首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
In northwest Turkey, high-pressure metamorphic rocks occur as exotic blocks within the Çetmi mélange located on the south of the Biga Peninsula. Rutile chemistry and rutile thermometry obtained from the eclogite and associated garnet-mica schist in the Çetmi mélange indicate significant trace element behaviour of subducted oceanic crust and source-rock lithology of detrital rutiles. Cr and Nb contents in detrital rutile from garnet-mica schist vary from 355 to 1026 μg/g and 323 and 3319 μg/g, respectively. According to the Cr-Nb discrimination diagram, the results show that 85% of the detrital rutiles derived from metapelitic and 15% from metamafic rocks. Temperatures calculated for detrital rutiles and rutiles in eclogite range from 540 °C to 624 °C with an average of 586 °C and 611 °C to 659 °C with an average of 630 °C at P = 2.3 GPa, respectively. The calculated formation temperatures suggest that detrital rutiles are derived from amphibolite- and eclogite-facies metamorphic rocks. Amphibolite-facies rocks of the Kazdağ Massif could be the primary source rocks for the rutiles in the garnet-mica schist from the Çetmi mélange. Nb/Ta ratios of metapelitic and metamafic rutiles fall between 7–24 and 11–25, respectively. Nb/Ta characteristics in detrital rutiles may reflect a change in source-rock lithology. However, Nb/Ta ratios of rutiles in eclogite vary from 9 to 22. The rutile grains from eclogites are dominated by subchondritic Nb/Ta ratios. It can be noted that subchondritic Nb/Ta may record rutile growth from local sinks of aqueous fluids from metamorphic dehydration.  相似文献   

2.
Fractionation between Nb and Ta, elements generally regarded as geochemical ‘identical twins’, is a key to deciphering the formation of the continental crust (CC). Here we show that Nb/Ta of rutile grains in eclogitic rocks from the Chinese Continental Scientific Drilling (CCSD) project are remarkably heterogeneous but overall subchondritic at core depths of 100–700 m, and are less variable and mainly suprachondritic at core depths of 700–3025 m, indicating clear Nb/Ta fractionation across a subducted slab. To understand the potential mechanism of Nb/Ta fractionation within the subducted plate, we analysed by laser ablation ICPMS a thermal migration experiment in which a wet andesite was placed in a large thermal gradient (300°C/cm with ends ranging from 950–350°C) at 0.5Gpa. Results show that Nb, Ta and Ti, driven by the thermal gradient, preferentially migrate by diffusion through supercritical fluids into the cooler end of the experiment (at 650–350°C). Due to contrasting Nb and Ta thermal migration patterns, dramatic fractionation between Nb, Ta, and Ti took place in the cooler end. Experimental results are consistent with the measured Nb, Ta in rutile from CCSD drillhole samples. We consider that major fractionation between Nb, Ta must occur before rutile appears, most likely during the prograde blueschist to amphibole–eclogite transformation, when Ti is also mobile. Before rutile appears, partitioning between Ti‐rich dominant minerals such as amphiboles and fluids in the hotter region where dehydration preferentially occurs, produces Nb–Ta–Ti‐rich fluids with subchondritic Nb/Ta, and dehydration residues with suprachondritic Nb/Ta. Meanwhile, owing to evolution of the thermal gradient within the subducting slab, thermal migration of Nb, Ta, and Ti in aqueous fluids result in Nb, Ta, and Ti enrichment in the cooler region and depletion in the hotter region. As a result of high‐pressure metamorphism, hydrous rutile‐rich eclogites with overall subchondritic Nb/Ta form in the cooler region, whereas relatively anhydrous rutile‐poor eclogites with suprachondritic Nb/Ta form in the hotter region. Subsequently, partial melting of hydrous rutile‐rich eclogites with initial subchondritic Nb/Ta at deeper levels transfers overall subchondritic Nb/Ta coupled with Nb, Ta, and Ti depletion characteristics to the CC, leaving dry rutile‐poor eclogites with suprachondritic Nb/Ta and rutile‐rich residual eclogites with overall, heterogeneous subchondritic Nb/Ta as a complementary reservoir to the CC.  相似文献   

