首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
电离层误差是影响单频用户机定位精度的主要误差源。卫星导航系统播发电离层模型改正参数供用户使用,模型改正精度会对定位结果产生直接影响。北斗卫星导航系统根据连续监测站实测数据,计算并发播地理坐标系下8参数Klobuchar电离层模型参数,且每2 h更新一次。为了科学评估北斗电离层模型改正效果,文中基于北斗最新观测数据,首先,以CODE提供的GIM模型作为比对基准,详细分析了不同纬度地区、不同时间段内的电离层模型改正精度;其次,分别按照以下定位模式进行计算:1)北斗单频不加电离层改正,2)北斗单频+北斗K8模型,3)北斗单频+GPS K8模型,并分析了电离层改正残差对定位结果影响大小。结果表明,北斗电离层模型改正精度在北半球优于南半球,中纬度地区改正效果最好,其改正残差RMS均值在0.6 m左右,往低纬和高纬度地区呈递减趋势;北京地区北斗单频+北斗K8模型定位精度优于GPS K8模型。  相似文献   

2.
The use of the Global Positioning System (GPS) technology has become increasingly incorporated into airborne remote sensing applications over the past decade. While GPS positioning results may prove adequate for several applications at present, users should expect to experience degraded positioning accuracies over the next few years due to auroral substorm activity. Such degraded accuracies will arise from increased spatial decorrelation of ionosphere range delay errors in differential GPS applications, as the ionospheric activity increases during solar maximum. In this paper, the spatial decorrelation of ionospheric range delay is estimated during a substorm event and compared with “quiet” time values. Positional errors (in both vertical and horizontal measurements) in the range 60–80 cm RMSE were observed during a 1997 substorm event that is representative of the activity anticipated at solar maximum around the year 2000.  相似文献   

3.
Ionospheric delays compensation is a mandatory step for precise absolute and relative positioning of Low Earth Orbit Satellites (LEO) by GPS measurements. The most frequently used ionosphere model for real-time GPS-based navigation in LEO is an isotropic model proposed by Lear, which uses the Vertical Total Electron Content (VTEC) above the receiver and a mapping function for TEC evaluation along a given ray path. Based on significant assessed results available for ground-based GPS receivers, we propose the use of a different model relying on the thin shell assumption and a bilinear horizontal variation of the VTEC as a function of latitude and longitude in the shell. It is expected that this model is capable of better describing horizontal gradients in the ionosphere, thus improving ionospheric delay estimation, especially in intense ionospheric conditions. This model is referred to as Linear Thin Shell (LTS). LTS performance in estimating undifferenced and double-differenced ionospheric delays is checked by comparing measured and predicted delays computed using flight data from the GRACE mission. Results show that the LTS always outperforms the isotropic model, especially in case of high solar activity. Moreover, the LTS model provides a higher performance uniformity over a wide range of ionospheric delays, thus ensuring good performance in different conditions. The results obtained demonstrate that the LTS model improves the ionosphere delays estimation accuracy by 20 and 40% for undifferenced and double-differenced delays, respectively. This suggests the LTS model can effectively contribute to improving precision in LEO positioning applications.  相似文献   

4.
GPS/VRS 卫星定位服务网络建设与精度评定   总被引:13,自引:0,他引:13  
虚拟参考站技术是近几年发展起来的,集Internet、无线通讯、计算机网络和GPS于一体的卫星定位技术。成都虚拟参考站卫星定位服务系统的建设,在设计上可满足全天候地向大成都地区用户提供厘米级实时动态定位服务。为了对该系统的实际定位精度进行客观的评价,从2 0 0 4年7月开展,历时两个月,全面完成了成都虚拟参考站卫星定位服务系统的精度评定工作,结果表明:在网内,水平方向上的精度可达2 .5cm ,垂直方向上的精度为4 . 5cm ,精度分布均匀;在网外,未模型化的距离相关误差的残余逐步增大,特别是距离网络中心大于1 2 0km以上时,定位精度开始衰减,为分米级。  相似文献   

