首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 214 毫秒
1.
近年来逆冲型破坏性地震频发,这对于逆冲型破裂的古地震研究方法提出了新的要求。由于逆断层角度的变化,在地震中可能表现出截然不同的破裂样式。通过对南天山大量古地震探槽开挖和古地震事件分析研究中发现,低角度逆断层的古地震具有一些常见的破裂类型。本文中挑选了位于南天山三个重要山前逆断裂褶皱带:西段柯坪推覆系、中段库车坳陷的秋里塔格褶皱带和东段焉耆盆地北缘和静逆断裂褶皱带的7个典型探槽剖面,对这类低角度逆断层的古地震进行变形模式、事件识别和位移量计算的总结归纳。低角度逆断层古地震破裂具有以下几种样式并具有各自识别古地震事件和计算位移量的方法:1一条断面对应一次事件的破裂形式,利用断面上断点位置识别古地震事件并判断事件的先后顺序。每个断面各自的位移量正好代表一次事件的位移量。2单条断面多次破裂的样式可以通过上下不同地层的位错量差异判断古地震事件,各个相邻地层之间的位错量差值代表古地震事件的位移量。3多条断面同时破裂的情况表现为多条断面被相同一套地层覆盖,事件位移量为多条断面的位错量之和。4挠曲变形和"推土机"作用是低角度逆断层古地震破裂常见的变形方式,这部分变形量不能忽略,可以通过线平衡和面平衡方法获得断层水平缩短量。  相似文献   

2.
庞炜  何文贵  张波 《地震研究》2019,42(1):120-132,I0002
临泽断裂在地貌上可见3条断层陡坎,总体走向NNW,最长约8 km,东侧和中间陡坎主体倾向E,西侧陡坎倾向W。①利用差分GPS对3条断层陡坎进行了详细的测量,发现临泽断层陡坎较低,局部发育多级断层陡坎,坡角较缓,高度几十厘米至1米多;②在临泽断裂上选取4个探槽剖面进行古地震分析、样品采集和年代测试,发现东侧和中间的断层陡坎为正断层所控制,西侧的断层陡坎为逆断层所控制;③探槽开挖揭露出晚更新世晚期以来,临泽断裂上发生过4次古地震事件,时间分别为(8 895±125)a B.P.之前、(7 245±75)a B.P.~(6 190±20)a B.P.、(5120±20)a B.P.~(4.8±0.5)ka和(2 550±50)a B.P.~(2 326±64)a;④全新世以来可以确定3次事件,较早一次事件与榆木山北缘断裂上较早一次古地震事件时间比较吻合,说明临泽断裂可能是榆木山断裂向河西走廊内部继续活动的延伸;最后一次古地震事件的离逝时间约为2 500 a,表明临泽断裂全新世活动一直比较强烈。  相似文献   

3.
蔚广盆地南缘断裂带唐山口段山前断层活动性研究   总被引:1,自引:0,他引:1  
蔚广盆地是山西地堑系北端京西北盆岭构造区内的一个半地堑盆地,蔚广盆地南缘断裂带为控制该盆地形成的边界断裂。该断裂带位于唐山口段的山前断裂在冲洪积扇体上形成了线性特征显著的断层陡坎。横跨断层陡坎开挖的探槽表明该条山前断裂属于全新世活动断裂,探槽揭示了2条活动断层以及相应的3次古地震事件。在距今约9ka时其中一条断层首次活动,之后在距今约7.3ka时该条断层再次活动并引发了另一条断层的形成与同步活动。最后它们又发生了第三次活动,而最新一次活动的时间由于相应地表沉积的缺失而无法获得。这3次古地震事件的累积垂直位错约为8.1m。估算出整条山前断裂的平均复发周期约为1.7ka、平均滑动速率约为1.6mm/a。此外还依据经验公式估算出了各次古地震的参考震级。  相似文献   

