首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
古地震研究是构造地质基础研究工作之一,获得较为精细的古地震结果有利于提高对断层构造变形的样式、强度以及时间的认识。焉耆盆地是南天山东段的山间盆地,现今的构造应力场特征以挤压兼有走滑为主。盆地南北缘断裂均为全新世活动断裂,南缘开都河断裂以走滑运动为主。盆地北缘断裂向盆内扩展的新生和静逆断裂-褶皱带以逆冲运动为主,且具备发生7级以上大地震的能力。因此,对于焉耆盆地北缘和静逆断裂-褶皱带的古地震破裂方式和发生时间的研究具有重要意义。调查发现,其中的哈尔莫敦背斜南翼主逆断裂以30°左右向盆内逆冲,在河漫滩和T1阶地上形成了3排断层陡坎。在3条断层陡坎上开挖的5个探槽中,通过标志地层建立的时间序列可以确定6次古地震事件的先后关系。利用14C和光释光(OSL)测年手段获得了探槽中相关地层和坎前堆积物的沉积时代,利用逐次限定法得到了各次古地震事件的发生时间和全新世以来2ka左右的古地震复发间隔。结果显示F1断层在所有的古地震事件中都发生了破裂,F2断层只在事件E时产生了破裂,F3断层只在事件D和事件E中发生过破裂。从古地震事件上分析,事件D是一次3条断层同时破裂的事件,事件E是一次F1和F32条断层同时破裂的事件,其他事件都只在F1断层上破裂。和静逆断裂的古地震破裂同时存在必然性和不确定性。  相似文献   

2.
On January 21 2016, an earthquake of MS6.4 hit the Lenglongling fault zone(LLLFZ)in the NE Tibetan plateau, which has a contrary focal mechanism solution to the Ms 6.4 earthquake occurring in 1986. Fault behaviors of both earthquakes in 1986 and 2016 are also quite different from the left-lateral strike-slip pattern of the Lenglongling fault zone. In order to find out the seismogenic structure of both earthquakes and figure out relationships among the two earthquakes and the LLLFZ, InSAR co-seismic deformation map is constructed by Sentinel -1A data. Moreover, the geological map, remote sensing images, relocation of aftershocks and GPS data are also combined in the research. The InSAR results indicate that the co-seismic deformation fields are distributed on both sides of the branch fault(F2)on the northwest of the Lenglongling main fault(F1), where the Earth's surface uplifts like a tent during the 2016 earthquake. The 2016 and 1986 earthquakes occurred on the eastern and western bending segments of the F2 respectively, where the two parts of the F2 bend gradually and finally join with the F1. The intersections between the F1 and F2 compose the right-order and left-order alignments in the planar geometry, which lead to the restraining bend and releasing bend because of the left-lateral strike-slip movement, respectively. Therefore, the thrust and normal faults are formed in the two bending positions. In consequence, the focal mechanism solutions of the 2016 and 1986 earthquakes mainly present the compression and tensional behaviors, respectively, both of which also behave as slight strike-slip motion. All results indicate that seismic activity and tectonic deformation of the LLLFZ play important parts in the Qilian-Haiyuan tectonic zone, as well as in the NE Tibetan plateau. The complicated tectonic deformation of NE Tibetan plateau results from the collisions from three different directions between the north Eurasian plate, the east Pacific plate and the southwest Indian plate. The intensive tectonic movement leads to a series of left-lateral strike-slip faults in this region and the tectonic deformation direction rotates clockwise gradually to the east along the Qilian-Haiyuan tectonic zone. The Menyuan earthquake makes it very important to reevaluate the earthquake risk of this region.  相似文献   

3.
The seismogenic structure of the Lushan earthquake has remained in suspensed until now. Several faults or tectonics, including basal slipping zone, unknown blind thrust fault and piedmont buried fault, etc, are all considered as the possible seismogenic structure. This paper tries to make some new insights into this unsolved problem. Firstly, based on the data collected from the dynamic seismic stations located on the southern segment of the Longmenshan fault deployed by the Institute of Earthquake Science from 2008 to 2009 and the result of the aftershock relocation and the location of the known faults on the surface, we analyze and interpret the deep structures. Secondly, based on the terrace deformation across the main earthquake zone obtained from the dirrerential GPS meaturement of topography along the Qingyijiang River, combining with the geological interpretation of the high resolution remote sensing image and the regional geological data, we analyze the surface tectonic deformation. Furthermore, we combined the data of the deep structure and the surface deformation above to construct tectonic deformation model and research the seismogenic structure of the Lushan earthquake. Preliminarily, we think that the deformation model of the Lushan earthquake is different from that of the northern thrust segment ruptured in the Wenchuan earthquake due to the dip angle of the fault plane. On the southern segment, the main deformation is the compression of the footwall due to the nearly vertical fault plane of the frontal fault, and the new active thrust faults formed in the footwall. While on the northern segment, the main deformation is the thrusting of the hanging wall due to the less steep fault plane of the central fault. An active anticline formed on the hanging wall of the new active thrust fault, and the terrace surface on this anticline have deformed evidently since the Quaterary, and the latest activity of this anticline caused the Lushan earthquake, so the newly formed active thrust fault is probably the seismogenic structure of the Lushan earthquake. Huge displacement or tectonic deformation has been accumulated on the fault segment curved towards southeast from the Daxi country to the Taiping town during a long time, and the release of the strain and the tectonic movement all concentrate on this fault segment. The Lushan earthquake is just one event during the whole process of tectonic evolution, and the newly formed active thrust faults in the footwall may still cause similar earthquake in the future.  相似文献   