3.
利用LA-ICP-MS对CCSD-MH超高压榴辉岩中金红石进行了详细的原位微区微量元素组成分析.金红石中高场强元素Nb和Ta含量主要受全岩Nb、Ta和TiO2含量控制, Zr、Hf含量比较稳定基本不受全岩含量影响.粒间金红石中, 同一颗粒金红石核部Zr含量系统高于边部, 而边部则出现了明显的Pb和Sr富集特征.CCSD-MH榴辉岩中金红石与全岩的Nb/Ta比值呈现明显的不一致性.全岩Nb/Ta比值明显低于金红石且与全岩TiO2含量负相关, 而金红石的Nb/Ta比值与全岩Nb、Ta含量和Nb/Ta比值没有明显的相关关系.金红石和全岩之间非完全耦合的Nb/Ta组成表明, 金红石并非形成于原岩的结晶过程中而是在超高压变质作用过程中形成, 尽管金红石是榴辉岩中Nb、Ta含量的主要载体矿物, 但金红石的Nb/Ta比值并不一定能完全代表全岩的特征, 而与全岩Nb、Ta和TiO2的含量有关.粒间金红石核部Zr含量所记录的温度与粒径之间具有明显的正相关性, 反映金红石中的Zr在其形成后没有封闭.粒间金红石所表现出的明显的边部富集Pb和Sr的特征, 反映了后期流体活动对金红石组成的影响.这些研究结果为金红石中Zr在高温下的扩散作用和后期流体活动的影响提供了重要证据, 这可能是利用金红石Zr含量地质温度计计算的苏鲁-大别榴辉岩变质温度(598~827℃) 偏低的主要原因.   相似文献   

4.
张泽明  沈昆 《地球学报》2009,30(1):5-20
通过苏鲁超高压变质带的岩石学、矿物化学、地球化学和年代学研究,在大陆俯冲带深部流体与变质化学地球动力学方面取得了重要的创新性成果。研究证明大陆俯冲带的深部流体是高氧逸度、富硅酸盐的超临界流体,揭示出超高压变质极端条件下的流体-矿物(岩石)相互作用可以导致不活动元素发生溶解和迁移,可以导致金红石的Nb/Ta之间发生强烈的分异,提出俯冲到地幔深处的超高压榴辉岩是地球内部“隐藏”的超球粒陨石Nb/Ta比值的物质源区,与低球粒陨石Nb/Ta比值的物质源区大陆地壳和亏损地幔在化学成分上形成互补。  相似文献   

5.
This paper reports detailed analyses of Nb and Ta concentrations of 19 eclogite samples and their principal mineral constituents from the main drill hole of the Chinese Continental Scientific Drilling Project (CCSD) and nearby outcrops. We observe highly fractionated and overall suprachondritic Nb/Ta values in minerals, e.g., rutile (4.8–87), titanite (12–62) and amphibole (2.0–67). Amphiboles in amphibolites (retrograded from eclogite) can be classified into two groups: a low Nb/Ta group that bears higher Al contents and is thus of higher pressure origin, and a high Nb/Ta, lower pressure group. The former group was likely formed during subduction; the latter may have formed during exhumation in the presence of rutile and titanite. The significant Nb/Ta fractionation in rutile and other minerals may reflect early dehydration of the subducted slab at shallow depths before the formation of rutile, which occurs at depths ≥50 km. The dehydration, with amphiboles existing as the main Nb–Ta-bearing phase, would lead to Nb/Ta fractionation, i.e., forming subchondritic Nb/Ta ratios in the released fluids and, complementarily, suprachondritic Nb/Ta ratios in the residual phases. While a large proportion of the fluids may escape from the slab to the mantle wedge, considerable amounts of the fluids can be retained in hydrous minerals within the descending slab, thus forming hydrated cold eclogites with subchondritic Nb/Ta characteristics. As subduction continues to depths over 50 km, rutile appears and consequently controls the Nb–Ta budget. In the presence of rutile, melting of the hydrated cold eclogites with very low Nb/Ta ratios would form magmas with negative Nb, Ta anomalies and subchondritic Nb/Ta. Further dehydration of the continuously descending slab results in even more fractionated Nb/Ta ratios in subsequently released fluids and residues, providing a feasible explanation for the large Nb/Ta variation observed in the modern arc magmas and residual eclogites.  相似文献   