4.
祁连山北缘玉门-北大河断裂晚第四纪活动特征   总被引:3,自引:2,他引:1       下载免费PDF全文
通过卫星影像解译、野外实地调查并结合前人研究成果,对位于祁连山北缘的玉门—北大河断裂晚第四纪构造活动特征进行研究。结果表明,玉门—北大河断裂为一条全新世活动的逆冲断裂,该断裂西起玉门青草湾,向东经老玉门市、大红泉止于骨头泉,全长约80km,整体走向NWW。根据断裂的几何结构及活动习性可将其分为三段:东段构造形态简单连续,为逆冲断层陡坎为主的古地震地表破裂带;中段结构复杂,由多条次级断层组成,以逆冲扩展为主;西段未出露地表而成为盲断裂-褶皱带。通过对断层陡坎差分GPS测量及相应地貌面年代测试,得到断裂晚更新世以来逆冲速率约为(0.73±0.09)mm/a。  相似文献   

5.
焉耆盆地北缘和静逆断裂-褶皱带第四纪变形   总被引:5,自引:5,他引:0       下载免费PDF全文
焉耆盆地是塔里木盆地东北缘天山山间的重要坳陷区,盆地北缘发育的和静逆断裂-褶皱带是一条现今活动强烈的逆断裂-褶皱带,对其第四纪以来缩短量和隆升量的计算有利于分析该区域的构造活动情况,对缩短速率和隆升速率的估计可以与天山造山带其他区域的活动速率进行横向对比,从而反映出焉耆盆地在天山晚新生代构造变形的作用。在深部资料不足的情况下,对背斜形态完整、构造样式简单的和静逆断裂-褶皱带,利用地表可获得的地层和断层产状,通过恢复褶皱几何形态,计算褶皱的缩短量、隆升量和断层滑动量,得到逆断裂-褶皱带早更新世晚期(1.8Ma)、中更新世(780ka)和晚更新世中期(80ka)以来的缩短量分别为1.79km、0.88km和26m,初步估计的缩短速率分别为0.99mm/a、1.13mm/a和0.33mm/a。显示和静逆断裂-褶皱带自开始形成以来构造活动强度并不一致。与地壳形变观测结果对比,作为南天山东段最主要的坳陷区,焉耆盆地吸收了这一区域(86°~88°E)的大部分地壳缩短,且主要表现为盆地北缘新生逆断裂-褶皱带的强烈变形。  相似文献   

6.
青海德令哈巴音郭勒河断裂带的新活动特征   总被引:3,自引:0,他引:3       下载免费PDF全文
在青海德令哈巴音郭勒河北侧山前冲洪积扇上新发现了一条长约60km的逆断裂带,属于本区NNW-NWW向的柴达木盆地北缘活动断裂系内的一条次级挤压构造。断裂在地貌上表现为明显的挤压逆冲断层陡坎,晚更新世晚期以来的平均垂直滑动速率为0.41±0.27mm/a。探槽剖面确定了三次古地震事件,其年代分别为距今约32.7±1.45ka、15.54±1.32ka和3.2±0.33ka。  相似文献   

7.
逆断裂-背斜是天山地区一种重要构造形式.对逆断裂-背斜区中的活动断裂和背斜之间的组合关系和形成机制的探讨,有利于帮助我们认识在挤压应力作用下形成的构造系统.焉耆盆地北缘哈尔莫敦背斜是盆地北缘断裂向盆地内扩展的新生逆断裂-背斜.背斜主逆断裂以30°左右的倾角向盆内逆冲,现今构造运动强烈.通过对哈尔莫敦背斜航片解译和陡坎剖...  相似文献   

8.
乌鲁木齐西山断裂组与地表破裂型逆断层古地震识别标志   总被引:3,自引:5,他引:3  
乌鲁木齐西山断裂层组展布于北天山山前断展褶皱系与博格达推覆构造系的转换部位,为盆地向S推覆的构造,由4~5条长度十几公里至近30km的断层组成,其滑脱面埋深约11km。通过地质地貌调查、探槽开挖,结合深部构造特征分析,西山断裂组晚更新世中晚期有明显的活动。断层F1—F3最年轻的2次事件基本都被限制在距今(22.7±5.2)ka和40ka左右。而F4和西山断裂最年轻的事件被距今31.0ka和38.0ka的地层覆盖。这显示西山断裂组晚第四纪活动有分组和组合破裂的特征。断层F4和西山南缘断裂为一组,F1—F3为另一组。坎前堆积地层、断层与堆积地层的切错关系和不同间断面或标志地层在断层两侧的累积位差的突变,是识别地表破裂型逆断层古地震事件的重要标志。降低逆断层古地震识别的不确定性,关键在于识别事件的标志需要综合分析各种影响因素,有多证据的支持  相似文献   