4.
The Hongyapu M7 1/4 earthquake in 1609 occurred on the Fodongmiao-Hongyazi fault, which is a Holocene active thrust in the middle segment of the northern Qilianshan overthrust fault zone, located in the north-eastern edge of the Tibet plateau. This earthquake caused death of more than 840 people, ruined the Hongyapu Village and had an affected area ca. 200km2. Previous work provided different opinions on the length of the earthquake surface rupture zone, such as 60km from the Bailanghe western riverbank to the Fenglehe eastern river bank, and only 11km from the Hongyazi village to eastern edge of the Hujiatai anticline. And the surface rupture zone appears in the western and middle segments of the Fodongmiao-Hongyazi fault zone. Our detailed geomorphic analysis and topographic survey found that the surface rupture zone with a total length of ca 95km is present on the new geomorphic surfaces which are slightly higher than the modern allvial-dilvial fans and riverbeds, which begins from the Hongshuiba river, Jiuquan in the west extending to the Toudaodongwan, southern Gansu in the east along the Fodongmiao-Hongyazi Fault. The surface rupture zone occurred later than 0 A D, proved by the study of trenchs and chronology. Compared to the previous research on the epicenters of the historical major earthquakes in and around the study region, this surface rupture zone is considereded to be the surface rupture zone of the Hongyapu earthquake of 1609 in Gansu provice. Average vertical co-seismic displacement of the 1609 Hongyapu earthquake is 1.1m with maximum 1.8m, dominated by thrusting. The NNW striking Xiaoqun segment shows thrust with a component of dextral strike slip and the NEE-trending East Hongshancun segment is also mainly thrust but with sinistral strike slipp. The lateral movement could be caused by the local change of the fault strike direction. Based on the length of surface ruptures, the maximum coseismic displacement and fault dipping, this event is estimated to be of ca. MW7.0~MW7.4, close to the M7 1/4 suggested by previous studies.  相似文献   

5.
On 20 April 2013, a destructive earthquake, the Lushan MS7.0 earthquake, occurred in the southern segment of the Longmenshan Fault zone, the eastern margin of the Tibetan plateau in Sichuan, China. This earthquake did not produce surface rupture zone, and its seismogenic structure is not clear. Due to the lack of Quaternary sediment in the southern segment of the Longmenshan fault zone and the fact that fault outcrops are not obvious, there is a shortage of data concerning the tectonic activity of this region. This paper takes the upper reaches of the Qingyijiang River as the research target, which runs through the Yanjing-Wulong Fault, Dachuan-Shuangshi Fault and Lushan Basin, with an attempt to improve the understanding of the tectonic activity of the southern segment of the Longmenshan fault zone and explore the seismogenic structure of Lushan earthquake. In the paper, the important morphological features and tectonic evolution of this area were reviewed. Then, field sites were selected to provide profiles of different parts of the Qingyijiang River terraces, and the longitudinal profile of the terraces of the Qingyijiang River in the south segment of the Longmenshan fault zone was reconstructed based on geological interpretation of high-resolution remote sensing images, continuous differential GPS surveying along the terrace surfaces, geomorphic field evidence, and correlation of the fluvial terraces. The deformed longitudinal profile reveals that the most active tectonics during the late Quaternary in the south segment of the Longmenshan Fault zone are the Yanjing-Wulong Fault and the Longmenshan range front anticline. The vertical thrust rate of the Yanjing-Wulong Fault is nearly 0.6~1.2mm/a in the late Quaternary. The tectonic activity of the Longmenshan range front anticline may be higher than the Yanjing-Wulong Fault. Combined with the relocations of aftershocks and other geophysical data about the Lushan earthquake, we found that the seismogenic structure of the Lushan earthquake is the range front blind thrust and the back thrust fault, and the pop-up structure between the two faults controls the surface deformation of the range front anticline.  相似文献   

