首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《国际泥沙研究》2020,35(4):417-429
The aim of the current study was to determine the nature of the seasonal variability of the Suspended Particulate Matter (SPM) fluxes from the drainage basin to the estuary in a macrotidal region (Northeastern Brazil), and the estuarine response to a seawater intrusion regarding sediment deposition, which will support the understanding of the global transport of materials at the continent-ocean interface. Thermohaline structure data was acquired using a Conductivity, Temperature, and Depth (CTD) probe with a sampling frequency of 4 Hz. Suspended particulate material was measured by gravimetric measurements applied to exact filtered volume samples. The outflows were measured through the use of an Acoustic Doppler Current Profiler (ADCP) with frequency of 1.5 MHz. The horizontal thermal and saline gradients varied from warmer and less saline waters (2014) to cooler and saline waters (2015). The gradient behavior when linked to volume transport and SPM flows, suggests a minimization of the fluvial flows in 2015, easing the advance of coastal water (CW) towards the inner estuary, leading to an inversion of the baroclinic pressure gradient. The bottom saline front, generated by the entrance of coastal water masses, caused an increase in SPM concentrations due to increased fluid density, resuspension of previously deposited sediment, and erosion of banks. High concentrations of SPM indicate higher volume transport suggesting a hydraulic barrier due to the change/inversion of the baroclinic pressure gradient, resulting in water and material retention. Material deposition was observed during neap tide, while during spring tide the material is resuspended, increasing the concentration, generating cycles of deposition and erosion during the neap-spring tides. The sediment in suspension that reach the estuary, even with low fluvial volume, stay in this environment forming new islands because of deposition. High deposition rates or sediment cycling, if generated by the hydraulic barrier, may indicate that the flows of SPM from the continental drainage to the estuary and adjacent continental shelf are interrupted and the residence time is increased.  相似文献   

2.
Muddy sediments with their potential for containing contaminants are commonly deposited and remobilized by tidal currents in estuarine environments. We examined the mobilization and subsequent redeposition of mud in a coastal plain estuary located in the southeastern United States. Time-series data for salinity, suspended sediment concentrations and quality (percent organic matter and pigment concentrations) were obtained over a 13-hour tidal cycle. We found that fast-settling mud particles are found during the highest tidal current speeds. Particle quality analyses suggest that all the material is of similar origin, and that phaeopigment can be used as a tracer of particles in this system. These particles settle onto the bed when current speeds approach slack conditions. We speculate that the quantity of mud mobilized during neap tide is less than during spring tide resulting in an opportunity for the mud to partially consolidate on the bottom and be removed from resuspension. We further speculate that the muddy sediments are mainly derived from fringing marshes in this estuary.  相似文献   

3.
In this paper SST imagery and a three-dimensional numerical model of a river plume were employed to detect upwelling induced by tidal straining in the Rhine ROFI (region of fresh water influence). Previous studies have shown that the Rhine ROFI in the North Sea exhibits strong cross-shore density gradients that compete with tidal and wind mixing to establish stratification. During neap periods with low mixing energy an area measuring 30 km offshore by 100 km alongshore becomes stratified. When the ROFI is stratified strong cross-shore currents are observed, with surface currents rotating anti-cyclonically and bottom currents rotating cyclonically. The cross-shore currents interact with the cross-shore density gradients to produce a semi-diurnal cycle of stratification. Due to continuity requirements imposed by the proximity of the coast, the offshore-directed surface currents and onshore-directed bottom currents should lead to coastal upwelling.  相似文献   