5.
Ionospheric effects on relative positioning within a dense GPS network   总被引:4,自引:2,他引:2  
Local variability in total electron content can seriously affect the accuracy of GNSS real-time applications. We have developed software to compute the positioning error due to the ionosphere for all baselines of the Belgian GPS network, called the Active Geodetic Network (AGN). In a first step, a reference day has been chosen to validate the methodology by comparing results with the nominal accuracy of relative positioning at centimeter level. Then, the effects of two types of ionospheric disturbances on the positioning error have been analyzed: (1) Traveling ionospheric disturbances (TIDs) and (2) noise-like variability due to geomagnetic storms. The influence of baseline length on positioning error has been analyzed for these three cases. The analysis shows that geomagnetic storms induce the largest positioning error (more than 2 m for a 20 km baseline) and that the positioning error depends on the baseline orientation. Baselines oriented parallel to the propagation direction of the ionospheric disturbances are more affected than others. The positioning error due to ionospheric small-scale structures can be so identified by our method, which is not always the case with the modern ionosphere mitigation techniques. In the future, this ionospheric impact formulation could be considered in the development of an integrity monitoring service for GNSS relative positioning users.  相似文献   

6.
不同Klobuchar模型参数的性能比较   总被引:3,自引:1,他引:2  
王斐  吴晓莉  周田  李宇翔 《测绘学报》2014,43(11):1151-1157
对于GPS单频用户而言,电离层延迟是最重要的误差来源之一。GPS系统使用Klobuchar模型对电离层延迟进行改正,其改正数从370组常数中选取。目前全球分布的GPS测站可以获得高精度的全球电离层监测结果,GPS为什么不发播采用实测数据计算得到的Klobuchar模型参数呢?本文针对这一问题进行分析。首先对欧洲定轨中心CODE提供的全球电离层图GIM预报COPG电离层进行精度评估,然后根据COPG电离层进行Klobuchar模型参数拟合并利用IGS提供的事后高精度电离层图进行精度分析,最后将不同的电离层模型参数应用于单点定位以评估其对单频用户的影响。分析结果表明:受8参数的Klobuchar模型本身结构限制,采用全球实测数据计算的电离层模型参数与导航电文中发播的电离层模型精度相当,为55%左右。而仅采用地磁纬度45oS以北的数据拟合得到的模型参数,其电离层改正精度有明显提升,可达65%左右,但其对单频用户定位精度改善不明显。本文研究结果为我国全球电离层建模提供参考。  相似文献   

7.
Global Navigation Satellite Systems (GNSS) require mitigation of ionospheric propagation errors because the ionospheric range errors might be larger than tens of meters at the zenith direction. Taking advantage of the frequency-dispersive property of ionospheric refractivity, the ionospheric range errors can be mitigated in dual-frequency applications to a great extent by a linear combination of carrier phases or pseudoranges. However, single-frequency GNSS operations require additional ionospheric information to apply signal delay or range error corrections. To aid single-frequency operations, the global positioning system (GPS) broadcasts 8 coefficients as part of the navigation message to drive the ionospheric correction algorithm (ICA) also known as Klobuchar model. We presented here an ionospheric correction algorithm called Neustrelitz TEC model (NTCM) which can be used as complementary to the GPS ICA. Our investigation shows that the NTCM can be driven by Klobuchar model parameters to achieve a significantly better performance than obtained by the mother ICA algorithm. Our research, using post-processed reference total electron content (TEC) data from more than one solar cycle, shows that on average the RMS modeled TEC errors are up to 40% less for the proposed NTCM model compared to the Klobuchar model during high solar activity period, and about 10% less during low solar activity period. Such an approach does not require major technology changes for GPS users rather requires only introducing the NTCM approach a complement to the existing ICA algorithm while maintaining the simplicity of ionospheric range error mitigation with an improved model performance.  相似文献   

8.
In recent years the importance of real-time positioning and navigation with the Global Positioning System (GPS) has grown rapidly. Starting from the establishment of differential GPS (DGPS) reference stations for marine and land navigation, new users and applications have emerged that resulted in a high demand for the establishment of a high-density network of reference stations around the world. Many countries have established their own DGPS service, which is either governmentally or commercially owned. These services are referred to as Local Area DGPS Systems (LADGPS). However, the costs for the establishment and maintenance of a dense network of reference stations are very high. Therefore Wide Area DGPS Systems (WADGPS) are being developed to overcome the main drawbacks of LADGPS. In this case, only a few reference stations are used to cover a large area, such s a continent like Europe. To achieve high positioning accuracies, real-time modeling of the main error sources for long-range baselines is required as errors in the satellite orbit and ionospheric refraction do not cancel entirely in double differencing. In this article, a real-time correction model based on the Kalman filter for WADGPS and networked LADGPS services is discussed and results of field tests in a WADGPS network in Europe are presented. ? 2000 John Wiley & Sons, Inc.  相似文献   