6.
The Tan-Lu Fault Zone(TLFZ), a well-known lithosphere fault zone in eastern China, is a boundary tectonic belt of the secondary block within the North China plate, and its seismic risk has always been a focus problem. Previous studies were primarily conducted on the eastern graben faults of the Yishu segment where there are historical earthquake records, but the faults in western graben have seldom been involved. So, there has been no agreement about the activity of the western graben fault from the previous studies. This paper focuses on the activity of the two buried faults in the western graben along the southern segment of Yishu through combination of shallow seismic reflection profile and composite drilling section exploration. Shallow seismic reflection profile reveals that the Tangwu-Gegou Fault(F4)only affects the top surface of Suqian Formation, therefore, the fault may be an early Quaternary fault. The Yishui-Tangtou Fault(F3)has displaced the upper Pleistocene series in the shallow seismic reflection profile, suggesting that the fault may be a late Pleistocene active fault. Drilling was implemented in Caiji Town and Lingcheng Town along the Yishui-Tangtou Fault(F3)respectively, and the result shows that the latest activity time of Yishui-Tangtou Fault(F3)is between(91.2±4.4)ka and(97.0±4.8)ka, therefore, the fault belongs to late Pleistocene active fault. Combined with the latest research on the activity of other faults along TLFZ, both faults in eastern and western graben were active during the late Pleistocene in the southern segment of the Yishu fault zone, however, only the fault in eastern graben was active in the Holocene. This phenomenon is the tectonic response to the subduction of the Pacific and Philippine Sea Plate and collision between India and Asian Plate. The two late Quaternary active faults in the Yishu segment of TLFZ are deep faults and present different forms on the surface and in near surface according to studies of deep seismic reflection profile, seismic wave function and seismic relocation. Considering the tectonic structure of the southern segment of Yishu fault zone, the relationship between deep and shallow structures, and the impact of 1668 Tancheng earthquake(M=8(1/2)), the seismogenic ability of moderate-strong earthquake along the Yishui-Tangtou Fault(F3)can't be ignored.  相似文献   

7.
The Longmenshan fault zone is divided into three sections from south to north in the geometric structure. The middle and northern segments are mainly composed of three thrust faults, where the deformation of foreland is weak. The geometric structure of the southern segment is more complex, which is composed of six fault branches, where the foreland tectonic deformation is very strong. The Wenchuan MS8.0 earthquake occurred in the middle of the Longmenshan in 2008, activating the bifurcation of two branches, the Yingxiu-Beichuan and the Guixian-Jiangyou faults. In 2013, the Lushan MS7.0 earthquake occurred in the southern Longmenshan, whose seismogenic structure was considered to be a blind fault. After the Lushan earthquake, the seismic hazard in the southern Longmenshan has been widely concerned. At present, the studies on active tectonics in the southern Longmenshan are limited to the Dachuan-Shuangshi and the Yanjing-Wulong faults. The Qingyi River, which flows across the southern Longmenshan, facilitates to study fault slip by the deformation of river terraces. Based on satellite imagery and high-resolution DEM analysis, we measured the fluvial terraces along the Qingyi river in detail. During the measurement, the Sichuan network GPS system (SCGNSS)was employed to achieve a precision of centimeter grade. Besides, the optical luminescence dating (OSL)method was employed to date the terraces' ages. And the late Quaternary activities of the six branch faults in the southern Longmen Shan were further analyzed. The Gengda-Longdong, Yanjing-Wulong and the Xiao Guanzi faults (west branch of the Dachuan-Shuangshi fault)all show thrust slip and displaced the terrace T2. Their average vertical slip rates in the late Quaternary are 0.21-0.30mm/a, 0.12-0.21mm/a and 0.10-0.12mm/a, respectively. Since the Late Quaternary, vertical slip of the east branch of the Dachuan-Shuangshi fault was not obvious, and the arc-like Jintang tectonic belt was not active. Crustal shortening rate of the southern Longmenshan thrust fault zone in the late Quaternary is 0.48-0.77mm/a, which equals about half of the middle segment of the Longmenshan. Based on the previous study on the tectonic deformation of the foreland, we consider that the foreland fold belt in the southern Longmenshan area has absorbed more than half of the crustal shortening. The three major branch faults in the southern Longmenshan are active in the late Quaternary, which have risk of major earthquakes.  相似文献   