4.
The long-term variability of the non-tidal circulation in Southampton Water, a partially mixed estuary, was investigated using 71-day acoustic Doppler current profiler (ADCP) time series. The data show evidence that the spring–neap tidal variability of the turbulent mixing modulates the strength of the non-tidal residual circulation, with subtidal neap tide surface flows reaching 0.12 m s–1 compared to <0.05 m s–1 at spring tides. The amplitude of the neap-tide events in this non-tidal circulation is shown to be related to a critical value of the tidal currents, illustrating the strong dependence on tidal mixing. The results suggest that the dominant mechanism for generating these neap-tide circulation events is the baroclinic forcing of the horizontal density gradient, rather than barotropic forcing associated with ebb-induced periodic stratification. While tidal turbulence is thought to be the dominant control on this gravitational circulation, there is evidence of the additional effect of wind-driven mixing, including the effects of wind fetch and possibly wave development with along-estuary winds being more efficient at mixing the estuary than across-estuary winds. Rapid changes in atmospheric pressure also coincided with fluctuations in the gravitational circulation. The observed subtidal flows are shown to be capable of rapidly flushing buoyant material out of the estuary and into the coastal sea at neap tides.Responsible Editor: Iris Grabemann  相似文献   

5.
A three-dimensional finite volume unstructured mesh model of the west coast of Britain, with high resolution in the coastal regions, is used to investigate the role of wind wave turbulence and wind and tide forced currents in producing maximum bed stress in the eastern Irish Sea. The spatial distribution of the maximum bed stress, which is important in sediment transport problems, is determined, together with how it is modified by the direction of wind forced currents, tide–surge interaction and a surface source of wind wave turbulence associated with wave breaking. Initial calculations show that to first order the distribution of maximum bed stress is determined by the tide. However, since maximum sediment transport occurs at times of episodic events, such as storm surges, their effects upon maximum bed stresses are examined for the case of strong northerly, southerly and westerly wind forcing. Calculations show that due to tide–surge interaction both the tidal distribution and the surge are modified by non-linear effects. Consequently, the magnitude and spatial distribution of maximum bed stress during major wind events depends upon wind direction. In addition calculations show that a surface source of turbulence due to wind wave breaking in shallow water can influence the maximum bed stress. In turn, this influences the wind forced flow and hence the movement of suspended sediment. Calculations of the spatial variability of maximum bed stress indicate the level of measurements required for model validation.  相似文献   

6.
ONE D AND TWO D COMBINED MODEL FOR ESTUARY SEDIMENTATION   总被引:3,自引:0,他引:3  
1INTRODUCTIONThefluvialprocesinanestuaryiscomplicatedundertheactionofrunof,tidalflow,windinducedcurentandwaveetc.Especialy,...  相似文献   

7.
Tidal straining effect on sediment transport dynamics in the Huanghe (Yellow River) estuary was studied by field observations and numerical simulations. The measurement of salinity, suspended sediment concentration, and current velocity was conducted during a flood season in 1995 at the Huanghe river mouth with six fishing boats moored at six stations for 25-h hourly time series observations. Based on the measurements, the intra-tidal variations of sediment transport in the highly turbid river mouth was observed and the tidal straining effect occurred. Our study showed that tidal straining of longitudinal sediment concentration gradients can contribute to intra-tidal variability in sediment stratification and to asymmetries in sediment distribution within a tidal cycle. In particular, the tidal straining effect in the Huanghe River estuary strengthened the sediment-induced stratification at the flood tide, thus producing a higher bottom sediment concentration than that during the ebb. A sediment transport model that is capable of simulating sediment-induced stratification effect on the hydrodynamics in the bottom boundary layers and associated density currents was applied to an idealized estuary to demonstrate the processes and to discuss the mechanism. The model-predicted sediment processes resembled the observed characteristics in the Huanghe River estuary. We concluded that tidal straining effect is an important but poorly understood mechanism in the transport dynamics of cohesive sediments in turbid estuaries and coastal seas.  相似文献   

