首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nucleation scavenging and the formation of a cloud interstitial aerosol (CIA) were theoretically studied in terms of the chemical composition of atmospheric aerosol particles. For this study, we used our air-parcel cloud model, which includes the entrainment of air and detailed microphysics, for determining the growth and interaction of aerosol particles and drops. Maritime and remote continental aerosol particle spectrums were used whose size distributions were superpositions of three log-normal distributions, each of a prescribed chemical composition. Our results show (1) that the CIA exhibits a size distribution with a distinctive cut-off at a specific radius of the dry as well as of the wet particle size distribution. All particles above this limiting size become activated to cloud drops and, thus, are not present in the CIA spectrum. This limiting size was found to be independent of the chemical composition of the particles and only dependent on the prevailing supersaturation. Below this specific size, the CIA spectrum becomes depleted of dry aerosol particles in a manner which does depend on their chemical composition and on the supersaturation in the air. (2) The number of aerosol particles nucleated to cloud drops depends critically on the chemical composition of the particles and on the prevailing supersaturation.  相似文献   

2.
A one-dimensional model of radiation fog with detailed microphysics is presented. Aerosols and cloud droplets are treated in a joint two-dimensional size distribution. Radiative fluxes are calculated as functions of the radiative properties of the time-dependent particle spectra. The droplet growth equation is solved by considering radiative effects. Turbulence is treated by means of a higher order closure model. The interaction between the atmosphere and the earth's surface is explicitly simulated.Three numerical sensitivity studies are performed to investigate the impact of the different physico-chemical properties of urban, rural and maritime aerosols on fog formation. Numerical results elucidate that depending on the aerosol type used, the resulting fog events are completely different. This is particularly true for the times of fog formation and dissipation as well as for the liquid water content and supersaturations within the fogs. In the activated part of the particle spectra, the aerosol mass is very inhomogeneously distributed. The maxima of the curves do not coincide with the maxima of the corresponding liquid water distributions.  相似文献   

3.
基于粒度特征区分风尘序列中沙尘暴降尘和流动沙丘沙组分对探究环境演变、重建风尘活动强度有重要意义。以塔克拉玛干沙漠中部流动沙丘沙和沙漠南缘策勒绿洲现代大气降尘为研究对象,分析其粒度差异,并与中国其他地区沙丘沙进行对比。结果表明:(1)塔干沙漠沙漠沙丘沙粒度分布曲线以单峰分布为主,策勒绿洲尘暴降尘呈双峰分布;(2)塔干沙漠沙丘沙和降尘均呈分选较好、近对称分布和中等峰态,但沙丘沙粒径粗;(3)不同区域沙丘沙的相同粒径组分相对含量和粒度特征具有相似性。尽管沙丘沙和大气降尘均有较好的分选性,但风场强度的差异导致它们的粒径分布范围、偏态和峰度不同。研究结果可为沙漠边缘区域地层中的风成组分判别提供依据。  相似文献   

4.
1960年以来东亚季风区云-降水微物理的直接观测研究   总被引:1,自引:0,他引:1  
云-降水的直接观测结果是云微物理参数化的重要依据。自1960年以来,处于东亚季风影响下的中国实施了大量对云-降水微物理参数的观测和研究,旨在加深对云-降水微物理过程的认识,从而改进数值模式中云微物理参数化方案和指导人工影响天气作业。云-降水微物理参数包括气溶胶、冰核、云滴、雨滴、冰晶、雪晶、冰雹等粒子浓度和谱分布,以及云滴、雨滴含水量等。中国已有云-降水微物理参数的成果可归纳为:(1)通常云-降水微物理粒子浓度变化较大,但总体变化有一定的范围;(2)采用Γ函数拟合云滴谱更接近实际谱,但不同拟合谱参数差异较大;(3)可用指数函数和Γ函数来拟合层状云降水雨滴谱,Γ函数拟合积云和层积混合云降水雨滴谱精度更高;(4)中国冰核浓度较高,冰核浓度随温度的降低近似成指数变化;(5)冰晶谱、雪晶谱、冰雹谱通常采用指数函数来描述;(6)通常使用荣格(Junge)和Γ函数来分段描述气溶胶粒子谱拟合误差更小。由于云-降水过程及其反馈作用描述不准确是数值模式预报结果不确定性的最大因素,中国正在不断地推进云降水的微物理观测研究,以期进一步加深对东亚季风区云-降水微物理特征的认识,从而为模式中微物理参数化方案的改进提供观测依据和科学指导。基于数值预报模式中云微物理过程参数化发展的需要,总结了中国1960年以来云-降水微物理直接观测的研究成果,可为东亚地区云-降水微物理研究及其模式参数化方案的改进提供观测依据。此外,针对云微物理参化发展的需求,结合过去已有的大量观测提出了几点建议,为今后云-降水物理综合性观测方案的设计提供参考。  相似文献   