9.
玉门断裂位于青藏高原东北缘的祁连山造山带西段,与阿尔金断裂相邻,构造位置特殊,是青藏高原北缘向外扩展的最新活动证据。近20a越来越多的研究使得对其认识逐渐从弱活动向强活动转变。因此,玉门断裂作为1条青藏高原北缘祁连山造山带中新生的活动断裂和褶皱带,确定它晚更新世至全新世的活动性和古地震复发周期具有重要的意义。文中通过对玉门断裂山前冲积扇面和北大河阶地的影像解译与断层陡坎的测量,以及对2条不同断层陡坎的探槽开挖工作,获得了以下几点认识:1)玉门断裂全新世以来的垂直活动速率为0.41~0.48mm/a,晚更新世晚期以来的垂直活动速率为0.24~0.30mm/a。2)玉门断裂全新世以来共发生4次古地震事件,这4次古地震分别发生在6.12~10.53kaBP、3.6~5.38kaBP、1.64~1.93kaBP和0.63~1.64kaBP。总体上表现出复发间隔逐渐缩短,活动性增强的趋势,并且每次古地震都可能造成多支断层同时破裂,形成陡坎。  相似文献   

10.
油砂山断裂位于柴达木盆地西南缘英雄岭背斜南翼,英雄岭背斜是柴达木盆地内新构造表现最为强烈的地区,也是柴达木盆地内部褶皱向S扩展的最前缘位置。对油砂山断裂的古地震和晚第四纪活动速率研究有助于理解该地区的构造变形方式和评价地震地质灾害。通过对油砂山山前洪积扇上沿断裂带发育的挤压鼓包进行探槽开挖、油砂山西侧盆地内褶皱陡坎进行测量及晚第四纪冲、洪积地层进行光释光测年,综合分析认为:1)油砂山断裂是1条全新世活动的逆冲断裂,盆地内的褶皱陡坎表明至少晚更新世中晚期以来该断裂在同一地表迹线上持续活动。油砂山探槽揭露到的断层面产状为N62°W/NE∠17°。探槽揭露到了至少2次构造事件,较新的1次事件Ⅱ发生在距今500a以来,垂直断距约0.25m。目前获得的资料还不能确定它就是1977年茫崖西北的M6.4地震,但也不能排除与该地震有关。较老的事件Ⅰ发生在距今1 000~4 000a之间,垂直断距约0.55m。事件发生后的侵蚀作用影响了事件Ⅰ年龄的限定和事件Ⅰ确切次数的判定。2)油砂山断裂晚更新世中晚期以来的垂直活动速率约为(0.38±0.06)mm/a。与该区GPS站点的相对速率相比较表明,油砂山断裂是该区非常重要的1条全新世活动的逆冲断裂,在调节区域构造变形上起到了重要作用。  相似文献   

11.
Cascade rupture events often occur along large strike-slip fault zone.The 1920 AD M 81/2 earthquake ruptured all 3 segments of the Haiyuan Fault,and the Salt Lake pull-apart basin is the boundary between the west and middle segment of the fault.The data of trenching and drilling reveal 7 events occurring since last stage of late Pleistocene,and the two youngest events are associated with the historical records of 1092 AD (possibly) and 1920 AD respectively.These events are all large earthquakes with magnitude M>8,and the recurrence of them is characterized by earthquake clusters alternating with a single event.Now it is in the latest cluster which may last about 1000 years.Comparison of the paleoseismic sequence of this study and previous results reveals that the cross-basin fault in the Salt Lake pull-apart basin does not always rupture when cascade rupture events occur along the Haiyuan Fault,and likely ruptures only when the magnitude of the events is large (maybe M>8).Though there are many advantages in paleoseismic study in pull-apart basin,we should avoid getting the paleoseismic history of major strike-slip fault zones only depending on the rupture records of inner faults in pull-apart basins with large scale (maybe a width more than 3km).  相似文献   