6.
New trace-element data of rutile in kimberlite-borne ~1.85 Ga eclogite and pyroxenite xenoliths from the central Slave craton, as well as ~110 Ma MARID xenoliths from the Kaapvaal craton, provide constraints on the origins of lithospheric and sublithospheric mantle variability in high field strength element ratios. Rutiles in eclogites and pyroxenites have Zr/Hf ranging from 20 to 62 and Nb/Ta ranging from 10 to 40. Rutiles in MARID xenoliths have Zr/Hf from 24 to 33 and Nb/Ta from 10 to 41. Calculated whole-rock Zr/Hf is suprachondritic for eclogites with suggested gabbroic protoliths and subchondritic for boninite-like eclogites; the latter is consistent with cpx-controlled depletion in the protolith source. Within each eclogite type, positive correlations of Zr/Hf with La/Lu and negative correlations with Lu/Hf likely reflect fractionation of cpx and/or plagioclase during crystallisation of the protoliths. Zr/Hf–Nb/Ta relationships of some MARID-type rocks, which are products of lithospheric mantle metasomatism, and eclogite xenoliths plot on a silicate differentiation trend, whereas other samples have higher Nb/Ta at a given Zr/Hf. Fractionation of a few percent rutile from an HFSE-rich mafic melt can generate a trend towards strongly increased Nb/Ta at minimally changed Zr/Hf in the residual melt. Superposition of rutile fractionation on the effects of silicate differentiation, which fractionates Zr/Hf more strongly than Nb/Ta, can explain the Zr/Hf–Nb/Ta relationships of most eclogites from the central Slave craton as well as those of MARID rocks, metasomatised peridotites and group II kimberlites. By contrast, Zr/Hf–Nb/Ta relationships suggest that Group I kimberlites are mixtures between depleted peridotite and carbonatite. Thus, high Nb/Ta is a signature of lithospheric processes and may not be important in deeply subducted eclogites that bypass extended residence in the lithosphere. Conversely, considerable primary Zr/Hf variability was inherited by the eclogites, which is indicative of the compositional diversity of ancient subducted oceanic crust, which is expected to have generated substantial heterogeneity in sublithospheric basalt sources.  相似文献   

7.
The complex vein associations hosted in southern Sulu ultrahigh-pressure (UHP) eclogites contain quartz ± omphacite (or jadeite) ± kyanite ± allanite ± zoisite ± rutile ± garnet. These minerals have chemical compositions similar to those of host eclogites. Inclusions of polycrystalline quartz pseudomorphs after coesite were identified in vein allanite and garnet, and coesite inclusions were found in vein zircon. These facts suggest that the veins together with host eclogites have been subjected to synchronous UHP metamorphism. The vein minerals contain relatively high concentrations of rare earth elements (REE), high-field-strength elements (HFSE) and transition metal elements (TME). A kyanite-quartz vein has a whole-rock composition similar to adjacent UHP metamorphic granitic gneisses. Abundant primary multi-solid fluid inclusions trapped within UHP vein minerals contain complex daughter minerals of muscovite, calcite, anhydrite, magnetite, pyrite, apatite, celestite and liquid and gas phase of H2O with solids up to 30-70% of the inclusion volume. The presence of daughter minerals anhydrite and magnetite indicates the subduction fluids were oxidizing, and provides a possible interpretation for the high oxygen fugacity of subduction zone magmas. These characteristics imply that the UHP vein minerals were crystallized from supercritical silicate-rich aqueous fluids that were in equilibrium with peak-UHP minerals, and that the fluids in deeply subducted continental crust may contain very high concentrations of silicate as well as HREE, HFSE and TME. Such fluids might have resulted in major fractionation between Nb and Ta, i.e. the UHP fluids have subchondritic Nb/Ta values, whereas the host eclogites after extraction of the fluids have suprachondritic Nb/Ta values. Therefore, voluminous residual eclogites with high Nb/Ta ratios may be the complementary suprachondritic reservoir capable of balancing the subchondritic depleted mantle and continental crust reservoirs.  相似文献   