9.
Ionospheric TEC predictions over a local area GPS reference network   总被引:4,自引:0,他引:4  
Single layer ionosphere models are frequently used for ionospheric modeling and estimation using GPS measurements from a network of GPS reference stations. However, the accuracies of single layer models are inherently constrained by the assumption that the ionospheric electrons are concentrated in a thin shell located at an altitude of about 350 km above Earths surface. This assumption is only an approximation to the physical truth because the electrons are distributed in the entire ionosphere region approximately from 50 to 1,000 km. To provide instantaneous ionospheric corrections for the real-time GPS positioning applications, the ionospheric corrections need to be predicted in advance to eliminate the latency caused by the correction computation. This paper will investigate ionospheric total electron content (TEC) predictions using a multiple-layer tomographic method for ionospheric modeling over a local area GPS reference network. The data analysis focuses on the accuracy evaluation of short-term (5 min in this study) TEC predictions. The results have indicated that the obtainable TEC prediction accuracy is at a level of about 2.8 TECU in the zenith direction and 95% of the total electron content can be recovered using the proposed tomography-based ionosphere model.  相似文献   

10.
探讨了几种新的电离层延迟改正算法,通过算例检验了新方案的效率和可行性,对不同精度用户选取电离层延迟改正方案给出了建议。  相似文献   

11.
Storm-enhanced density (SED) is a geomagnetic storm phenomenon, characterized by a plume of enhanced total electron content (TEC) that initially moves poleward and sunward extending out from a larger region of enhanced TEC in the mid-latitudes. SED is associated with extreme mid-latitude space weather effects. Sharp gradients in the TEC are found along the borders of SED plumes and at the boundaries of the larger TEC region (the base of the plume). These large TEC gradients can cause significant errors in DGPS and WADGPS positioning and can result in serious consequences for applications such as railway control, highway traffic management, emergency response, commercial aviation and marine navigation, all of which require high precision, real-time positioning. Data from the global IGS network of GPS receivers have enabled the spatial and temporal visualization of these SED plumes, allowing ionospheric researchers to study this phenomenon and investigate the potential for developing prediction techniques and real-time warning systems. GPS TEC maps provided by analysis of the data from the IGS network have now been widely disseminated throughout the atmospheric research community and have become one of the standard means of studying the effects of geomagnetic storms on the ionosphere. These maps have enabled researchers to identify that the SED phenomenon occurs globally, is associated with large TEC gradients (at times greater than 100 TEC units per degree latitude), and is a magnetically conjugate phenomenon. This paper reports on the recent advances in our understanding of the SED phenomenon enabled by GPS observations.  相似文献   

12.
随着全球卫星导航系统(global navigation satellite system,GNSS)进入多系统时代,空中导航卫星的可见卫星数不断增加,中国北斗卫星导航系统(BeiDou navigation satellite system,BDS)已开始面向用户提供三频导航信号,这都有利于改善单历元实时动态定位(real-time kinematic,RTK)的精度和可靠性。中长基线单历元RTK通常采用电离层无关组合算法,但是该方法将观测噪声进行了放大,模糊度固定成功率随着基线长度的增加而明显降低。提出一种BDS/GPS(global positioning system)中长基线单历元多频RTK定位算法,先以较高成功率快速固定BDS的两个超宽巷模糊度,继而通过简单变换得到BDS宽巷模糊度,然后将其辅助提高GPS宽巷模糊度固定成功率,最后采用将电离层延迟误差参数化的策略以提高BDS/GPS窄巷模糊度固定成功率。结合实测数据进行验证分析,结果表明本文算法是可行的。  相似文献   

13.
Estimation and analysis of GPS satellite DCB based on LEO observations   总被引:1,自引:1,他引:0  
The Global Positioning System (GPS) satellite differential code bias (DCB) should be precisely calibrated when obtaining ionospheric slant total electron content (TEC). So far, it is ground-based GPS observations that have been used to estimate GPS satellite DCB. With the increased Low Earth Orbit (LEO) missions in the near future, the real-time satellite DCB estimation is a crucial factor in real-time LEO GPS data applications. One alternative way is estimating GPS DCB based on the LEO observations themselves, instead of using ground observations. We propose an approach to estimate the satellite DCB based on Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) and Challenging Minisatellite Payload (CHAMP) GPS observations during the years 2002–2012. The results have been validated through comparisons with those issued by Center for Orbit Determination in Europe (CODE). The evaluations indicate that: The approach can estimate satellite DCB in a reasonable way; the DCB estimated based on CHAMP observations is much better than those on COSMIC observations; the accuracy and precision of DCB show a possible dependency on the ionospheric ionization level. This method is significance for the real-time processing of LEO-based GNSS TEC data from the perspective of real-time applications.  相似文献   