5.
Consideration of sources and growth dynamics of aerosols has led to the conclusion that there may be a distribution or variation of chemical composition and physical structure among atmospheric aerosol particles as a function of size, and within a narrow size range as well. A mathematical representation of these particle properties in terms of an additional dimension to the number size distribution is described. Examples of the relevance of this aspect of aerosol characterization for physical and chemical processes in the atmosphere are discussed. A review of the available techniques shows that several methods are available which can and have provided quantitative results on the distribution of particle properties. Examples of data from the literature have been selected and are presented as three-dimensional distributions illustrating the wide range of particle properties which may exist in narrow size intervals. An evaluation of these results reiterates the value of taking the distribution of particle properties in the atmosphere into account for sampling and modeling purposes.  相似文献   

6.
A large number of in-situ measurements of cloud-precipitation microphysical properties have been made since 1960, including measurements of particle size distribution, particle concentration, and liquid water content of clouds and rain. These measurements have contributed to considerable progress in understanding microphysical processes in clouds and precipitation and significant improvements in parameterizations of cloud microphysics in numerical models. This work reviews key findings regarding cloud-precipitation microphysics over China. The total number concentrations of various particles vary significantly, with certain characteristic spatial scales. The size distributions of cloud droplets in stratiform clouds can generally be fit with gamma distributions, but the fit parameters cover a wide range. Raindrop size distributions(RSDs)associated with stratiform clouds can be fit with either exponential or gamma distributions, while RSDs associated with convective or mixed stratiform-cumuliform clouds are best fit with gamma distributions.Concentrations of ice nuclei(IN) over China are higher than those observed over other regions, and increase exponentially as temperature decreases. The particle size distributions of ice crystals, snow crystals, and hailstones sampled at a variety of locations can be reliably approximated by using exponential distributions,while aerosol particle size distributions are best described as the sum of a modified gamma distribution and a Junge power-law distribution. These results are helpful for evaluating and improving the fidelity of physical processes and hydrometeor fields simulated by microphysical parameterizations. The comprehensive summary and analysis of previous work presented here also provide useful guidelines for the design of future observational programs.  相似文献   

7.
In this study, we present a relationship between total accumulation mode aerosol mass concentrations and cloud droplet number concentrations ( N d). The fundamental aim with the present method is to arrive at a physically‐based conversion algorithm in which each step in the conversion is based on real physical processes that occur and can be observed in the atmosphere, and in which all of the fields involved can be observed or modeled. In the last conversion (the critical part in the algorithm), we use measurements of the size distributions of cloud droplet residual particles for different pollution conditions. This conversion assumes that the size of the residual particles can be described with a lognormal distribution function and uses the Hatch–Choate relationship to convert between residual volume and number. The relatively sparse data set with which we have developed the present algorithm results in a course classification of the aerosol mass field. Consequently, uncertainties need to be recognized when using the algorithm in its present form in model calculations. The algorithm has been used on data from 15 days and the agreement between calculated and observed N d values is, with one exception, within a factor of 2 and for many of these cases also much better than a factor of 2. In addition to the results of the algorithm itself, we also present a least‐squares fit to the predicted N d values. To improve the algorithm in the longer‐term requires more data of scavenging fractions, particle chemical composition and density, and residual particle size distributions as a function of aerosol mass loading and cloud type.  相似文献   