8.
对中国大陆科学钻探(CCSD)主孔200~1005m范围内8件榴辉岩样品的金红石进行了LA-ICPMS原位微区微量元素分析,结合前人已发表的全岩和金红石分析数据,研究结果发现:在不同类型榴辉岩中,金红石的微量元素与其全岩成分具有不同的相关关系。金红石中的Nb和Ta元素含量不同程度地受控于全岩Nb和Ta含量。在高钛和低镁钛榴辉岩中,金红石的Cr与全岩Cr/TiO2正相关;在富镁榴辉岩中,金红石的Cr含量受全岩MgO含量的控制;在高钛和富镁榴辉岩中,全岩成分明显影响着金红石的Zr含量,金红石Zr温度计可能不适用。低镁钛榴辉岩的金红石的平衡温度普遍低于榴辉岩峰期变质温度,可能是变质流体参与下的扩散作用和退变质作用所致;多数情况下,单个样品中大部分金红石颗粒的Zr含量是均匀的,金红石Zr温度计所给出的温度可能代表着退变质再平衡的温度;CCSD榴辉岩的全岩Nb/Ta比值普遍低于其中金红石的Nb/Ta比值,不支持金红石榴辉岩可能是地球上超球粒陨石Nb/Ta比值储库的观点。  相似文献   

9.
Nb,Ta的硅酸盐地球质量不平衡问题争论由来已久,备受关注。近年来研究发现,含金红石的榴辉岩Nb/Ta往往高于球粒陨石值(Nb/Ta=17.5),暗示其可能是平衡地球Nb亏损的独立储库。而洋壳玄武岩部分熔融实验表明Ta比Nb更倾向进入金红石晶格,这意味着作为俯冲洋壳部分熔融残留相的榴辉岩Nb/Ta不可能高于原岩。为了解释地质观察和实验结果之间的矛盾,系统分析了中国大陆科学钻探工程(CCSD)主孔、先导孔及附近地表榴辉岩的矿物微量元素。结果发现:榴辉岩中的Nb,Ta主要存在于金红石之中,其他矿物中含量极少;Nb,Ta之间存在着强烈分异(Nb/Ta=5.3~96.2),并总体上具有超球粒陨石的特征;韭闪石和多硅白云母的Nb/Ta平均分别为48.6,21.8,显示了很强的Nb,Ta分异能力;其他矿物如石榴石、绿辉石、绿帘石、磷灰石等的Nb、Ta含量及Nb/Ta都很低,对Nb-Ta分异不造成影响。认为导致Nb-Ta分异的不是金红石,而应出现在洋壳俯冲过程中金红石相出现之前的脱水和部分熔融阶段。富含Ti的角闪石(韭闪石)和白云母可能对Nb-Ta分异起到了决定性的作用。等金红石相出现之后,由于其对Nb,Ta的绝对控制作用,此前阶段的分异结果便被固定在金红石中而继承下来。因此,含金红石的榴辉岩常常表现出超球粒陨石Nb/Ta的特征,与金红石不能有效地分异Na,Ta的实验结果之间并不矛盾。在不均匀的上地幔中含金红石的榴辉岩是可能的超球粒陨石Nb/Ta储库之一。  相似文献   

10.
The formation of the continental crust (CC) is one of the most important processes in the evolution of the silicate Earth. Exactly how the CC formed is the subject of ongoing debate that focuses on its subchondritic Nb/Ta ratio. Nb and Ta are “geochemical identical twins,” so they usually do not fractionate from each other. Here, we show that rutile grains from hydrous rutile-bearing eclogitic layers recovered from drillcores in the Dabie-Sulu ultrahigh pressure terrain have highly variable Nb/Ta values (ranging from 5.4 to 29.1, with an average of 9.8 ± 0.6), indicating major fractionation of Nb and Ta most likely occurred during blueschist to amphibole-eclogite transformation in the absence of rutile. It is suggested that the released fluids with subchondritic Nb/Ta were transported to, and retained by, hydrous rutile-bearing eclogite in colder regions, resulting in suprachondritic Nb/Ta ratios for drier eclogite in hotter regions. Further dehydration of hydrous rutile-bearing eclogites cannot transfer the fractionated Nb/Ta values to the CC due to the low solubility of Nb and Ta in fluids in the presence of rutile, while dehydration-melting results in a major component of the CC, the tonalite-trondhjemite-granodiorite (TTG) component, which is responsible for the low Nb/Ta of the CC. Consequently, residual eclogites have variable but overall suprachondritic Nb/Ta.  相似文献   