12.
The fault along the southern margin of the Wuwei Basin, located in the eastern Hexi Corridor, NW China, plays an important role in the thrust fault system in the northern Qilian Mountains. The activities of this fault resulted in the generation of the Gulang earthquake(MS8.0) in 1927. Based on remote sensing image interpretation, geological and geomorphic observations in the field and 14C geochronological dating results, we conducted a detailed research on the geometry and kinematics of the fault. According to the discontinuous geometric distribution and variable strike directions, we divide this fault into 5 segments: Kangningqiao Fault(F1), Nanyinghe Fault(F2), Shangguchengcun-Zhangliugou Fault(F3), Tajiazhuang Fault(F4)and Yanjiazhuang Fault(F5). Results indicate that this fault, with a total of 60km long trace at the surface, has been active since the late Pleistocene. It behaves predominantly as a thrust fault and is accompanied with a locally sinistral strike-slip component along the Nanyinghe Fault(F2). Intensive activities of this fault in Holocene have caused extensive occurrence of dislocated landforms along its strike. Some measured displacements of the dislocated geologic or geomorphic units, combined with the 14C dating results, yield a vertical slip rate of (0.44±0.08)mm/a on this fault in Holocene, and a sinistral strike-slip rate of (1.43±0.08)mm/a on the Nanyinhhe Fault (F2) in late Pleistocene.  相似文献   

13.
The Fodongmiao-Hongyazi Fault (FHF)is one of the most active faults of the northern Qilian thrust fault zone. The 1609 Hongyazi M7 1/4 earthquake occurred on the east segment of the FHF, an area with a complex geometry at the Mayinghe River site. The seismogenic pattern of this earthquake revealed by complex surface ruptures remains unclear. In this paper, we focus on active tectonic deformation around the Hujiatai anticline (HA)in the Mayinghe River site. Combining with topographic survey via dGPS across deformed terraces and alluvial fans, a field survey of the geological section across the HA, the characteristics of the active fold and several sub-faults were constrained. Meanwhile, combined with the seismic reflection profiles passing through the anticline, the correspondence relationship between surface expressions of this tectonic and the deep structure was discussed. According to our research, the HA is a result of northward propagation of the range-front thrust fault F1. At the same time, a thrust fault F2 with dextral strike-slip motion and a thrust fault F4 were formed on the east side and north side of the HA, respectively. These two active faults accommodated local deformation. Trench results and 14C dating reveal that the 1609 Hongyazi M7 1/4 earthquake ruptured the T1 terrace in the Huangcaoba site. Combined with previous field investigations and literature about the 1609 Hongyazi earthquake, we suggest that this earthquake occurred on the range-front fault F1, and the depth of the hypocenter may be about 8~22km.  相似文献   

14.
On January 21 2016, an earthquake of MS6.4 hit the Lenglongling fault zone(LLLFZ)in the NE Tibetan plateau, which has a contrary focal mechanism solution to the Ms 6.4 earthquake occurring in 1986. Fault behaviors of both earthquakes in 1986 and 2016 are also quite different from the left-lateral strike-slip pattern of the Lenglongling fault zone. In order to find out the seismogenic structure of both earthquakes and figure out relationships among the two earthquakes and the LLLFZ, InSAR co-seismic deformation map is constructed by Sentinel -1A data. Moreover, the geological map, remote sensing images, relocation of aftershocks and GPS data are also combined in the research. The InSAR results indicate that the co-seismic deformation fields are distributed on both sides of the branch fault(F2)on the northwest of the Lenglongling main fault(F1), where the Earth's surface uplifts like a tent during the 2016 earthquake. The 2016 and 1986 earthquakes occurred on the eastern and western bending segments of the F2 respectively, where the two parts of the F2 bend gradually and finally join with the F1. The intersections between the F1 and F2 compose the right-order and left-order alignments in the planar geometry, which lead to the restraining bend and releasing bend because of the left-lateral strike-slip movement, respectively. Therefore, the thrust and normal faults are formed in the two bending positions. In consequence, the focal mechanism solutions of the 2016 and 1986 earthquakes mainly present the compression and tensional behaviors, respectively, both of which also behave as slight strike-slip motion. All results indicate that seismic activity and tectonic deformation of the LLLFZ play important parts in the Qilian-Haiyuan tectonic zone, as well as in the NE Tibetan plateau. The complicated tectonic deformation of NE Tibetan plateau results from the collisions from three different directions between the north Eurasian plate, the east Pacific plate and the southwest Indian plate. The intensive tectonic movement leads to a series of left-lateral strike-slip faults in this region and the tectonic deformation direction rotates clockwise gradually to the east along the Qilian-Haiyuan tectonic zone. The Menyuan earthquake makes it very important to reevaluate the earthquake risk of this region.  相似文献   