8.
大气气溶胶尺度分布分形特征研究   总被引:2,自引:0,他引:2       下载免费PDF全文
气溶胶作为大气环境中的重要组成部分,具有复杂的尺度分布结构。为研究其尺度分布特征,采用分形理论首先论述了常用的气溶胶谱分布函数具有分形不变性,然后在分形理论的指导下分别建立了气溶胶粒子和体积分形统计模型,而且以AERONET相关数据验证了分形模型的有效性和实用性,并采用分段分形的方法改进了气溶胶体积分形模型。最后分析研究了分维数的实用意义和分布情况,讨论了气溶胶分维数变化和粒度分布的关系。结果表明:气溶胶粒子数和体积分维数之间存在线性关系,上半年的大气溶胶粒子数分维数的变化幅度明显小于下半年的变化幅度;研究区域大气气溶胶中细粒子分布比较密集,大粒子分布比较分散。分形理论为研究大气气溶胶的尺度分布特征提供了新的方法与手段,具有广阔的研究与应用前景。  相似文献   

9.
The change of the chemical composition of the near-ground level atmospheric aerosol was studied during two summer episodes by a Lagrangian type of experimental approach. Bulk and single-particle chemical analyses of ions and elements in the particulate phase were deployed. N(-III) and N(V) components were also measured in the gas-phase. The measurements were completed by particle size distributions.Secondary inorganic aerosols (SIA) and fine particles of ≈0.2–0.4 μm size were still elevated 50 km downwind of the city. The direct comparison of transport over the city in contrast to transport over the surrounding areas showed that SIA was formed from emission from the city within less than 3 h. Relative increases, i.e., enrichment during transport were observed for primary and secondary aerosol components. The degree of mixing on the individual particle level increased significantly during transport in the area. In particular, newly emitted carbonaceous particles became internally mixed within hours with pre-existing sulphate particles. Mostly due to secondary aerosol formation the average particle size (mass median diameter) of major constituents of the aerosol was significantly decreased while being transported over 13 h. Given recent insights which link fine particles number and mass concentrations with health risks, the results suggest that rural populations in areas which frequently are located within an urban plume might run an elevated health risk relative to populations in areas not affected by urban plumes.  相似文献   

10.
Cloud microphysical property retrievals from the active microwave instrument on a satellite require the cloud droplet size distribution obtained from aircraft observations as a priori data in the iteration procedure.The cloud lognormal size distributions derived from 12 flights over Beijing,China,in 2008-09 were characterized to evaluate and improve regional CloudSat cloud water content retrievals.We present the distribution parameters of stratiform cloud droplet (diameter <500 tm and <1500 μm) and discuss the effect of large particles on distribution parameter fitting.Based on three retrieval schemes with different lognormal size distribution parameters,the vertical distribution of cloud liquid and ice water content were derived and then compared with the aircraft observations.The results showed that the liquid water content (LWC) retrievals from large particle size distributions were more consistent with the vertical distribution of cloud water content profiles derived from in situ data on 25 September 2006.We then applied two schemes with different a priori data derived from flight data to CloudSat overpasses in northern China during April-October in 2008 and 2009.The CloudSat cloud water path (CWP) retrievals were compared with Moderate Resolution Imaging Spectroradiometer (MODIS) liquid water path (LWP) data.The results indicated that considering a priori data including large particle size information can significantly improve the consistency between the CloudSat CWP and MODIS CWP.These results strongly suggest that it is necessary to consider particles with diameters greater than 50 tm in CloudSat LWC retrievals.  相似文献   

