首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
The global positioning system (GPS) differential code biases (DCB) provided by the International GNSS Service (IGS) show solar-cycle-like variation during 2002–2013. This study is to examine whether this variation of the GPS DCBs is associated with ionospheric variability. The GPS observations from low earth orbit (LEO) satellites including CHAMP, GRACE and Jason-1 are used to address this issue. The GPS DCBs estimated from the LEO-based observations at different orbit altitudes show a similar tendency as the IGS DCBs. However, this solar-cycle-like dependency is eliminated when the DCBs of 13 continuously operating GPS satellites are constrained to zero-mean. Our results thus revealed that ionospheric variation is not responsible for the long-term variation of the GPS DCBs. Instead, it is attributed to the GPS satellite replacement with different satellite types and the zero-mean condition imposed on all satellite DCBs.  相似文献   

2.
将在一定时空限定范围内的不同低轨卫星COSMIC、GRACE、CHAMP、FY3C的电离层掩星电子密度剖面定义为一个掩星对来对比分析不同类型掩星电离层产品。结果表明:COSMIC掩星对之间的电子密度剖面整体轮廓符合得很好,电子密度剖面主要在250 km以下和500 km以上存在较大的偏差,250~500 km的电子密度整体偏差较小,统计得到的COSMIC掩星对的电子密度参量NmF2和hmF2的相关系数能分别达到0.99和0.97,具有高度相关性,不同COSMIC卫星之间没有明显的系统误差;COSMIC、GRACE、CHAMP和FY3C不同低轨卫星间的电子密度剖面略有差异,通过统计电子密度参量NmF2和hmF2之间的相关系数,COSMIC和CHAMP的相关系数分别为0.95和0.86,COSMIC和GRACE的相关系数分别为0.98和0.94,COSMIC和FY3C的相关系数分别为0.96和0.92,不同掩星类型之间的电子密度参量之间也具有高度相关性,验证了不同卫星任务GPS掩星电离层剖面的一致性。  相似文献   

3.
The Global Navigation Satellite System presents a plausible and cost-effective way of computing the total electron content (TEC). But TEC estimated value could be seriously affected by the differential code biases (DCB) of frequency-dependent satellites and receivers. Unlike GPS and other satellite systems, GLONASS adopts a frequency-division multiplexing access mode to distinguish different satellites. This strategy leads to different wavelengths and inter-frequency biases (IFBs) for both pseudo-range and carrier phase observations, whose impacts are rarely considered in ionospheric modeling. We obtained observations from four groups of co-stations to analyze the characteristics of the GLONASS receiver P1P2 pseudo-range IFB with a double-difference method. The results showed that the GLONASS P1P2 pseudo-range IFB remained stable for a period of time and could catch up to several meters, which cannot be absorbed by the receiver DCB during ionospheric modeling. Given the characteristics of the GLONASS P1P2 pseudo-range IFB, we proposed a two-step ionosphere modeling method with the priori IFB information. The experimental analysis showed that the new algorithm can effectively eliminate the adverse effects on ionospheric model and hardware delay parameters estimation in different space environments. During high solar activity period, compared to the traditional GPS + GLONASS modeling algorithm, the absolute average deviation of TEC decreased from 2.17 to 2.07 TECu (TEC unit); simultaneously, the average RMS of GPS satellite DCB decreased from 0.225 to 0.219 ns, and the average deviation of GLONASS satellite DCB decreased from 0.253 to 0.113 ns with a great improvement in over 55%.  相似文献   

4.
The differential code bias (DCB) in satellites of the Global Navigation Satellite Systems (GNSS) should be precisely corrected when designing certain applications, such as ionospheric remote sensing, precise point positioning, and time transfer. In the case of COMPASS system, the data used for estimating DCB are currently only available from a very limited number of global monitoring stations. However, the current GPS/GLONASS satellite DCB estimation methods generally require a large amount of geographically well-distributed data for modeling the global ionospheric vertical total electron content (TEC) and are not particularly suitable for current COMPASS use. Moreover, some satellites with unstable DCB (i.e., relatively large scatter) may affect other satellite DCB estimates through the zero-mean reference that is currently imposed on all satellites. In order to overcome the inadequacy of data sources and to reduce the impact of unstable DCB, a new approach, designated IGGDCB, is developed for COMPASS satellite DCB determination. IGG stands for the Institute of Geodesy and Geophysics, which is located in Wuhan, China. In IGGDCB, the ionospheric vertical TEC of each individual station is independently modeled by a generalized triangular series function, and the satellite DCB reference is selected using an iterative DCB elimination process. By comparing GPS satellite DCB estimates calculated by the IGGDCB approach based on only a handful (e.g., seven) of tracking stations against that calculated by the currently existing methods based on hundreds of tracking stations, we are able to demonstrate that the accuracies of the IGGDCB-based DCB estimates perform at the level of about 0.13 and 0.10?ns during periods of high (2001) and low (2009) solar activity, respectively. The iterative method for DCB reference selection is verified by statistical tests that take into account the day-to-day scatter and the duration that the satellites have spent in orbit. The results show that the impact of satellites with unstable DCB can be considerably reduced using the IGGDCB method. It is also confirmed that IGGDCB is not only specifically valid for COMPASS but also for all other GNSS.  相似文献   