11.
Isobaric partial melting experiments were performed on an Fe-free synthetic composition to simulate partial melting of subducted oceanic crust. Nominally anhydrous experiments at 3.0 GPa yielded melts in equilibrium with garnet (13 to 16 mol.% grossular) and aluminous clinopyroxene (14 to 16 wt.% Al2O3). Melt compositions show decreasing Si and alkalis and increasing Ca, Mg, and Ti contents with increasing temperatures. Experiments at 1200 and 1300°C were rutile saturated, whereas experiments at 1400°C contained no residual rutile. We argue that during the initial stages of subduction, accessory rutile is likely to be stable in subsolidus eclogites of average midocean ridge basalt composition and that only large degrees of partial melting will eradicate rutile from an eclogitic source. At 3 GPa, any eclogites with a bulk TiO2 content of ≥1.5 wt.% rutile will produce rutile-saturated partial melts, except at very high degrees of melting. At higher pressures, all bulk Ti may dissolve in clinopyroxene and garnet, leaving no accessory rutile.Trace element partition coefficients for 24 trace elements between clinopyroxene, garnet, and melt were determined by secondary-ion mass spectrometry analysis of experimental run products at 1400°C and 3 GPa. Partition coefficients for the rare earth elements agree well with previous studies and have been evaluated using the lattice strain model. Partitioning data for high-field strength elements indicate complementary DZr/DHf for clinopyroxene and garnet. Partial melting of an eclogitic component of different modal compositions may therefore explain both subchondritic and superchondritic Zr/Hf ratios. Superchondritic Zr/Hf has recently been observed in some ocean island basalts (OIB), and this may be taken as further evidence for components of recycled oceanic crust in OIB. The data also indicate slight Nb/Ta fractionation during partial melting of bimineralic eclogite, which is not, however, sufficient to explain some recently observed Nb/Ta fractionation in island arc rocks. Accessory rutile, however, can explain such fractionation.  相似文献   

12.
阿尔泰造山带南缘中泥盆世苦橄岩位于北塔山组地层的下部, 其上依次为玄武岩和安山岩.3种岩性共同的特点是贫钛、富铁, 具Nb和Ta的负异常以及高场强元素的丰度与MORB相当, 具有典型的岛弧火山岩系的特点, 是准噶尔洋板块向南西俯冲的结果.苦橄岩和玄武岩的Zr/Nb和Sm/Nd比值与MORB相当, 表明其源区为亏损的MORB源.然而玄武岩的Ti/V和Zr/Sm比值均高于苦橄岩, 而且玄武岩的稀土元素配分曲线呈平缓型, 而苦橄岩则显示出低的稀土总量以及弱富集轻稀土型, 指示了玄武岩是被从俯冲的洋壳释放的流体交代的含角闪石的尖晶石橄榄岩的地幔源区低程度部分熔融形成的, 苦橄岩则是在高温条件下被流体交代过的石榴石橄榄岩高程度熔融的产物.安山岩则可能是榴辉岩部分熔融形成的.   相似文献   