8.
In order to understand the mechanism of the 1668 MS8.5 earthquake occurred in Tancheng, it is important to probe the fine deep geological structure beneath the epicenter. A MT profile 20km south of the epicenter has been deployed. There are 17 sites along the profile, with a 3km average separation. Signals in Ex, Ey, Hx and Hy were measured in a cross manner, with x-axis orientated to the north. Record length for each site was at least 20h. The impedance and phase at sites in high cultural noisy environment were estimated by remote reference technique. As the Tanlu Fault Zone(TLFZ)is in NNE, nearly northerly, thus YX mode was considered as TM mode. Gauss-Newton inversion was done in 2-D mode with only the TM impedance and phase as input data. The electrical sections of 10km and 40km depth were respectively obtained after 8 iterations. The both initial models were created by Bostic approximation. The sections reveal the following features. The TLFZ consists of five faults, from east to west numbered as F0 to F4. F1 is the primary fault, steeply dipping west down to mantle, which has turned into a buried one overthrust by the east dipping Fault F0. F2 and F3 dip east at 45 degrees, parallel to F4, truncated by F1 at depth. F4 dips east in the shallow subsurface and gradually dips to west toward depth through the entire crust merging with F1 to form a bigger one. These four faults constitute a flower-shaped structure, showing the nature of strike-slip of the TLFZ, associated with normal faulting in the late Yanshanian to early Himalayan. F1 dips west, overthrust by east-dipping F0, implying the compression from the westward subduction of the Pacific plate, thus present-day compression is superposed on the early tensile and strike-slip feature. Based on MT data, it is inferred that the 1668 Tancheng M8.5 earthquake occurred at the junction of F1 and F3 about 15km deep. Thus it was likely resulted from westward compression of the Pacific plate, leading to thrust of the Sulu uplift along F0, inducing activity of F1 at depth, reactivated F3, and adjusting the stress distribution in the region.  相似文献   

9.
The Longmenshan fault zone is located in eastern margin of Tibetan plateau and bounded on the east by Sichuan Basin, and tectonically the location is very important. It has a deep impact on the topography, geomorphology, geological structure and seismicity of southwestern China. It is primarily composed of multiple parallel thrust faults, namely, from northwest to southeast, the back-range, the central, the front-range and the piedmont hidden faults, respectively. The MS8.0 Wenchuan earthquake of 12th May 2008 ruptured the central and the front-range faults. But the earthquake didn't rupture the back-range fault. This shows that these two faults are both active in Holocene. But until now, we don't know exactly the activity of the back-range fault. The back-range fault consists of the Pingwu-Qingchuan Fault, the Wenchuan-Maoxian Fault and the Gengda-Longdong Fault. Through satellite image(Google Earth)interpretation, combining with field investigation, we preliminarily found out that five steps of alluvial platforms or terraces have been developed in Minjiang region along the Wenchuan-Maoxian Fault. T1 and T2 terraces are more continuous than T3, T4 and T5 terraces. Combining with the previous work, we discuss the formation ages of the terraces and conclude, analyze and summarize the existing researches about the terraces of Minjiang River. We constrain the ages of T1, T2, T3, T4 and T5 surfaces to 3~10ka BP,~20ka BP, 40~50ka BP, 60ka BP and 80ka BP, respectively. Combining with geomorphologic structural interpretation, measurements of the cross sections of the terraces by differential GPS and detailed site visits including terraces, gullies and other geologic landforms along the fault, we have reason to consider that the Wenchuan-Maoxian Fault was active between the formation age of T3 and T2 terrace, but inactive since T2 terrace formed. Its latest active period should be the middle and late time of late Pleistocene, and there is no activity since the Holocene. Combining with the knowledge that the central and the front-range faults are both Quaternary active faults, the activity of Longmenshan fault zone should have shifted to the central and the front-range faults which are closer to the basin, this indicates that the Longmenshan thrust belt fits the "Piggyback Type" to some extent.  相似文献   

10.
The fault along the southern margin of the Wuwei Basin, located in the eastern Hexi Corridor, NW China, plays an important role in the thrust fault system in the northern Qilian Mountains. The activities of this fault resulted in the generation of the Gulang earthquake(MS8.0) in 1927. Based on remote sensing image interpretation, geological and geomorphic observations in the field and 14C geochronological dating results, we conducted a detailed research on the geometry and kinematics of the fault. According to the discontinuous geometric distribution and variable strike directions, we divide this fault into 5 segments: Kangningqiao Fault(F1), Nanyinghe Fault(F2), Shangguchengcun-Zhangliugou Fault(F3), Tajiazhuang Fault(F4)and Yanjiazhuang Fault(F5). Results indicate that this fault, with a total of 60km long trace at the surface, has been active since the late Pleistocene. It behaves predominantly as a thrust fault and is accompanied with a locally sinistral strike-slip component along the Nanyinghe Fault(F2). Intensive activities of this fault in Holocene have caused extensive occurrence of dislocated landforms along its strike. Some measured displacements of the dislocated geologic or geomorphic units, combined with the 14C dating results, yield a vertical slip rate of (0.44±0.08)mm/a on this fault in Holocene, and a sinistral strike-slip rate of (1.43±0.08)mm/a on the Nanyinhhe Fault (F2) in late Pleistocene.  相似文献   