5.
差分码偏差(differential code bias,DCB)是指由全球导航卫星系统(global navigation satellite system, GNSS)信号接收和发射硬件导致的频率相关的偏差项,对电离层估计有显著的影响,在利用GNSS观测数据提取电离层总电子含量时需要被精确修正,研究利用低轨卫星的星载GNSS观测数据估计DCB尤为重要。使用Swarm星座3颗卫星GPS接收机2016年1月的双频观测值,设计了独立估计和联合估计两种估计方案,采用附加限制条件的间接平差方法对GPS卫星以及星载接收机的DCB进行估计。以中国科学院和德国宇航中心的DCB产品作为参考,分析了两种估计方案的精度和稳定性,相较于独立估计方案,联合估计方案得到的GPS卫星DCB的稳定性较独立估计方案提高了16.6%,且与参考DCB具有更好的一致性。  相似文献   

6.
Compensation for differential code bias (DCB) is necessary because it is the major source of errors in total electron content (TEC) measurements. The DCB estimation performance is degraded when only the regional GPS network is used. Because DCB estimation is highly correlated with ionospheric modeling, this degradation is particularly evident for measurements concentrated in an area of high TEC concentration. This study proposes a DCB estimation method that uses the long-term stability of the DCB to improve the estimation performance of the regional GPS network. We estimate satellite DCBs by assuming their constancy over seven months. This extended period increases the number of measurements used in DCB estimation and changes the local time distribution of collected measurements. As a result, the unbalanced distribution of specific ionospheric conditions disappears. Tests are performed using both global and regional networks, and the estimation performance is evaluated based on the position error and pseudorange residuals. First, the difference between the global and regional networks when using the conventional method is analyzed. Second, proposed methods are applied to regional networks. The proposed method can improve the DCB estimation performance, and the results are similar to those obtained using one-day global network data.  相似文献   

7.
Ionospheric delays compensation is a mandatory step for precise absolute and relative positioning of Low Earth Orbit Satellites (LEO) by GPS measurements. The most frequently used ionosphere model for real-time GPS-based navigation in LEO is an isotropic model proposed by Lear, which uses the Vertical Total Electron Content (VTEC) above the receiver and a mapping function for TEC evaluation along a given ray path. Based on significant assessed results available for ground-based GPS receivers, we propose the use of a different model relying on the thin shell assumption and a bilinear horizontal variation of the VTEC as a function of latitude and longitude in the shell. It is expected that this model is capable of better describing horizontal gradients in the ionosphere, thus improving ionospheric delay estimation, especially in intense ionospheric conditions. This model is referred to as Linear Thin Shell (LTS). LTS performance in estimating undifferenced and double-differenced ionospheric delays is checked by comparing measured and predicted delays computed using flight data from the GRACE mission. Results show that the LTS always outperforms the isotropic model, especially in case of high solar activity. Moreover, the LTS model provides a higher performance uniformity over a wide range of ionospheric delays, thus ensuring good performance in different conditions. The results obtained demonstrate that the LTS model improves the ionosphere delays estimation accuracy by 20 and 40% for undifferenced and double-differenced delays, respectively. This suggests the LTS model can effectively contribute to improving precision in LEO positioning applications.  相似文献   

8.
利用GPS三频观测值监测电离层TEC及其变化率   总被引:1,自引:0,他引:1  
三频观测数据为监测电离层总电子含量提供了更多的观测值选择。在双频观测值估算电离层总电子含量的原理基础上,利用不同纬度地区的三频GPS观测资料计算获得了电离层总电子含量值及其变化率。分析结果表明:由于GPS接收机码间偏差的影响,不同频率间组合获得的电离层总电子含量结果出现较大的系统差异,使用不同频率组合获得的电离层TEC变化率有很好的一致性。  相似文献   