11.
Cloud microphysical properties of a mixed phase cloud generated by a typical extratropical cyclone in the Tongliao area, Inner Mongolia on 3 May 2014, are analyzed primarily using in situ flight observation data. This study is mainly focused on ice crystal concentration, supercooled cloud water content, and vertical distributions of fit parameters of snow particle size distributions (PSDs). The results showed several discrepancies of microphysical properties obtained during two penetrations. During penetration within precipitating cloud, the maximum ice particle concentration, liquid water content, and ice water content were increased by a factor of 2-3 compared with their counterpart obtained during penetration of a nonprecipitating cloud. The heavy rimed and irregular ice crystals obtained by 2D imagery probe as well as vertical distributions of fitting parameters within precipitating cloud show that the ice particles grow during falling via riming and aggregation process, whereas the lightly rimed and pristine ice particles as well as fitting parameters within non-precipitating cloud indicate the domination of sublimation process. During the two cloud penetrations, the PSDs were generally better represented by gamma distributions than the exponential form in terms of the determining coefficient (R2). The correlations between parameters of exponential /gamma form within two penetrations showed no obvious differences compared with previous studies.  相似文献   

12.
13.
The presence of embedded convection in stratiform clouds strongly affects ice microphysical properties and precipitation formation. In situ aircraft measurements, including upward and downward spirals and horizontal penetrations, were performed within both embedded convective cells and stratiform regions of a mixedphase stratiform cloud system on 22 May 2017. Supercooled liquid water measurements, particle size distributions, and particle habits in different cloud regions were discussed with the intent of characterizing the riming process and determining how particle size distributions vary from convective to stratiform regions. Significant amounts of supercooled liquid water, with maxima up to 0.6 g m~(-3), were observed between -3℃ and-6℃ in the embedded convective cells while the peak liquid water content was generally less than 0.1 g m~(-3) in the stratiform regions.There are two distinct differences in particle size distributions between convective and stratiform regions.One difference is the significant shift toward larger particles from upper -15℃ to lower -10℃ in the convective region, with the maximum particle dimensions increasing from less than 6000 μm to over 1 cm. The particles larger than 1 cm at -10℃ are composed of dendrites and their aggregates. The other difference is the large concentrations of small particles(25–205 μm) at temperatures between -3℃ and-5℃ in the convective region, where rimed ice particles and needles coexist. Needle regions are observed from three of the five spirals, but only the cloud conditions within the convective region fit into the Hallett-Mossop criteria.  相似文献   

14.
Mass size distribution of the crustal elements (Al, Ca, Fe, Mg, Si, Ti), anthropogenic elements (Zn, Mn, Cr, Cu, K, P, Pb) and sea elements (Na, Cl) were obtained from measurements carried out with an inertial cascade impactor in Sfax. A fitting procedure by data inversion was applied to those data. This procedure yields accurate size distributions of aerosols in the diameter range 0.1–25 μm in two different sites. In a coastal industrial site, the mass distribution of the aerosol showed a bimodal structure; and in urban area, the lower particle mode cannot be observed. The elemental dry deposition flux was calculated as a function of particle size. The element flux size distribution increased rapidly with particle size. The modelling results indicate that the majority of the crustal and anthropogenic elements flux (>90%) was due to particles larger than 3 μm in diameter.  相似文献   

15.
《Atmospheric Research》2009,91(2-4):125-131
Particle detection by condensation particle counters (CPCs) is ultimately limited by the onset of homogeneous nucleation. At vapour supersaturations around the homogeneous nucleation limit the diameter of critical clusters is typically about 2 nm. It is widely assumed that only particles larger than critical clusters can be activated by vapour condensation and the general detection limit of CPCs is therefore currently accepted to be around 2 nm particle diameter. Using an expansion type CPC with n-propanol as working fluid we investigated the transition from heterogeneous to homogeneous nucleation, clearly showing that particles are activated much before the onset of homogeneous nucleation, even at particle diameters as small as 1.4 nm. For particle diameters below 2 nm we have usually found condensation particle counting to be influenced by the simultaneous presence of ions as generated in a bipolar diffusion charger. In this paper we illustrate how the presence of ions influences particle number concentration measurement and how ions can be removed in order to obtain accurate seed particle number concentrations for particle diameters down to 1 nm.  相似文献   

