 1.9, and they are consistent with the crust-derived materials (Rb/Sr>0.5). Their Zr/Hf ratios range from 27.5 to 36.9, which are close to the transitional Zr/Hf ratios between mantle-and crust-derived materials. This indicates that the formation of Daocheng batholith is genetically related to the mixing between mantle-and crust-derived materials. In addition, the relatively low silica contents and high Mg# values, and the linear patterns of MgO, Al2O3 and Fe2O3 with SiO2 contents from the MMEs and host granites, show that the formation of MMEs is genetically related to magma mixing. Overall, the parent magmas of Daocheng granites are derived from the partial melting of Late Triassic arc lower crust, with the input of minor mantle-derived materials. The MMEs are generated by the mixing of the mafic magma with felsic magma.  相似文献   

16.
本文对湘赣交界地区发育的万洋山岩体进行锆石SHRIMP U-Pb定年和岩石学、地球化学分析。该岩体由英云闪长岩、花岗闪长岩和二长花岗岩组成,本次主要讨论英云闪长岩及其中发育的石英闪长岩包体,并获得英云闪长岩的锆石U-Pb年龄为438.0±3.0 Ma,石英闪长岩包体的锆石U-Pb年龄为425.6±3.1 Ma,为晚志留世。英云闪长岩矿物组合为斜长石、钾长石、黑云母、石英以及少量的角闪石、磁铁矿和榍石;地球化学特征显示为低硅、准铝质及钙碱性的花岗岩,在岩石类型判别图解中为I型花岗岩。石英闪长岩包体为细粒结构,矿物组合为角闪石、斜长石、黑云母、石英及少量辉石,表明岩石包体是岩浆成因的;包体中存在异常共生矿物斜长石斑晶、针状磷灰石,CIPW标准矿物计算中未出现刚玉分子,地球化学组成显示其具有低硅、低碱、准铝质的钙碱性岩类特征;包体还表现为富Mg、Fe以及高Mg#值(45~50),显示出包体高镁、偏基性的特征;包体与寄主岩稀土元素配分模式图和微量元素蛛网图分布特征基本一致,表明二者在成因上相关联。石英闪长岩包体分异指数DI=45~48与辉长岩接近,SiO_2含量略高于辉长岩,表明石英闪长岩包体源于上地幔基性辉长质岩浆、经岩浆混合演化形成。英云闪长岩显示为岛弧岩浆岩、具有活动大陆边缘岩浆岩特征,结合英云闪长岩的岩石类型、岩石包体成因认为:万洋山岩体可能是扬子板块与华夏板块在俯冲消减的地球动力学背景下,软流圈地幔上涌,诱发岩石圈地幔和上覆的古老地壳物质重熔,形成以壳源为主、壳幔混合成因的花岗岩。  相似文献   

17.
叶茂  赵赫  赵沔  舒珣  张若曦  杨水源 《岩石学报》2017,33(3):896-906
灵山花岗岩体在平面上为一环状分布的侵入体,中心为角闪石黑云母花岗岩,外围为黑云母花岗岩。在角闪石黑云母花岗岩中分布有大量的暗色镁铁质微粒包体。黑云母是大多数中酸性火成岩中比较重要的一种镁铁质矿物,它能很好地反映寄主岩浆的属性和成岩时的物理、化学条件,因此,本文对这两种花岗岩及镁铁质微粒包体中的黑云母开展了系统的岩相学观察和电子探针化学组成研究,探讨灵山岩体的物质来源、成岩条件和岩浆的混合作用过程。研究结果表明两种花岗岩体的黑云母具有不同化学成分,而暗色镁铁质微粒包体中黑云母的化学成分则变化较大。三种黑云母均在低氧逸度条件下晶出。两种花岗岩中的黑云母均富Fe贫Mg,属于铁质黑云母,含铁系数[(Fe~(3+)+Fe~(2+))/(Fe~(3+)+Fe~(2+)+Mg~(2+))]分别为0.65~0.70,0.72~0.78,FeOT/MgO均接近7.04。MF值[2×Mg/(Fe~(2+)+Mg+Mn)]分别为0.64~0.76和0.48~0.60,指示两种花岗岩的物质来源都是以壳源为主。镁铁质微粒包体中黑云母的MF值变化范围比较大,为0.63~1.06,为铁质黑云母到镁质黑云母,暗示包体岩浆经历过不同程度的岩浆混合作用。镁铁质微粒包体中部分黑云母与角闪石黑云母花岗岩中黑云母的结晶条件相似,而部分则有明显差异,推测是由于基性的镁铁质包体岩浆注入到酸性的花岗岩浆是一个连续多阶段的过程。  相似文献   