9.
基于球谐函数区域电离层模型建立   总被引:1,自引:0,他引:1  
利用GPS双频观测数据建立高精度、准实时的区域电离层总电子含量(TEC)模型是电离层研究的一个重要手段。文中探讨IGS观测站数据结合4阶球谐函数建立区域电离层格网模型的方法,并对硬件延迟(DCB)和TEC建模结果的可靠性进行分析,结果表明,DCB解算精度在0.4ns以内,TEC内外精度优于1.4TECU(1TECU=1016电子数/m2)和1.5TECU,满足导航定位中电离层改正的需要。  相似文献   

10.
Vertical total electron content (VTEC) parameters estimated using global navigation satellite system (GNSS) data are of great interest for ionosphere sensing. Satellite differential code biases (SDCBs) account for one source of error which, if left uncorrected, can deteriorate performance of positioning, timing and other applications. The customary approach to estimate VTEC along with SDCBs from dual-frequency GNSS data, hereinafter referred to as DF approach, consists of two sequential steps. The first step seeks to retrieve ionospheric observables through the carrier-to-code leveling technique. This observable, related to the slant total electron content (STEC) along the satellite–receiver line-of-sight, is biased also by the SDCBs and the receiver differential code biases (RDCBs). By means of thin-layer ionospheric model, in the second step one is able to isolate the VTEC, the SDCBs and the RDCBs from the ionospheric observables. In this work, we present a single-frequency (SF) approach, enabling the joint estimation of VTEC and SDCBs using low-cost receivers; this approach is also based on two steps and it differs from the DF approach only in the first step, where we turn to the precise point positioning technique to retrieve from the single-frequency GNSS data the ionospheric observables, interpreted as the combination of the STEC, the SDCBs and the biased receiver clocks at the pivot epoch. Our numerical analyses clarify how SF approach performs when being applied to GPS L1 data collected by a single receiver under both calm and disturbed ionospheric conditions. The daily time series of zenith VTEC estimates has an accuracy ranging from a few tenths of a TEC unit (TECU) to approximately 2 TECU. For 73–96% of GPS satellites in view, the daily estimates of SDCBs do not deviate, in absolute value, more than 1 ns from their ground truth values published by the Centre for Orbit Determination in Europe.  相似文献   

11.
Global Positioning System (GPS) total electron content (TEC) measurements, although highly precise, are often rendered inaccurate due to satellite and receiver differential code biases (DCBs). Calculated satellite DCB values are now available from a variety of sources, but receiver DCBs generally remain an undertaking of receiver operators and processing centers. A procedure for removing these receiver DCBs from GPS-derived ionospheric TEC at high latitudes, using Canadian Advanced Digital Ionosonde (CADI) measurements, is presented. Here, we will test the applicability of common numerical methods for estimating receiver DCBs in high-latitude regions and compare our CADI-calibrated GPS vertical TEC (vTEC) measurements to corresponding International GNSS Service IONEX-interpolated vTEC map data. We demonstrate that the bias values determined using the CADI method are largely independent of the topside model (exponential, Epstein, and α-Chapman) used. We further confirm our results via comparing bias-calibrated GPS vTEC with those derived from incoherent scatter radar (ISR) measurements. These CADI method results are found to be within 1.0 TEC units (TECU) of ISR measurements. The numerical methods tested demonstrate agreement varying from within 1.6 TECU to in excess of 6.0 TECU when compared to ISR measurements.  相似文献   

12.
Effects of rapidly changing ionospheric weather are critical in high accuracy positioning, navigation, and communication applications. A system used to construct the global total electron content (TEC) distribution for monitoring the ionospheric weather in near-real time is needed in the modern society. Here we build the TEC map named Taiwan Ionosphere Group for Education and Research (TIGER) Global Ionospheric Map (GIM) from observations of ground-based GNSS receivers and space-based FORMOSAT-3/COSMIC (F3/C) GPS radio occultation observations using the spherical harmonic expansion and Kalman filter update formula. The TIGER GIM (TGIM) will be published in near-real time of 4-h delay with a spatial resolution of 2.5° in latitude and 5° in longitude and a high temporal resolution of every 5 min. The F3/C TEC results in an improvement on the GIM of about 15.5%, especially over the ocean areas. The TGIM highly correlates with the GIMs published by other international organizations. Therefore, the routinely published TGIM in near-real time is not only for communication, positioning, and navigation applications but also for monitoring and scientific study of ionospheric weathers, such as magnetic storms and seismo-ionospheric anomalies.  相似文献   