15.
The Longmenshan fault zone is located in eastern margin of Tibetan plateau and bounded on the east by Sichuan Basin, and tectonically the location is very important. It has a deep impact on the topography, geomorphology, geological structure and seismicity of southwestern China. It is primarily composed of multiple parallel thrust faults, namely, from northwest to southeast, the back-range, the central, the front-range and the piedmont hidden faults, respectively. The MS8.0 Wenchuan earthquake of 12th May 2008 ruptured the central and the front-range faults. But the earthquake didn't rupture the back-range fault. This shows that these two faults are both active in Holocene. But until now, we don't know exactly the activity of the back-range fault. The back-range fault consists of the Pingwu-Qingchuan Fault, the Wenchuan-Maoxian Fault and the Gengda-Longdong Fault. Through satellite image(Google Earth)interpretation, combining with field investigation, we preliminarily found out that five steps of alluvial platforms or terraces have been developed in Minjiang region along the Wenchuan-Maoxian Fault. T1 and T2 terraces are more continuous than T3, T4 and T5 terraces. Combining with the previous work, we discuss the formation ages of the terraces and conclude, analyze and summarize the existing researches about the terraces of Minjiang River. We constrain the ages of T1, T2, T3, T4 and T5 surfaces to 3~10ka BP,~20ka BP, 40~50ka BP, 60ka BP and 80ka BP, respectively. Combining with geomorphologic structural interpretation, measurements of the cross sections of the terraces by differential GPS and detailed site visits including terraces, gullies and other geologic landforms along the fault, we have reason to consider that the Wenchuan-Maoxian Fault was active between the formation age of T3 and T2 terrace, but inactive since T2 terrace formed. Its latest active period should be the middle and late time of late Pleistocene, and there is no activity since the Holocene. Combining with the knowledge that the central and the front-range faults are both Quaternary active faults, the activity of Longmenshan fault zone should have shifted to the central and the front-range faults which are closer to the basin, this indicates that the Longmenshan thrust belt fits the "Piggyback Type" to some extent.  相似文献   

16.
In order to understand the mechanism of the 1668 MS8.5 earthquake occurred in Tancheng, it is important to probe the fine deep geological structure beneath the epicenter. A MT profile 20km south of the epicenter has been deployed. There are 17 sites along the profile, with a 3km average separation. Signals in Ex, Ey, Hx and Hy were measured in a cross manner, with x-axis orientated to the north. Record length for each site was at least 20h. The impedance and phase at sites in high cultural noisy environment were estimated by remote reference technique. As the Tanlu Fault Zone(TLFZ)is in NNE, nearly northerly, thus YX mode was considered as TM mode. Gauss-Newton inversion was done in 2-D mode with only the TM impedance and phase as input data. The electrical sections of 10km and 40km depth were respectively obtained after 8 iterations. The both initial models were created by Bostic approximation. The sections reveal the following features. The TLFZ consists of five faults, from east to west numbered as F0 to F4. F1 is the primary fault, steeply dipping west down to mantle, which has turned into a buried one overthrust by the east dipping Fault F0. F2 and F3 dip east at 45 degrees, parallel to F4, truncated by F1 at depth. F4 dips east in the shallow subsurface and gradually dips to west toward depth through the entire crust merging with F1 to form a bigger one. These four faults constitute a flower-shaped structure, showing the nature of strike-slip of the TLFZ, associated with normal faulting in the late Yanshanian to early Himalayan. F1 dips west, overthrust by east-dipping F0, implying the compression from the westward subduction of the Pacific plate, thus present-day compression is superposed on the early tensile and strike-slip feature. Based on MT data, it is inferred that the 1668 Tancheng M8.5 earthquake occurred at the junction of F1 and F3 about 15km deep. Thus it was likely resulted from westward compression of the Pacific plate, leading to thrust of the Sulu uplift along F0, inducing activity of F1 at depth, reactivated F3, and adjusting the stress distribution in the region.  相似文献   