8.
On the vertical structure of the Rhine region of freshwater influence   总被引:1,自引:0,他引:1  
An idealised three-dimensional numerical model of the Rhine region of fresh water influence (ROFI) was set up to explore the effect of stratification on the vertical structure of the tidal currents. Prandle’s dynamic Ekman layer model, in the case of zero-depth-averaged, cross-shore velocities, was first used to validate the response of the numerical model in the case of barotropic tidal flow. Prandle’s model predicted rectilinear tidal currents with an ellipse veering of up to 2%. The behaviour of the Rhine ROFI in response to both a neap and a spring tide was then investigated. For the given numerical specifications, the Rhine plume region was well mixed over the vertical on spring tide and stratified on neap tide. During spring conditions, rectilinear tidal surface currents were found along the Dutch coast. In contrast, during neap conditions, significant cross-shore currents and tidal straining were observed. Prandle’s model predicted ellipse veering of 50%, and was found to be a good indicator of ellipticity magnitude as a function of bulk vertical eddy viscosity. The modelled tidal ellipses showed that surface currents rotated anti-cyclonically whereas bottom currents rotated cyclonically. This caused a semi-diurnal cross-shore velocity shearing which was 90° out of phase with the alongshore currents. This cross-shore shear subsequently acted on the horizontal density gradient in the plume, thereby causing a semi-diurnal stratification pattern, with maximum stratification around high water. The same behaviour was exhibited in simulations of a complete spring–neap tidal cycle. This showed a pattern of recurring stratification on neaps and de-stratification on springs, in accordance with observations collected from field campaigns in the 1990’s. To understand the increase in ellipticities to 30% during neaps and the precise shape of the vertical ellipse structure, stratification has to be taken into account. Here, a full three-dimensional numerical model was employed, and was found to represent the effect of de-coupling of the upper and lower layers due to a reduction of mixing at the pycnocline.  相似文献   

9.
Contemporary hydrodynamics and morphological change are examined in a shallow microtidal estuary, located on a wave-dominated coast (Port Stephens, NSW, Australia). Process-based numerical modelling is undertaken by combining modules for hydrodynamics, waves, sediment transport and bathymetry updates. Model results suggest that the complex estuarine bathymetry and geometry give rise to spatial variations in the tidal currents and a marked asymmetry between ebb and flood flows. Sediment transport paths correspond with tidal asymmetry patterns. The SE storms significantly enhance the quantities of sediment transport, while locally generated waves by the westerly strong winds also are capable of causing sediment entrainment and contribute to the delta morphological change. The wave/wind-induced currents are not uniform with flow over shoals driven in the same direction as waves/winds while a reverse flow occurring in the adjacent channel. The conceptual sediment transport model developed in this study shows flood-directed transport occurs on the flood ramp while ebb-directed net transport occurs in the tidal channels and at the estuary entrance. Accretion of the intertidal sand shoals and deepening of tidal channels, as revealed by the model, suggest that sediment-infilling becomes advanced, which may lead to an ebb-dominated estuary. It is likely that a switch from flood- to ebb-dominance occurs during the estuary evolution, and the present-day estuary acts as a sediment source rather than sediment sink to the coastal system. This is conflictive to the expectation drawn from the estuarine morphology; however, it is consistent with previous research suggesting that, in an infilling estuary, an increase in build-up of intertidal flats/shoals can eventually shift an estuary towards ebb dominance. Thus, field data are needed to validate the result presented here, and further study is required to investigate a variety of estuaries in the Australian area.  相似文献   

10.
《Continental Shelf Research》2007,27(3-4):375-399
A mooring and tripod array was deployed from the fall of 2002 through the spring of 2003 on the Po prodelta to measure sediment transport processes associated with sediment delivered from the Po River. Observations on the prodelta revealed wave-supported gravity flows of high concentration mud suspensions that are dynamically and kinematically similar to those observed on the Eel shelf [Traykovski, P., Geyer, W.R., Irish, J.D., Lynch, J.F., 2000. The role of wave-induced density-driven fluid mud flows for cross-shelf transport on the Eel River continental shelf. Continental Shelf Research 20, 2113–2140]. Due to the dynamic similarity between the two sites, a simple one-dimensional (1D) across-shelf model with the appropriate bottom boundary condition was used to examine fluxes associated with this transport mechanism at both locations. To calculate the sediment concentrations associated with the wave-dominated and wave-current resuspension, a bottom boundary condition using a reference concentration was combined with an “active layer” formulation to limit the amount of sediment in suspension. Whereas the wave-supported gravity flow mechanism dominated the transport on the Eel shelf, on the Po prodelta flux due to this mechanism is equal in magnitude to transport due to wave resuspension and wind-forced mean currents in the cross-shore direction. Southward transport due to wave resuspension and wind forced mean currents move an order of magnitude more sediment along-shore than the down-slope flux associated wave-supported gravity flows.  相似文献   