13.
As a first step towards studying the ionosphere with the global navigation satellite system (GNSS), leveling the phase to the code geometry-free observations on an arc-by-arc basis yields the ionospheric observables, interpreted as a combination of slant total electron content along with satellite and receiver differential code biases (DCB). The leveling errors in the ionospheric observables may arise during this procedure, which, according to previous studies by other researchers, are due to the combined effects of the code multipath and the intra-day variability in the receiver DCB. In this paper we further identify the short-term temporal variations of receiver differential phase biases (DPB) as another possible cause of leveling errors. Our investigation starts by the development of a method to epoch-wise estimate between-receiver DPB (BR-DPB) employing (inter-receiver) single-differenced, phase-only GNSS observations collected from a pair of receivers creating a zero or short baseline. The key issue for this method is to get rid of the possible discontinuities in the epoch-wise BR-DPB estimates, occurring when satellite assigned as pivot changes. Our numerical tests, carried out using Global Positioning System (GPS, US GNSS) and BeiDou Navigation Satellite System (BDS, Chinese GNSS) observations sampled every 30 s by a dedicatedly selected set of zero and short baselines, suggest two major findings. First, epoch-wise BR-DPB estimates can exhibit remarkable variability over a rather short period of time (e.g. 6 cm over 3 h), thus significant from a statistical point of view. Second, a dominant factor driving this variability is the changes of ambient temperature, instead of the un-modelled phase multipath.  相似文献   

14.
Patricia Doherty joins the regular contributors of this column to discuss the correlation between measurements of solar 10.7 cm radio flux and ionospheric range delay effects on GPS. Mrs. Doherty has extensive experience in the analysis of ionospheric range delays from worldwide systems and in the utilization and development of analytical and theoretical models of the Earth's ionosphere. Ionospheric range delay effects on GPS and other satellite ranging systems are directly proportional to the Total Electron Content (TEC) encountered along slant paths from a satellite to a ground location. TEC is a highly variable and complex parameer that is a function of geographic location, local time, season, geomagnetic activity, and solar activity. When insufficiently accounted for, ionospheric TEC can seriously limit the performance of satellite ranging applications. Since the ionosphere is a dispersive medium, dual-frequency Global Positoning System (GPS) users can make automatic corrections for ionospheric range delay by computing the apparent difference in the time delays between the two signals. Single-frequency GPS users must depend on alternate methods to account for the ionospheric range delay. Various models of the ionosphere have been used to provide estimates of ionospheric range delay. These models range from the GPS system's simple eight-coefficient algorithm designed to correct for approximately 50% rms of the TEC, to state-of-the-art models derived from physical first principles, which can correct for up to 70 to 80% rms of the TEC but at a much greater computational cost. In an effort to improve corrections for the day-to-day variability of the ionosphere, some attempts have been made to predict the TEC by using the daily values of solar 10.7 cm radio flux (F10,7). The purpose of this article is to show that this type of prediction is not useful due to irregular, and sometimes very poor, correlation between daily values of TEC and F10.7. Long-term measurements of solar radio flux, however, have been shown to be well correlated with monthly mean TEC, as well as with the critical frequency of the inonospheric F2 region (foF2), which is proportional to the electron density at the peak of the ionospheric F2 region. ? 2000 John Wiley & Sons, Inc.  相似文献   

15.
The FORMOSAT-3/COSMIC satellite constellation has become an important tool toward providing global remote sensing data for sounding of the atmosphere of the earth and the ionosphere in particular. In this study, the electron density profiles are derived using the Abel transform inversion. Some drawbacks of this transform in LEO GPS sounding can be overcome by considering the separability concept: horizontal gradients of vertical total electron content (VTEC) information are incorporated by the inversion method, providing more accurate electron density determinations. The novelty presented in this paper with respect to previous works is the use of the phase change between the GPS transmitter and the LEO receiver as the main observable instead of the ionospheric combination of carrier phase observables for the implementation of separability in the inversion process. Some of the characteristics of the method when applied to the excess phase are discussed. The results obtained show the equivalence of both approaches but the method exposed in this work has the potentiality to be applied to the neutral atmosphere. Recent FORMOSAT-3/COSMIC data have been processed with both the classical Abel inversion and the separability approach and evaluated versus colocated ionosonde data.  相似文献   