17.
Anqiu-Juxian Fault(F5) is the latest active fault in the eastern graben of the middle segment of the Tanlu fault zone. In recent years, the research results of F5 in Jiangsu Province are abundant, and it is found that Holocene activity is prevalent in different segments, and the movement pattern is dominated by dextral strike-slip and squeezing thrust. The Anhui segment and the Jiangsu segment of the Tan-Lu fault zone are bounded by the Huaihe River. Previous studies have not discussed the extension and activity of F5 in the south of the Huaihe River in Anhui Province. This paper chooses the Ziyangshan segment of Tanlu fault zone in the south of the Huaihe River as the breakthrough point, which is consistent with the linear image feature of extension of F5 in Jiangsu Province. Through the remote sensing image interpretation, geological and geomorphological investigation and trench excavation, we initially get the following understanding:(1)The linear structural features of the Ziyang segment are clear, and the fault is developed on the gentle slope of the Mesozoic red sandstone uplift along the Fushan-Ziyangshan, which is the southern extension of the Anqiu-Juxian Fault(F5); (2)The excavation of the Zhuliu trench reveals that the late Pleistocene clastic layers are interrupted, and the late late Pleistocene to early Holocene black clay layers are filled along the fault to form black fault strips and black soil-filled wedges, indicating that the latest active age of the fault is early Holocene; (3)The excavation of Zhuliu trench reveals that there are at least 3 paleo-earthquake events since the Quaternary, the first paleo-seismic event is dated to the early and middle Quaternary, and the 2nd paleo-seismic event is 20.10~13.46ka BP, the age of the third paleo-seismic event is(10.15±0.05)~(8.16±0.05)ka BP. These results complement our understanding of the late Quaternary activity in the Anhui segment of the Tanlu fault zone, providing basic data for earthquake monitoring and seismic damage prevention in Anhui Province.  相似文献   

18.
The Tan-Lu Fault Zone(TLFZ), a well-known lithosphere fault zone in eastern China, is a boundary tectonic belt of the secondary block within the North China plate, and its seismic risk has always been a focus problem. Previous studies were primarily conducted on the eastern graben faults of the Yishu segment where there are historical earthquake records, but the faults in western graben have seldom been involved. So, there has been no agreement about the activity of the western graben fault from the previous studies. This paper focuses on the activity of the two buried faults in the western graben along the southern segment of Yishu through combination of shallow seismic reflection profile and composite drilling section exploration. Shallow seismic reflection profile reveals that the Tangwu-Gegou Fault(F4)only affects the top surface of Suqian Formation, therefore, the fault may be an early Quaternary fault. The Yishui-Tangtou Fault(F3)has displaced the upper Pleistocene series in the shallow seismic reflection profile, suggesting that the fault may be a late Pleistocene active fault. Drilling was implemented in Caiji Town and Lingcheng Town along the Yishui-Tangtou Fault(F3)respectively, and the result shows that the latest activity time of Yishui-Tangtou Fault(F3)is between(91.2±4.4)ka and(97.0±4.8)ka, therefore, the fault belongs to late Pleistocene active fault. Combined with the latest research on the activity of other faults along TLFZ, both faults in eastern and western graben were active during the late Pleistocene in the southern segment of the Yishu fault zone, however, only the fault in eastern graben was active in the Holocene. This phenomenon is the tectonic response to the subduction of the Pacific and Philippine Sea Plate and collision between India and Asian Plate. The two late Quaternary active faults in the Yishu segment of TLFZ are deep faults and present different forms on the surface and in near surface according to studies of deep seismic reflection profile, seismic wave function and seismic relocation. Considering the tectonic structure of the southern segment of Yishu fault zone, the relationship between deep and shallow structures, and the impact of 1668 Tancheng earthquake(M=8(1/2)), the seismogenic ability of moderate-strong earthquake along the Yishui-Tangtou Fault(F3)can't be ignored.  相似文献   