16.
Particle detection by condensation particle counters (CPCs) is ultimately limited by the onset of homogeneous nucleation. At vapour supersaturations around the homogeneous nucleation limit the diameter of critical clusters is typically about 2 nm. It is widely assumed that only particles larger than critical clusters can be activated by vapour condensation and the general detection limit of CPCs is therefore currently accepted to be around 2 nm particle diameter. Using an expansion type CPC with n-propanol as working fluid we investigated the transition from heterogeneous to homogeneous nucleation, clearly showing that particles are activated much before the onset of homogeneous nucleation, even at particle diameters as small as 1.4 nm. For particle diameters below 2 nm we have usually found condensation particle counting to be influenced by the simultaneous presence of ions as generated in a bipolar diffusion charger. In this paper we illustrate how the presence of ions influences particle number concentration measurement and how ions can be removed in order to obtain accurate seed particle number concentrations for particle diameters down to 1 nm.  相似文献   

17.
The impact of aerosols on the climate and atmospheric environment depends on the water uptake ability of particles; namely, hygroscopic growth and acti- vation into cloud condensation nuclei (CCN). The size-resolved activation ratios (SRAR), characterizing the fraction of aerosol particles that act as CCN at different particle sizes and supersaturations, can be measured using a combination of differential mobility analyzers (DMA) and particle counters. DMA-based measurements are in- fluenced by the multiply charged particles and the quasi-mono-dispersed particles (effect of DMA transfer function) selected for each prescribed particle size. A theoretical study, assuming different particle number size distributions and hygroscopicity of aerosols, is performed to study the effects of the DMA transfer function and multiple charging on the measured SRAR and the derived hygroscopicity. Results show that the raw SRAR can be significantly skewed and hygroscopicity may be highly biased from the true value if the data are not corrected. The effect of the transfer function is relatively small and depends on the sample to sheath flow ratio. Multiply charged particles, however, can lead to large biases of the SRAR. These results emphasize that the inversion algo- rithm, which is used to correct the effects of the DMA transfer function and multiple charging, is necessary for accurate measurement of the SRAR.  相似文献   

18.
A simplistic study of the dynamics of a falling particle ensemble is described. It shows the effect created by the introduction of particle size distributions on precipitation onset and duration and compares it to the case where air motions or pressure fields triggered by the particles are neglected. The assumption of homogeneously sized raindrops seems adequate if precipitation rates and total rainfall are considered. As soon as timing is involved a more refined treatment is required.  相似文献   

19.
Wet deposition refers to both natural and artificial processes where particles are scavenged by atmospheric hydrometeors. Below-cloud atmospheric particles are removed by raindrops via Brownian diffusion, interception, and impaction. The overall scavenging coefficient has a broad and distinctive minimum for aerosol penetration between 0.1 and several micrometers in diameter. In this study, the approximated analytical solution for most penetrating particle size during precipitation was obtained. Brownian diffusion and interception were considered under the assumption of the inertial impaction can be neglected in this study conditions. Both the minimum collection efficiency and minimum scavenging coefficient particle size were estimated using the harmonic mean type approximation, with the solution compared to the numerically calculated results. The approximated results were comparable with the numerical solutions. The results showed that collection efficiency diameter is a function of terminal velocity and the collection mechanisms included. When considering Brownian diffusion and interception, most penetrating particle size increases as drop diameter increases, which shows a contrary to the study of Wang (1978) and this shows that most penetrating particle size depends on collection efficiency mechanism, flow velocity and collector diameter. Consequently, this study analytically approximated general type-solutions for scavenging gap particle size and minimum collection efficiency during precipitation.  相似文献   

20.
In this study the possible conditions for new aerosol particle formation in a background area of Helsinki have been analysed. The measurements of aerosol particle size distribution, main gaseous pollutant compounds, UV spectra and meteorological parameters were performed during April–May 1993. The main interest was concentrated on the investigations of photochemical OH radical formation, the oxidation of gas phase SO2 to H2SO4 and the formation of H2SO4---H2O aerosol particles. The measurements were analysed using a model for OH radical formation and aerosol dynamics. The analysis of aerosol size distributions was carried out using positive matrix factorization. The main conclusion is that based on our model analysis no evidence of new particle formation in the vicinity of the measurement station was found. However, the high concentrations of aerosol particles in the ultrafine size range indicate that some other particle formation pathways are to be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号