16.
This article is based on a position paper presented at the IGS Network, Data and Analysis Center Workshop 2002 in Ottawa, Canada, 8–11 April 2002, and introduces the IGS Ionosphere Working Group (Iono_WG). Detailed information about the IGS in general can be found on the IGS Central Bureau Web page: http://igscb.jpl.nasa.gov. The Iono_WG commenced working in June 1998. The working group's main activity currently is the routine production of ionosphere Total Electron Content (TEC) maps with a 2-h time resolution and daily sets of GPS satellite and receiver hardware differential code bias (DCB) values. The TEC maps and DCB sets are derived from GPS dual-frequency tracking data recorded with the global IGS tracking network. In the medium- and long-term, the working group intends to refine algorithms for the mapping of ionospheric parameters from GPS measurements and to realize near–real–time availability of IGS ionosphere products. The paper will give an overview of the Iono_WG activities that include a summary of activities since its establishment, achievements and future plans. Electronic Publication  相似文献   

17.
The ionospheric shell height has an impact on the estimated differential code bias (DCB) and total electron content (TEC) obtained by global navigation satellite system (GNSS) data, especially for a single site. However, the shell height is generally considered as a fixed value. Based on data from the international GNSS service (IGS), we propose the concept of optimal ionospheric shell height, which minimizes |ΔDCB| when compared to the DCB provided by Center for Orbit Determination in Europe (CODE). Based on the data from five IGS stations at high, middle, and low latitudes during the time 2003–2013, we investigate the variation in the optimal ionospheric shell height and its relation with the solar activity. Results indicate that the relation between the mean of the optimal ionospheric shell height and the latitude is N-shaped. At the three stations at midlatitude, the mean value almost increases linearly with the latitude. The optimal ionospheric shell heights show 11-year and 1-year periods. The influences of the solar activity are related to the means of the optimal ionospheric shell height during the time 2003–2013. The slope of the linear fitting decreases with the mean value. Using the data from 2003 to 2013, we estimate the daily optimal ionospheric shell heights for 2014 by using the Fourier fitting method and then calculate the daily average of ΔDCB of the observed satellites by comparing to CODE results. The statistical results of the daily average in 2014 show that the optimal ionospheric shell height is much better than the fixed one. From the high-latitude station to the low-latitude station, the improvements in the mean value are about 75, 92, 96, 50, and 88% and the root-mean-squares are reduced by about 0.16, 2.09, 2.01, 1.01, and 0.02 TECu, respectively.  相似文献   

18.
确定卫星与接收机信号延迟偏差的新方法及其应用   总被引:6,自引:1,他引:5  
单频GPS接收机用户通常需要进行电离层延迟改正,电离层延迟改正量通常来源于电离层延迟改正模型或双频GPS基准站信息,后者即是利用双频GPS观测值估计电子含量总数,求解电离层延迟改正量。利用双频GPS观测值估计电子含量总数,一个关键总是是去掉卫星与接收信号延迟偏差。  相似文献   

19.
The mapping function is commonly used to convert slant to vertical total electron content (TEC) based on the assumption that the ionospheric electrons concentrate in a layer. The height of the layer is called ionospheric effective height (IEH) or shell height. The mapping function and IEH are generally well understood for ground-based global navigation satellite system (GNSS) observations, but they are rarely studied for the low earth orbit (LEO) satellite-based TEC conversion. This study is to examine the applicability of three mapping functions for LEO-based GNSS observations. Two IEH calculating methods, namely the centroid method based on the definition of the centroid and the integral method based on one half of the total integral, are discussed. It is found that the IEHs increase linearly with the orbit altitudes ranging from 400 to 1400 km. Model simulations are used to compare the vertical TEC converted by these mapping functions and the vertical TEC directly calculated by the model. Our results illustrate that the F&K (Foelsche and Kirchengast) geometric mapping function together with the IEH from the centroid method is more suitable for the LEO-based TEC conversion, though the thin layer model along with the IEH of the integral method is more appropriate for the ground-based vertical TEC retrieval.  相似文献   

20.
电离层参量的提取是开展电离层研究的基础,而数据同化技术则是获取电离层参量的一种重要手段。以NeQuick模型的输出作为背景场,Kalman滤波作为同化算法,利用数据同化技术实现区域电离层TEC重构,结果表明,数据同化方法重构的倾斜总电子含量(TEC)和垂直TEC与实测值较为一致。相比NeQuick模型及全球电离层地图(GIM)数据,数据同化方法重构得到的TEC的平均误差和标准差均有明显的降低,实测数据验证了数据同化技术在区域TEC重构中的精度和可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号