13.
Late Archean (2.57 Ga) diamond-bearing eclogite xenoliths from Udachnaya, Siberia, exhibit geochemical characteristics including variation in oxygen isotope values, and correlations of δ18O with major elements and radiogenic isotopes which can be explained by an origin as subducted oceanic crust. Trace element analyses of constituent garnet and clinopyroxene by Laser-ICPMS are used to reconstruct whole-rock trace element compositions, which indicate that the eclogites have very low high field strength element (HFSE) concentrations and Zr/Hf and Nb/Ta ratios most similar to modern island arcs or ultradepleted mantle. Although hydrothermal alteration on the Archean sea floor had enough geochemical effect to allow the recognition of its effects in the eclogites and thus diagnose them as former oceanic crust, it was not severe enough to erase many other geochemical features of the original igneous rocks, particularly the relatively immobile HFSEs. Correlations of the trace element patterns with oxygen isotopes show that some, generally Mg-richer, eclogites originated as lavas, whereas others have lower δ18O and higher Sr and Eu contents indicating an origin as plagioclase-bearing intrusive rocks formed in magma chambers within the ocean crust. Major and trace element correlations demonstrate that the eclogites are residues after partial melting during the subduction process, and that their present compositions were enriched in MgO by this process. The original lava compositions were picritic, but not komatiitic, whereas the intrusives had lower, basaltic MgO contents. The HFSE signature of the eclogites may indicate that ocean floor basalts of the time were relatively close to island arcs and recycled material, which would be consistent with a larger number of smaller oceanic plates. Their composition appears to indicate that komatiitic ocean crust compositions were restricted to the early Archean which is not known to be represented among the eclogite xenolith population.  相似文献   

14.
Redistribution of HFSE elements during rutile replacement by titanite   总被引:2,自引:0,他引:2  
Titanite growth at the expense of rutile during retrograde hydration of eclogite into amphibolite is a common phenomenon. We investigated an amphibolite sample from the Tromsø eclogite facies terrain in Northern Norway to gain insight into the trace element distribution between rutile and titanite during incomplete resorption of the rutile by titanite. Patchy compositional zoning of Al, Ti, and F in titanite relates to the presence of a fluid with variable Ti/Al and/or F during its growth. Laser ablation ICP–MS and electron microprobe data for high field strength elements (HFSE: Nb, Zr, Ta, and Hf) of rutile resorbed by titanite indicate a pronounced enrichment of these elements in the rim of a large single rutile crystal (~8 mm) and a systematic decrease towards uniform HFSE contents in the large core. HFSE contents of smaller rutile grains (~0.5 mm) and rutile inclusions (<100 μm) in the titanite overgrowth are similar or higher than in the rims of large rutile crystals. Element profiles from the rim inward demonstrate that HFSE enrichment in rutile is controlled by diffusion. HFSE ratios in diffusion-altered rutile show systematic variations compared with the uniform core composition of the large rutile. Modelling of Zr and Nb diffusion in rutile indicates that diffusion coefficients in rutile in fluid-dominated natural systems must be considerably higher than those determined experimentally at 1 bar in dry systems. Variations of HFSE contents in the newly formed titanite show no systematic spatial distribution. HFSE ratios in titanite and the rims of rutile are different, indicating different solid/fluid distribution coefficients in these minerals. Element fractionation by diffusion into the relict rutile and during fluid-mediated growth of new titanite could substantially change the HFSE budget of these minerals and could affect their use for geochemical tracing and other applications, such as Zr-based geothermobarometry.  相似文献   

15.
During the evolution of the Earth, distinct geochemical reservoirs with different Nb/Ta ratios have developed. Archean granitoids of the tonalite–trondhjemite–granodiorite (TTG) suite, which represent the Earth’s early continental crust, show larger Nb/Ta variations than any other Earth reservoir. This implies that significant Nb–Ta fractionation must have occurred during early crust formation, while the underlying mechanism behind is still unclear. Here, we present a new model on how Nb may be fractionated from Ta during partial melting of subducted oceanic crust. Our data show that Nb/Ta ratios in melts derived from rutile- and titanite-bearing eclogite are largely controlled by the modal relative abundances of rutile and titanite in the source. High modal ratios of titanite over rutile generate melts with very high Nb/Ta (>60), whereas low modal titanite/rutile produces melts with much lower Nb/Ta (≤30). Very low Nb/Ta (<16) occur when all Ti-phases are consumed at very high degrees of melting. As the modal ratio of titanite to rutile is a function of pressure, the Nb/Ta of melts is a function of melting depth. Our new model helps to explain the extreme variation of Nb/Ta observed in many TTGs and thus how Nb and Ta were fractionated during the early evolution of the Earth. Furthermore, the model also indicates that simple one-stage melting models for mafic crust are not sufficient to explain the formation of TTGs.  相似文献   