18.
义敦岛弧北部的措交玛岩基岩体主要由黑云母二长花岗岩和边部的花岗闪长岩组成。在黑云母二长花岗岩中存在有少量镁铁质微粒包体,其成分为闪长质,与寄主岩石接触关系从渐变到截然。在包体周围的寄主岩石中存在黑云母、角闪石自身的包含结构,角闪石包含黑云母,斜长石发育明显的溶蚀结构,核部斜长石被溶蚀成筛状,边部环带状斜长石溶蚀不明显,是基性岩浆注入到酸性岩浆中导致岩浆混合的结果。黑云母二长花岗岩具有更高的轻重稀土分异系数,闪长质包体轻重稀土分异系数较低,黑云母二长花岗岩和暗色闪长质微粒包体具有明显相似性的微量元素特征。寄主岩黑云母二长花岗岩锆石U-Pb年龄为236±1.9Ma,闪长质包体为235±3.9Ma,二者形成年代在误差范围内基本一致,可能为甘孜-理塘洋向西俯冲过程中,俯冲洋壳部分熔融形成的玄武质岩浆上涌底侵于壳-幔边界导致地壳的部分熔融形成酸性的黑云母二长花岗岩岩基。  相似文献   

19.
暗色微粒包体广泛分布于湘中紫云山岩体中的似斑状角闪石黑云母花岗闪长岩中,但其研究程度较低.对具有火成结构的暗色微粒包体及其寄主岩进行了岩相学、全岩及长石、辉石、黑云母的矿物地球化学研究,探讨其岩石成因及构造意义.寄主岩的全岩主量、微粒元素较为均一,而暗色微粒包体变化较大,且后者相对贫SiO2而富Na2O,但总体上二者均具有准铝质、钙碱性、镁质的特征,均富集轻稀土和大离子亲石元素,而亏损重稀土和高场强元素.寄主岩和暗色微粒包体的斜长石、辉石和黑云母均分别属于中长石、次透辉石-低铁次透辉石和铁质黑云母的范畴,显示相似的矿物地球化学特征.详尽的岩相学和地球化学特征表明,寄主岩属于I型和ACG型花岗岩,具有明显壳幔混合的特点;而暗色微粒包体形成时处于液态并具有流动性,与寄主岩间存在明显的机械和化学混合作用,并具有早期为骤冷快速结晶、晚期缓慢结晶这两期过程.因此,紫云山岩体中出现大量暗色微粒包体,是印支晚期湘中地区在强烈挤压之后的松弛阶段,由于软流圈物质上涌,并与其诱发的壳源酸性岩浆混合作用的产物.   相似文献   

20.
On the Eastern Tauride Belt, the Cretaceous calc-alkaline Karamadazı Granitoid consists of quartz diorite containing mafic microgranular enclaves (MME) and leucocratic granite. The quartz diorite consists of plagioclase (An8-65), hornblende, biotite, K-feldspar, quartz, epidote and titanite. Subrounded MME in the quartz diorite are holocrystalline, fine-grained, quartz diorite to diorite in composition, and display a similar mineral assemblage to their host. Large crystals in MME and quartz diorite show various disequilibrium microstructures indicative of hybridization. Plagioclase crystals exhibit inverse, normal, and oscillatory zoning with maximum core-to-rim An content increase up to 38% in the enclave and 40% in the quartz diorite. Both hornblende and augite exhibit normal and reverse zoning even in the same sample. The new field, textural, mineral compositional, and geochemical evidence leads to the conclusion that MME could have formed through injection of successive pulses of basic magma into upward mobile magma chambers containing cooler, partially crystalline quartz diorite magma. The quartz diorites show similarity to high-Al TTG (tonalites–trondhjemites–granodiorites), with their high Na2O, Sr, LREE, and low Mg#, Cr, HREE contents, and are suggested to be produced by extensive interaction between the crustal and mantle-derived melts through mixing at depth. In contrast, leucogranites have geochemical characteristics distinct from the quartz diorites and MME, and are probably not involved in MME genesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号