11.
Freshwater flocculation of suspended sediments in the Yangtze River, China   总被引:3,自引:1,他引:2  
Leicheng Guo  Qing He 《Ocean Dynamics》2011,61(2-3):371-386
This study focuses on suspended sediments and in situ flocculation in the Yangtze River, with the goal of improving our understanding of the relationship between freshwater and estuarine flocculation. A field survey with state-of-the-art instruments was carried out in January 2008 in the reach from downstream of the Three Gorges Dam to the estuary. The data show that in situ floc mean diameters range from 22 to 182???m in the river, whereas the median dispersed grain sizes are 4.4?C11.4???m. This demonstrates that flocculation is an important process during the transport of suspended sediments along the river. The flocculation characteristics, suspended sediment concentration and dispersed grain sizes all vary longitudinally in the main stream of the Yangtze River. Biochemical factors are likely be more significant in the freshwater flocculation than in the estuary, where hydrodynamics and biochemical factors are both important. Flocculation is found in the freshwater river, in the estuary and in coastal waters, which indicates that dynamic break-up/reflocculation processes take place during the suspended sediment transport. The freshwater flocs may behave as parent flocs to the estuarine flocculation. This study enhances our understanding of flocculation from estuarine and coastal areas to fresh river systems and provides insights into the effects of input of riverine flocs to the estuarine flocculation and into the sources and fate of flocs.  相似文献   

12.
This study investigates sediment transport at a very low‐energy backbarrier beach in southern Portugal, from a spring‐to‐neap tide period, during fair‐weather conditions. Rates and directions of transport were determined based on the application of fluorescent tracer techniques. Wind and currents were collected locally, whereas the dominant small and short‐period wind waves were characterized using a morphodynamic modelling system coupling a circulation model, a spectral wave model, and a bottom evolution model, well validated over the study area. For the recorded conditions sediment transport was small and ebb oriented, with daily transport rates below 0.02 m3 day‐1. Tidal currents (mainly ebb velocities) were found to be the main causative forcing controlling sediment displacements. Transport rates were higher during spring tides, tending towards very small values at neap tides. Results herein reported points towards the distinction between tracer advection and tracer dispersion in this type of environment. Transport by advection was low as a consequence of the prevailing hydrodynamic conditions (Hs < 0.1 m, and max. current velocity of 0.5 m s‐1) and the tracer adjustment to the transport layer, whereas dispersion was relatively high (few metres per day). Tracer techniques allowed distinguishing the broad picture of transport, but revealed the need for refinement in this type of environments (bi‐directional forcing by ebb and flood cycles). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Groundwater flow and chemical transport in subterranean estuaries are poorly understood despite their potentially important implications for chemical fluxes from aquifers to coastal waters. Here, a numerical study of the dynamics in a subterranean estuary subject to tidal forcing is presented. Simulations show that salt transport associated with tidally driven seawater recirculation leads to the formation of an upper saline plume in the intertidal region. Computed transit times and flow velocities indicate that this plume represents a more active zone for mixing and reaction than the dispersion zone of the lower, classical salt wedge. Proper conceptualisation of this surficial mixing zone extends our understanding of processes within the subterranean estuary. Numerical tracer simulations reveal that tidal forcing may reduce the threat of a land-derived contaminant discharging to the marine environment by modifying the subsurface transport pathway and local geochemical conditions. Mixing and stratification in the subterranean estuary are strongly affected by both inland and tidal forcing. Based on the estuarine analogy we present a systematic classification of subterranean estuaries.  相似文献   