16.
Eclogites occur as a tectonic slice within a metabasite-phyllite-marble unit of the Karakaya Complex in northwest Turkey. The high-pressure mineral assemblage in eclogite is mainly composed of garnet + omphacite + glaucophane + epidote + quartz. Trace element characteristics of rutile and Zr-in-rutile temperatures were determined for eclogites from the Karakaya Complex. Core-rim analyses of rutile grains yield remarkable trace element zoning with lower contents of Zr, Nb and Ta in the core than in the rim. The variations in Zr, Nb and Ta can be ascribed to growth zoning rather than diffusion effects. The Nb/Ta and Zr/Hf ratios increase with a decrease in Ta and Hf contents, which could be ascribed to the effect of metamorphic dehydration in subduction zones on rutile Nb/Ta differentiation. The rutile grains from eclogites in the Karakaya Complex are dominated by subchondritic Nb/Ta and Zr/Hf ratios. It can be noted that subchondritic Nb/Ta may record rutile growth from local sinks of aqueous fluids from metamorphic dehydration.The Zr contents of all rutile grains range between 81 and 160 ppm with an average of 123 ppm. The Zr-in-rutile thermometry yields temperatures of 559–604 °C with an average temperature of 585 °C for eclogites from the Karakaya Complex. This average temperature suggests growth temperature of rutile before peak pressure during the subduction. However, some rutile grains have higher Zr contents in the outermost rims compared to the core. Zr-in-rutile temperatures of the rims are about 20 °C higher than those of the cores. This suggests that the outermost rims would have grown from a distinct fluid at higher temperatures than that of the cores. Moreover, Zr contents and calculated temperatures in both inclusion rutile and matrix rutile from eclogites are identical, which suggests that eclogites within the Karakaya Complex belong to the same tectonic slice and underwent similar metamorphic evolution.  相似文献   

17.
Niobium and Ta concentrations in ultrahigh‐pressure (UHP) eclogites and rutile from these eclogites and associated high pressure (HP) veins were used to study the behaviour of Nb–Ta during dehydration and fluid‐rock interaction. Samples were collected through a ~2 km profile at the Bixiling complex in the Dabie orogenic belt, Central‐Eastern China. All but one eclogite away from veins (EAVs) display nearly constant Nb/Ta ratios ranging from 16.1 to 19.2, with an average of 16.9 ± 0.8 (2 SE), similar to that of their gabbroic protolith from the Yangtze Block. Nb/Ta ratios of rutile from the EAVs range from 12.7 to 25.3 among different individual grains, with the average values close to those of the corresponding bulk rocks. These observations show that Nb and Ta were not significantly fractionated by prograde metamorphism up to eclogite facies when no significant fluid‐rock interaction occurs. In contrast, Nb/Ta ratios of rutile from eclogites close to veins (ECVs) are highly variable from 17.8 to 49.8, which are systematically higher (by up to 17) than those of rutile from the veins. These observations demonstrate that Nb and Ta were mobilized and fractionated during localized fluid flow and intensive fluid‐rock interaction. This is strongly supported by Nb/Ta zoning patterns in single rutile grains revealed by in situ LA‐ICP‐MS analysis. Ratios of Nb/Ta in the ECV‐hosted rutile decrease gradually from cores towards rims, whereas those in the EAV‐hosted rutile are nearly invariable. Furthermore, the vein rutile shows Nb/Ta zoning patterns that are complementary to those in rutile from their immediate hosts (ECVs), suggesting an internal origin for the vein‐forming fluids. The Nb/Ta ratios of such fluids evolved from low values at the early stage of subduction to higher values at later supercritical conditions with increased temperature and pressure. Quantitative modelling was conducted to constrain the compositional evolution of metamorphic fluids during dehydration and fluid‐rock interaction focusing on Nb–Ta distribution. The modelling results based on our proposed multistage fluid phase evolution path can essentially reproduce the natural observations reported in the present study.  相似文献   