14.
High-frequency variability of the ionosphere, or irregularities, constitutes the main threat for real-time precise positioning techniques based on Global Navigation Satellite Systems (GNSS) measurements. Indeed, during periods of enhanced ionospheric variability, GNSS users in the field—who cannot verify the integrity of their measurements—will experience positioning errors that can reach several decimeters, while the nominal accuracy of the technique is cm-level. In the frame of this paper, a climatological analysis of irregularities over the European mid-latitude region is presented. Based on a 10 years GPS dataset over Belgium, the work analyzes the occurrence rate (as a function of the solar cycle, season and local time) as well as the amplitude of ionospheric irregularities observed at a single GPS station. The study covers irregularities either due to space weather events (solar origin) or of terrestrial origin. If space weather irregularities are responsible for the largest effects in terms of ionospheric error, their occurrence rate highly depends on solar activity. Indeed, the occurrence rate of ionospheric irregularities is about 9 % during solar maximum, whereas it drops to about 0 % during medium or low solar activity periods. Medium-scale ionospheric disturbances (MSTIDs) occurring during daytime in autumn/winter are the most recurrent pattern of the time series, with yearly proportions slightly varying with the solar cycle and an amplitude of about 10 % of the TEC background. Another recurrent irregularity type, though less frequent than MSTIDs, is the noise-like variability in TEC observed during summer nighttime, under quiet geomagnetic conditions. These summer nighttime irregularities exhibit amplitudes ranging between 8 and 15 % of the TEC background.  相似文献   

15.
Analysis of long-range network RTK during a severe ionospheric storm   总被引:3,自引:0,他引:3  
The network-based GPS technique provides a broad spectrum of corrections to support RTK (real-time kinematic) surveying and geodetic applications. The most important among them are the ionospheric corrections generated in the reference network. The accuracy of these corrections depends upon the ionospheric conditions and may not always be sufficient to support ambiguity resolution (AR), and hence accurate GPS positioning. This paper presents the analyses of the network-derived ionospheric correction accuracy under extremely varying – quiet and stormy – geomagnetic and ionospheric conditions. In addition, the influence of the correction accuracy on the instantaneous (single-epoch) and on-the-fly (OTF) AR in long-range RTK GPS positioning is investigated, and the results, based on post-processed GPS data, are provided. The network used here to generate the ionospheric corrections consists of three permanent stations selected from the Ohio Continuously Operating Reference Stations (CORS) network. The average separation between the reference stations was ∼200 km and the test baseline was 121 km long. The results show that, during the severe ionospheric storm, the correction accuracy deteriorates to the point when the instantaneous AR is no longer possible, and the OTF AR requires much more time to fix the integers. The analyses presented here also outline the importance of the correct selection of the stochastic constraints in the rover solution applied to the network-derived ionospheric corrections.  相似文献   

16.
Effects of rapidly changing ionospheric weather are critical in high accuracy positioning, navigation, and communication applications. A system used to construct the global total electron content (TEC) distribution for monitoring the ionospheric weather in near-real time is needed in the modern society. Here we build the TEC map named Taiwan Ionosphere Group for Education and Research (TIGER) Global Ionospheric Map (GIM) from observations of ground-based GNSS receivers and space-based FORMOSAT-3/COSMIC (F3/C) GPS radio occultation observations using the spherical harmonic expansion and Kalman filter update formula. The TIGER GIM (TGIM) will be published in near-real time of 4-h delay with a spatial resolution of 2.5° in latitude and 5° in longitude and a high temporal resolution of every 5 min. The F3/C TEC results in an improvement on the GIM of about 15.5%, especially over the ocean areas. The TGIM highly correlates with the GIMs published by other international organizations. Therefore, the routinely published TGIM in near-real time is not only for communication, positioning, and navigation applications but also for monitoring and scientific study of ionospheric weathers, such as magnetic storms and seismo-ionospheric anomalies.  相似文献   

17.
适用于不同尺度区域的Klobuchar-like电离层模型   总被引:1,自引:0,他引:1  
刘宸  刘长建  冯绪  许岭峰  杜莹 《测绘学报》2016,45(Z2):54-63
导航定位中运用最广泛的电离层修正模型是Klobuchar模型,但经典的Klobuchar模型不能满足日益增长的导航定位精度的需求,因此不同的精化模型被提出。本文利用GIMs分析了夜间电离层随地方时的变化和电离层电子总含量随纬度的变化情况,在对各种适用范围较广的模型精化方案进行归纳总结的基础上,提出了一种适用于不同尺度区域的Klobuchar-like模型,并利用不同太阳活动时期不同季节的GIMs建立了适用于单站、大区域和全球的Klobuchar-like模型、14参数Klobuchar模型和8参数Klobuchar模型。Klobuchar-like模型单站、区域、全球的修正率分别达到了92.96%、91.55%、72.67%,均高于14参数、8参数Klobuchar模型和GPS Klobuchar模型,表明了该模型的有效性与实用性。  相似文献   