11.
A strong earthquake with magnitude MS6.2 hit Hutubi, Xinjiang at 13:15:03 on December 8th, 2016(Beijing Time). In order to better understand its mechanism, we performed centroid moment tensor inversion using the broadband waveform data recorded at stations from the Xinjiang regional seismic network by employing gCAP method. The best double couple solution of the MS6.2 mainshock on December 8th, 2016 estimated from local and near-regional waveforms is strike:271°, dip:64ånd rake:90° for nodal plane I, and strike:91°, dip:26ånd rake:90°for nodal plane Ⅱ; the centroid depth is about 21km and the moment magnitude(MW)is 5.9. ISO, CLVD and DC, the full moment tensor, of the earthquake accounted for 0.049%, 0.156% and 99.795%, respectively. The share of non-double couple component is merely 0.205%. This indicates that the earthquake is of double-couple fault mode, a typical tectonic earthquake featuring a thrust-type earthquake of squeezing property.The double difference(HypoDD)technique provided good opportunities for a comparative study of spatio-temporal properties and evolution of the aftershock sequences, and the earthquake relocation was done using HypoDD method. 486 aftershocks are relocated accurately and 327 events are obtained, whose residual of the RMS is 0.19, and the standard deviations along the direction of longitude, latitude and depth are 0.57km, 0.6km and 1.07km respectively. The result reveals that the aftershocks sequence is mainly distributed along the southern marginal fault of the Junggar Basin, extending about 35km to the NWW direction as a whole; the focal depths are above 20km for most of earthquakes, while the main shock and the biggest aftershock are deeper than others. The depth profile shows a relatively steep dip angle of the seismogenic fault plane, and the aftershocks dipping northward. Based on the spatial and temporal distribution features of the aftershocks, it is considered that the seismogenic fault plane may be the nodal plane I and the dip angle is about 271°. The structure of the Hutubi earthquake area is extremely complicated. The existing geological structure research results show that the combination zone between the northern Tianshan and the Junggar Basin presents typical intracontinental active tectonic features. There are numerous thrust fold structures, which are characterized by anticlines and reverse faults parallel to the mountains formed during the multi-stage Cenozoic period. The structural deformation shows the deformation characteristics of longitudinal zoning, lateral segmentation and vertical stratification. The ground geological survey and the tectonic interpretation of the seismic data show that the recoil faults are developed near the source area of the Hutubi earthquake, and the recoil faults related to the anticline are all blind thrust faults. The deep reflection seismic profile shows that there are several listric reverse faults dipping southward near the study area, corresponding to the active hidden reverse faults; At the leading edge of the nappe, there are complex fault and fold structures, which, in this area, are the compressional triangular zone, tilted structure and northward bedding backthrust formation. Integrating with geological survey and seismic deep soundings, the seismogenic fault of the MS6.2 earthquake is classified as a typical blind reverse fault with the opposite direction close to the southern marginal fault of the Junggar Basin, which is caused by the fact that the main fault is reversed by a strong push to the front during the process of thrust slip. Moreover, the Manas earthquake in 1906 also occurred near the southern marginal fault in Junggar, and the seismogenic mechanism was a blind fault. This suggests that there are some hidden thrust fault systems in the piedmont area of the northern Tianshan Mountains. These faults are controlled by active faults in the deep and contain multiple sets of active faults.  相似文献   

12.
Tanlu fault zone is the largest strike-slip fault system in eastern China. Since it was discovered by aeromagnetics in 1960s, it has been widely concerned by scholars at home and abroad, and a lot of research has been done on its formation and evolution. At the same time, the Tanlu fault zone is also the main seismic structural zone in China, with an obvious characteristic of segmentation of seismicity. Major earthquakes are mostly concentrated in the Bohai section and Weifang-Jiashan section. For example, the largest earthquake occurring in the Bohai section is M7.4 earthquake, and the largest earthquake occurring in the Weifang-Jiashan section is M8.5 earthquake. Therefore, the research on the active structure of the Tanlu fault zone is mainly concentrated in these two sections. With the deepening of research, some scholars carried out a lot of research on the middle section of Tanlu fault zone, which is distributed in Shandong and northern Jiangsu Province, including five nearly parallel fault systems, i.e. Changyi-Dadian Fault(F1), Baifenzi-Fulaishan Fault(F2), Yishui-Tangtou Fault(F3), Tangwu-Gegou Fault(F4) and Anqiu-Juxian Fault(F5). They find that the faults F3 and F5 are still active since the late Quaternary. In recent years, we have got a further understanding of the geometric distribution, active age and active nature of Fault F5, and found that it is still active in Holocene. At the same time, the latest research on the extension of F5 into Anhui suggests that there is a late Pleistocene-Holocene fault existing near the Huaihe River in Anhui Province. The Tanlu fault zone extends into Anhui Province and the extension section is completely buried, especially in the Hefei Basin south of Dingyuan. At present, there is little research on the activity of this fault segment, and it is very difficult to study its geometric structure and active nature, and even whether the fault exists has not been clear. Precisely determining the distribution, active properties and the latest active time of the hidden faults under urban areas is of great significance not only for studying the rupture behavior and segmentation characteristics of the southern section of the Tanlu fault zone, but also for providing important basis for urban seismic fortification. By using the method of shallow seismic prospecting and the combined drilling geological section, this paper carries out a detailed exploration and research on the Wuyunshan-Hefei Fault, the west branch fault of Tanlu fault zone buried in Hefei Basin. Four shallow seismic prospecting lines and two rows of joint borehole profiles are laid across the fault in Hefei urban area from north to south. Using 14C, OSL and ESR dating methods, ages of 34 samples of borehole stratigraphic profiles are obtained. The results show that the youngest stratum dislocated by the Wuyunshan-Hefei Fault is the Mesopleistocene blue-gray clay layer, and its activity is characterized by reverse faulting, with a maximum vertical offset of 2.4m. The latest active age is late Mesopleistocene, and the depth of the shallowest upper breaking point is 17m. This study confirms that the west branch of Tanlu fault zone cuts through Hefei Basin and is still active since Quaternary. Its latest activity age in Hefei Basin is late of Middle Pleistocene, and the latest activity is characterized by thrusting. The research results enrich the understanding of the overall activity of Tanlu fault zone in the buried section of Hefei Basin and provide reliable basic data for earthquake monitoring, prediction and earthquake damage prevention in Anhui Province.  相似文献   