19.
Tanlu fault zone is the largest strike-slip fault system in eastern China. Since it was discovered by aeromagnetics in 1960s, it has been widely concerned by scholars at home and abroad, and a lot of research has been done on its formation and evolution. At the same time, the Tanlu fault zone is also the main seismic structural zone in China, with an obvious characteristic of segmentation of seismicity. Major earthquakes are mostly concentrated in the Bohai section and Weifang-Jiashan section. For example, the largest earthquake occurring in the Bohai section is M7.4 earthquake, and the largest earthquake occurring in the Weifang-Jiashan section is M8.5 earthquake. Therefore, the research on the active structure of the Tanlu fault zone is mainly concentrated in these two sections. With the deepening of research, some scholars carried out a lot of research on the middle section of Tanlu fault zone, which is distributed in Shandong and northern Jiangsu Province, including five nearly parallel fault systems, i.e. Changyi-Dadian Fault(F1), Baifenzi-Fulaishan Fault(F2), Yishui-Tangtou Fault(F3), Tangwu-Gegou Fault(F4) and Anqiu-Juxian Fault(F5). They find that the faults F3 and F5 are still active since the late Quaternary. In recent years, we have got a further understanding of the geometric distribution, active age and active nature of Fault F5, and found that it is still active in Holocene. At the same time, the latest research on the extension of F5 into Anhui suggests that there is a late Pleistocene-Holocene fault existing near the Huaihe River in Anhui Province. The Tanlu fault zone extends into Anhui Province and the extension section is completely buried, especially in the Hefei Basin south of Dingyuan. At present, there is little research on the activity of this fault segment, and it is very difficult to study its geometric structure and active nature, and even whether the fault exists has not been clear. Precisely determining the distribution, active properties and the latest active time of the hidden faults under urban areas is of great significance not only for studying the rupture behavior and segmentation characteristics of the southern section of the Tanlu fault zone, but also for providing important basis for urban seismic fortification. By using the method of shallow seismic prospecting and the combined drilling geological section, this paper carries out a detailed exploration and research on the Wuyunshan-Hefei Fault, the west branch fault of Tanlu fault zone buried in Hefei Basin. Four shallow seismic prospecting lines and two rows of joint borehole profiles are laid across the fault in Hefei urban area from north to south. Using 14C, OSL and ESR dating methods, ages of 34 samples of borehole stratigraphic profiles are obtained. The results show that the youngest stratum dislocated by the Wuyunshan-Hefei Fault is the Mesopleistocene blue-gray clay layer, and its activity is characterized by reverse faulting, with a maximum vertical offset of 2.4m. The latest active age is late Mesopleistocene, and the depth of the shallowest upper breaking point is 17m. This study confirms that the west branch of Tanlu fault zone cuts through Hefei Basin and is still active since Quaternary. Its latest activity age in Hefei Basin is late of Middle Pleistocene, and the latest activity is characterized by thrusting. The research results enrich the understanding of the overall activity of Tanlu fault zone in the buried section of Hefei Basin and provide reliable basic data for earthquake monitoring, prediction and earthquake damage prevention in Anhui Province.  相似文献   

20.
The fault F5 is considered as the most active fault in the Tanlu fault zone(Yi-Shu fault zone), which is located from Weifang of Shandong Province to Jiashan of Anhui Province, with a length of 360km. It has always been a focus of concern to many geoscientists because of its complexity and importance. But, for a long period of time, there exists biggish indetermination in the accurate position and active ages of the fault F5 in Suqian section of Tanlu fault zone. Seismic reflection exploration is the main technique in present urban active faults detecting. In order to investigate the spatial distribution, characteristics and activities of the fault F5 in covered terrains, we carried out a systematic survey to the fault with shallow seismic prospecting method and obtained the accurate position and development characteristics of the fault. The results show that the fault F5 continues to develop toward south rather than ending at the Huancheng South Road of Suqian City. F5 is mainly composed of two main faults, which dip in opposite directions and almost vertically. Near the Sankeshu town, F5 is composed of three faults with right-stepping, forming a small pull-apart basin with length of 6km, width of 2.5km, controlling the deposition of Neogene and Quaternary strata. By combining the results of composite drilling section and trenching, we make a conclusion that the western branch of fault F5 is a Holocene active fault, and the eastern branch is a Pleistocene active fault. Our general view is that fault F5 is a Holocene active fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号