18.
Scheelite and rutile from several metaturbidite-hosted gold-bearing quartz vein deposits of the Meguma Terrane of Nova Scotia were analyzed for trace elements including rare earth elements, niobium and tantalum. Scheelites have high concentrations of Sr, Nb, Y and rare earth elements (REE) with bell-shaped chondrite-normalized REE patterns accompanied by both positive and negative Eu anomalies. They also have high Nb/Ta ratios (80–300). Three distinct trace element types of the scheelites are interpreted to reflect chemical differences in the pulses of hydrothermal fluids. Hydrothermal rutiles have high contents of W (up to 4.2 wt.% WO3), are rich in Ta compared to Nb and have a very low Nb/Ta ratio (~0.3). Hydrothermal fluids which produced both scheelite with a high Nb/Ta and rutile with a low Nb/Ta ratio are an efficient medium for fractionation of this ratio although these two minerals play an important role during the process.  相似文献   

19.
The origin of the observed niobium deficit in the bulk silicate Earth (BSE) compared to chondritic meteorites constitutes a long-standing problem in geochemistry. The deficit requires a large-scale process fractionating niobium from tantalum, and a super-chondritic Nb/Ta reservoir hidden in the deep silicate Earth and/or in the metallic core. The only voluminous super-chondritic Nb/Ta silicate reservoir analysed to date is found in lunar basalts that assimilated highly evolved Fe-rich rocks associated with anorthosites in the lunar crust. These Fe-rich rocks, enriched in incompatible elements, are thought to represent the last fractions of melt remaining at the end of lunar magma ocean crystallization. Here we report high-precision Nb-Ta data for a Fe-rich, late-stage rock suite associated with a terrestrial anorthosite from the Proterozoic Bolangir complex in India. The geochemical characteristics of this rock suite resemble those expected for late-stage residual melts from a terrestrial magma ocean. Samples show extreme, super-chondritic Nb/Ta up to 31.1 and highly elevated Nb concentrations up to 338 ppm. We argue that formation of an early enriched crustal reservoir (EECR) with these characteristics (high Fe, high Nb, superchondritic Nb/Ta) is likely in the course of Hadean late-stage terrestrial magma ocean solidification. Subduction and subsequent permanent deep mantle storage in the D′′ layer of a minor amount (∼0.5% of the BSE mass) of this EECR can readily explain the terrestrial Nb deficit, without the need to invoke core Nb storage. Our model is consistent with short-lived 142Nd and long-lived 176Hf-143Nd isotope models for early differentiation of the Earth’s crust. In addition, the inferred Lu/Hf of this EECR implies that this reservoir can also balance the offset of terrestrial Hf isotope ratios compared to the chondritic reservoir. As such, late-stage magma ocean residual melts may constitute the enigmatic parental reservoir of Hadean zircons with low time-integrated Hf isotope compositions.  相似文献   

20.
Nature and origin of eclogite xenoliths from kimberlites   总被引:16,自引:0,他引:16  
D.E. Jacob   《Lithos》2004,77(1-4):295-316
Eclogites from the Earth's mantle found in kimberlites provide important information on craton formation and ancient geodynamic processes because such eclogites are mostly Archean in age. They have equilibrated over a range of temperatures and pressures throughout the subcratonic mantle and some are diamond-bearing. Most mantle eclogites are bimineralic (omphacite and garnet) rarely with accessory rutiles. Contrary to their overall mineralogical simplicity, their broadly basaltic-picritic bulk compositions cover a large range and overlap with (but are not identical to) much younger lower grade eclogites from orogenic massifs. The majority of mantle eclogites have trace element geochemical features that require an origin from plagioclase-bearing protoliths and oxygen isotopic characteristics consistent with seawater alteration of oceanic crust. Therefore, most suites of eclogite xenoliths from kimberlites can be satisfactorily explained as samples of subducted oceanic crust. In contrast, eclogite xenoliths from Kuruman, South Africa and Koidu, Sierra Leone stem from protoliths that were picritic cumulates from intermediate pressures (1–2 Ga) and were subsequently transposed to higher pressures within the subcratonic mantle, consistent with craton growth via island arc collisions. None of the eclogite suites can be satisfactorily explained by an origin as high pressure cumulates from primary melts from garnet peridotite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号