13.
The fault F5 is considered as the most active fault in the Tanlu fault zone(Yi-Shu fault zone), which is located from Weifang of Shandong Province to Jiashan of Anhui Province, with a length of 360km. It has always been a focus of concern to many geoscientists because of its complexity and importance. But, for a long period of time, there exists biggish indetermination in the accurate position and active ages of the fault F5 in Suqian section of Tanlu fault zone. Seismic reflection exploration is the main technique in present urban active faults detecting. In order to investigate the spatial distribution, characteristics and activities of the fault F5 in covered terrains, we carried out a systematic survey to the fault with shallow seismic prospecting method and obtained the accurate position and development characteristics of the fault. The results show that the fault F5 continues to develop toward south rather than ending at the Huancheng South Road of Suqian City. F5 is mainly composed of two main faults, which dip in opposite directions and almost vertically. Near the Sankeshu town, F5 is composed of three faults with right-stepping, forming a small pull-apart basin with length of 6km, width of 2.5km, controlling the deposition of Neogene and Quaternary strata. By combining the results of composite drilling section and trenching, we make a conclusion that the western branch of fault F5 is a Holocene active fault, and the eastern branch is a Pleistocene active fault. Our general view is that fault F5 is a Holocene active fault.  相似文献   

14.
南天山及塔里木北缘构造带西段地震构造研究   总被引:4,自引:0,他引:4       下载免费PDF全文
田勤俭  丁国瑜  郝平 《地震地质》2006,28(2):213-223
南天山及塔里木北缘构造带位于帕米尔地区东北侧,地震活动强烈。文中通过地质构造剖面、深部探测资料和地震震源机制解资料,综合研究了该区的地震构造模型。结果认为,该区的构造活动主要表现为天山地块逆冲于塔里木地块之上。天山构造系统包括迈丹断裂及其前缘推覆构造;塔里木构造系统包括深部的塔里木北缘断裂、基底共轭断层和浅部的推覆构造。塔里木北缘断裂是发育于塔里木地壳内部的高角度断裂,其形成原因在于塔里木和天山构造变形方向的差异。塔里木北缘断裂为研究区大地震的主要发震构造,天山推覆构造和塔里木基底断裂系统均具有不同性质的中强地震发震能力  相似文献   

15.
郯庐断裂带是中国东部最大的一个活动构造带,其内部结构非常复杂,不同区段表现出不同特征的构造样式.本文采用浅层地震反射波成像技术对郯庐断裂带宿迁段的近地表结构进行了高分辨率成像,利用该区已有的深地震反射剖面数据,采用初至波层析成像方法获得了郯庐断裂带的浅层P波速度结构.结果表明,郯庐断裂带宿迁段是一个由多条断裂以及凹陷和隆起构成的复杂构造带,且新生代地层厚度和地震波速分布明显受到断裂的影响与控制.郯庐断裂带的东、西两侧为基底隆起区,近地表速度结构呈现为明显的高速特征,新生代地层厚度小于200m.郯庐断裂带总体显示为低速凹陷结构,新生代地层厚度在300~600m之间变化,最厚处位于宿迁市的陵城镇附近.郯庐断裂带宿迁段主要由5条断裂构成,从这些断裂的上断点埋深和第四纪活动特征来看,郯庐断裂带的东边界断裂F_1和西边界断裂F_4的活动性相对较弱,为第四纪早期活动断裂.断裂F_2和F_3控制了郯庐断裂带内部的新生代凹陷,两者的活动时代分别为中更新世和晚更新世.安丘—莒县断裂F_5位于断裂F_1和F_2之间,由2条相向而倾的分支断层F_5和F_(5-1)构成,其活动时代分别为全新世和晚更新世.研究结果为进一步认识郯庐断裂带宿迁段的近地表特征及其活动性提供了新证据.  相似文献   