18.
For GPS single frequency users, the ionospheric contribution to the error budget is estimated by the well-known Klobuchar algorithm. For Galileo, it will be mitigated by a global algorithm based on the NeQuick model. This algorithm relies on the adaptation of the model to slant Total Electron Content (sTEC) measurements. Although the performance specifications of these algorithms are expressed in terms of delay and TEC, the users might be more interested in their impact on positioning. Therefore, we assessed the ability of the algorithms to improve the positioning accuracy using globally distributed permanent stations for the year 2002 marked by a high level of solar activity. We present uncorrected and corrected performances, interpret these and identify potential causes for Galileo correction discrepancies. We show vertical errors dropping by 56–64 % due to the analyzed ionospheric corrections, but horizontal errors decreasing by 27 % at most. By means of a fictitious symmetric satellite distribution, we highlight the role of TEC gradients in residual errors. We describe mechanisms permitted by the Galileo correction, which combine sTEC adaptation and topside mismodeling, and limit the horizontal accuracy. Hence, we support further investigation of potential alternative ionospheric corrections. We also provide an interesting insight into the ionospheric effects possibly experienced during the next solar maximum coinciding with Galileo Initial Operation Capability.  相似文献   

19.
Ionospheric delay is a dominant error source in Global Navigation Satellite System (GNSS). Single-frequency GNSS applications require ionospheric correction of signal delay caused by the charged particles in the earth’s ionosphere. The Chinese Beidou system is developing its own ionospheric model for single-frequency users. The number of single-frequency GNSS users and applications is expected to grow fast in the next years in China. Thus, developing an appropriate ionospheric model is crucially important for the Chinese Beidou system and worldwide single-frequency Beidou users. We study the performance of five globally accessible ionospheric models Global Ionospheric Map (GIM), International Reference Ionosphere (IRI), Parameterized Ionospheric Model (PIM), Klobuchar and NeQuick in low- and mid-latitude regions of China under mid-solar activity condition. Generally, all ionospheric models can reproduce the trend of diurnal ionosphere variations. It is found that all the models have better performances in mid-latitude than in low-latitude regions. When all the models are compared to the observed total electron content (TEC) data derived from GIM model, the IRI model (2012 version) has the best agreement with GIM model and the NeQuick has the poorest agreement. The RMS errors of the IRI model using the GIM TEC as reference truth are about 3.0–10.0 TECU in low-latitude regions and 3.0–8.0 TECU in mid-latitude regions, as observed during a period of 1 year with medium level of solar activity. When all the ionospheric models are ingested into single-frequency precise point positioning (PPP) to correct the ionospheric delays in GPS observations, the PIM model performs the best in both low and mid-latitudes in China. In mid-latitude, the daily single-frequency PPP accuracy using PIM model is ~10 cm in horizontal and ~20 cm in up direction. At low-latitude regions, the PPP error using PIM model is 10–20 cm in north, 30–40 cm in east and ~60 cm in up component. The single-frequency PPP solutions indicate that NeQuick model has the lowest accuracy among all the models in both low- and mid-latitude regions of China. This study suggests that the PIM model may be considered for single-frequency GNSS users in China to achieve a good positioning accuracy in both low- and mid-latitude regions.  相似文献   

20.
With the increasing number of precise navigation and positioning applications using Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS), higher order ionospheric effects and their correction become more and more important. Whereas the first-order error can be completely eliminated by a linear combination of dual- frequency measurements, the second- and third-order residual effects remain uncorrected in this approach. To quantify the second-order residual effect, a simple formula has been derived for GNSS users in Germany. Our proposed correction algorithm reduces the second-order effects to a residual error of fractions of 1 mm up to 2 mm at a vertical total electron content level of 1018 electrons/m2 (100 TECU), depending on satellite azimuth and elevation angles. The correction formula can be implemented in real-time applications as it does not require the knowledge of the geomagnetic field or the electron density distribution in the ionosphere along the signal path. It is expected that the correction will enable more accurate positioning using the line-of-sight carrier-phase measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号