16.
The Tan-Lu fault zone is the largest active tectonic zone in eastern China, with a complex history of formation and evolution, and it has a very important control effect on the regional structure, magmatic activity, the formation and distribution of mineral resources and modern seismic activity in eastern China. Xinyi City has a very important position as a segmental node in the Shandong and Suwan sections of the Tan-Lu fault zone. Predecessors have conducted research on the spatial distribution, occurrence and activity characteristics of the shallow crustal faults in the Suqian section of the Tan-Lu belt, and have obtained some new scientific understandings and results. However, due to different research objectives or limitations of research methods, previous researches have either focused on the deep crustal structure, or targeted on the Suqian section or other regions. However, the structural style and deep-shallow structural association characteristics of Xinyi section of Tan-Lu belt have not been well illustrated, nor its activity and spatial distribution have been systematically studied. In order to investigate the shallow crustal structure features, the fault activities, the spatial distribution and the relationship between deep and shallow structures of the Xinyi section of the Tan-Lu Fault, we used a method combining mid-deep/shallow seismic reflection exploration and first-break wave imaging. Firstly, a mid-deep seismic reflection profile with a length of 33km and a coverage number greater than 30 was completed in the south of Xinyi City. At the same time, using the first arrival wave on the common shot record, the tomographic study of the shallow crust structure was carried out. Secondly, three shallow seismic reflection profiles and one refraction tomography profile with high resolution across faults were presented. The results show that the Xinyi section of Tan-Lu fault zone is a fault zone composed of five concealed main faults, with a structural pattern of “two grabens sandwiched by a barrier”. The five main faults reveal more clearly the structural style of “one base between two cuts” of the Tan-Lu fault zone. From west to east, the distribution is as follows: on the west side, there are two high-angle faults, F4 and F3, with a slot-shaped fault block falling in the middle, forming the western graben. In the middle, F3 and F2, two normal faults with opposite dip directions, are bounded and the middle discontinuity disk rises relatively to form a barrier. On the east side, F2 and F1, two conjugate high-angle faults, constitute the eastern graben. The mid-deep and shallow seismic reflection profiles indicate that the main faults of the Xinyi section of Tan-Lu fault zone have a consistent upper-lower relationship and obvious Quaternary activities, which play a significant role in controlling the characteristics of graben-barrier structure and thickness of Cenozoic strata. The shape of the reflective interface of the stratum and the characteristics of the shallow part of the fault revealed by shallow seismic reflection profiles are clear. The Mohe-Lingcheng Fault, Xinyi-Xindian Fault, Malingshan-Chonggangshan Fault and Shanzuokou-Sihong Fault not only broke the top surface of the bedrock, but also are hidden active faults since Quaternary, especially the Malingshan-Chonggangshan Fault which shows strong activity characteristics of Holocene. The results of this paper provide a seismological basis for an in-depth understanding of the deep dynamics process of Xinyi City and its surrounding areas, and for studying the deep-shallow tectonic association and its activity in the the Xinyi section of the Tan-Lu Fault.  相似文献   

17.
Anqiu-Juxian Fault(F5) is the latest active fault in the eastern graben of the middle segment of the Tanlu fault zone. In recent years, the research results of F5 in Jiangsu Province are abundant, and it is found that Holocene activity is prevalent in different segments, and the movement pattern is dominated by dextral strike-slip and squeezing thrust. The Anhui segment and the Jiangsu segment of the Tan-Lu fault zone are bounded by the Huaihe River. Previous studies have not discussed the extension and activity of F5 in the south of the Huaihe River in Anhui Province. This paper chooses the Ziyangshan segment of Tanlu fault zone in the south of the Huaihe River as the breakthrough point, which is consistent with the linear image feature of extension of F5 in Jiangsu Province. Through the remote sensing image interpretation, geological and geomorphological investigation and trench excavation, we initially get the following understanding:(1)The linear structural features of the Ziyang segment are clear, and the fault is developed on the gentle slope of the Mesozoic red sandstone uplift along the Fushan-Ziyangshan, which is the southern extension of the Anqiu-Juxian Fault(F5); (2)The excavation of the Zhuliu trench reveals that the late Pleistocene clastic layers are interrupted, and the late late Pleistocene to early Holocene black clay layers are filled along the fault to form black fault strips and black soil-filled wedges, indicating that the latest active age of the fault is early Holocene; (3)The excavation of Zhuliu trench reveals that there are at least 3 paleo-earthquake events since the Quaternary, the first paleo-seismic event is dated to the early and middle Quaternary, and the 2nd paleo-seismic event is 20.10~13.46ka BP, the age of the third paleo-seismic event is(10.15±0.05)~(8.16±0.05)ka BP. These results complement our understanding of the late Quaternary activity in the Anhui segment of the Tanlu fault zone, providing basic data for earthquake monitoring and seismic damage prevention in Anhui Province.  相似文献   

18.
The Pishan MS6.5 earthquake occurred in the west Kunlun piedmont area. According to the surface deformation data obtained by the Pishan MS6.5 earthquake emergency field investigation team, combined with the positioning accuracy of spatial distribution of aftershocks information, the focal mechanism solutions and deep oil profile data, we think the Pishan MS6.5 earthquake is a typical thrust faulting event, and the seismogenic structure is the Pishan reverse fault-anticline, which did not produced obvious surface fault zone on the surface. In the vicinity of the core of the Pishan anticline, we found some tensional ground fissures whose strikes are all basically consistent with the anticline. We propose that the surface deformation is caused by the folding and uplift of the anticline. The Pishan earthquake is a typical folding earthquake. The tectonic deformation of the west Kunlun piedmont is dominated by the thickening and shortening of the upper crust which is the typical thin-skinned nappe tectonic. The Pishan earthquake occurred in the frontal tectonic belt, the root fault of the nappe structure has not been broken, and we should pay attention to the seismic risk of the Tekilik Fault.  相似文献   

19.
Based on geological and geomorphologic characteristics of the surface faults acquired by field investigations and subsurface structure from petroleum seismic profiles, this paper analyzes the distribution, activity and formation mechanism of the surface faults in the east segment of Qiulitage anticline belt which lies east of the Yanshuigou River and consists of two sub-anticlines:Kuchetawu anticline and east Qiulitage anticline. The fault lying in the core of Kuchetawu anticline is an extension branch of the detachment fault developed in Paleogene salt layer, and evidence shows it is a late Pleistocene fault. The faults developed in the fold hinge in front of the Kuchetawu anticline in a parallel group and having a discontinuous distribution are fold-accommodation faults controlled by local compressive stress. However, trenching confirms that these fold-accommodation faults have been active since the late Holocene and have recorded part of paleoearthquakes in the active folding zone. The fault developed in the south limb near the core of eastern Qiulitage anticline is a low-angle thrust fault, likely a branch of the upper ramp which controls the development of the eastern Qiulitage anticline. The faults lying in the south limb of eastern Qiulitage anticline are shear-thrust faults, which are developed in the steeply dipping frontal limb of the fault-propagation folds, and also characterized by group occurrence and discontinuous distribution. Several fault outcrops are discovered near Gekuluke, in which the Holocene diluvial fans are dislocated by these faults, and trench shows they have recorded several paleoearthquakes. The surface anticlines of rapid growth and associated accommodation faults are the manifestations of the deep faults that experienced complex folding deformation and propagated upward to the near surface, serving as an indicator of faulting at depth. The fold-accommodation faults are merely local deformation during the folding process, which are indirectly related with the deep faults that control the growth of folds. The displacement and slip rate of these surface faults cannot match the kinematics parameters of the deeper fault, which controls the development of the active folding. However, these active fold-accommodation faults can partly record paleoearthquakes taking place in the active folding zone.  相似文献   

20.
Based on the rupture models of the 2015 Pishan MW6.4 earthquake and half space homogeneous elastic model, the Coulomb stress changes generated by the earthquake are calculated on the active faults near the earthquake region. The horizontal stress changes and the displacement field are estimated on the area around the epicenter. Results show that:(1)The Coulomb stress is decreased in the west of the western Kunlun frontal thrust fault(9.5×103Pa), and increased in the east of the western Kunlun frontal thrust fault and the middle of the Kangxiwa faults. More attention should be taken to the seismic rick of the east of the western Kunlun frontal thrust fault; (2)Based on the analysis on the location of the aftershocks, it is found that most of the aftershocks are triggered by the earthquake. In the region of increased Coulomb attraction, the aftershock distribution is more intensive, and in the area of the Coulomb stress reduction, the distribution of aftershocks is relatively sparse; (3)The horizontal area stress increases in the north and south of the earthquake(most part of the Qaidam Basin and the northwest of the Qinghai-Tibet plateau), and decreases in the east and west of the earthquake(northern part of the Qinghai-Tibet plateau and eastern part of the Pamir Mountains). In the epicenter area, the principal compressive stress presents nearly NS direction and the principal extensional stress presents nearly EW direction. The principal compressive stress shows an outward radiation pattern centered on the epicenter with the principal extensional stress along the direction of concentric circles. The principal compressive stress presents NW direction to the west of the epicenter, and NE to the east of the epicenter. With the increase of radius, the stress level gradually decays with 107Pa in the epicenter and hundreds Pa in the Maidan Fault which is in the north of the Qaidam Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号