14.
The bed of estuaries is often characterized by ripples and dunes of varying size. Whereas smaller bedforms adapt their morphological shape to the oscillating tidal currents, large compound dunes (here: asymmetric tidal dunes) remain stable for periods longer than a tidal cycle. Bedforms constitute a form roughness, that is, hydraulic flow resistance, which has a large-scale effect on tidal asymmetry and, hence, on hydrodynamics, sediment transport, and morphodynamics of estuaries and coastal seas. Flow separation behind the dune crest and recirculation on the steep downstream side result in turbulence and energy loss. Since the energy dissipation can be related to the dune lee slope angle, asymmetric dune shapes induce variable flow resistance during ebb and flood phases. Here, a noncalibrated numerical model has been applied to analyze the large-scale effect of symmetric and asymmetric dune shapes on estuarine tidal asymmetry evaluated by residual bed load sediment transport at the Weser estuary, Germany. Scenario simulations were performed with parameterized bed roughness of symmetric and asymmetric dune shapes and without dune roughness. The spatiotemporal interaction of distinct dune shapes with the main drivers of estuarine sediment and morphodynamics, that is, river discharge and tidal energy, is shown to be complex but substantial. The contrasting effects of flood- and ebb-oriented asymmetric dunes on residual bed load transport rates and directions are estimated to be of a similar importance as the controls of seasonal changes of discharge on these net sediment fluxes at the Lower Weser estuary. This corroborates the need to consider dune-induced directional bed roughness in numerical models of estuarine and tidal environments.  相似文献   

15.
The transition zone separating estuarine environments from the coastal ocean is characterized not only by distinctive morphological and sedimentary trends but by unique hydrodynamic forces as well. Lower Chesapeake Bay, a large coastal estuary within the Mid-Atlantic Bight of the U.S. East Coast, experiences complex wave and current-induced forces produced during winter storms. Wave and current measurements made near Thimble Shoal Light over five winter seasons show that most storms simultaneously produce both ocean and bay-generated wave trains that appear as distinct bimodal peaks in directional spectra. Analysis of selected storm wave records reveal that lower-frequency ocean waves, although nominally lower in amplitude than higher-frequency bay waves, are roughly equivalent to bay waves in terms of energy expended on beds of fine- to medium-grained sand at either end of the Thimble Shoal Channel. Grain-friction energy dissipation estimates calculated for waves and currents suggest that waves provide more net energy capable of transporting bottom sediment than currents, although strong barotropic flows briefly encountered during a major storm on 13–14 March 1993, exceeded wave energy expended at the bed by almost an order of magnitude. From analyses of wave orbital velocity spectra, it is shown that dual wave trains characterized by differences in peak frequency and direction may assist each other through interactions that increase their combined contribution to frictional energy dissipation and inferred sediment transport at the bed.  相似文献   

16.
Halifax Harbour is located on the Atlantic coast of Nova Scotia, Canada. It is one of the world’s largest, ice-free natural harbours and of great economic importance to the region. A good understanding of the physical processes controlling tides, flooding, transport and dispersion, and hydrographic variability is required for pollution control and sustainable development of the Harbour. For the first time, a multi-nested, finite difference coastal ocean circulation model is used to reconstruct the three-dimensional circulation and hydrography of the Harbour and its variability on timescales of hours to months for 2006. The model is driven by tides, wind and sea level pressure, air-sea fluxes of heat, and terrestrial buoyancy fluxes associated with river and sewage discharge. The predictive skill of the model is assessed by comparing the model simulations with independent observations of sea level from coastal tide gauges and currents from moored instruments. The simulated hydrography is also compared against a new monthly climatology created from all available temperature and salinity observations made in the Harbour over the last century. It is shown that the model can reproduce accurately the main features of the observed tides and storm surge, seasonal mean circulation and hydrography, and wind driven variations. The model is next used to examine the main physical processes controlling the circulation and hydrography of the Harbour. It is shown that non-linear interaction between tidal currents and complex topography occurs over the Narrows. The overall circulation can be characterized as a two-layer estuarine circulation with seaward flow in the thin upper layer and landward flow in the broad lower layer. An important component of this estuarine circulation is a relatively strong, vertically sheared jet situated over a narrow sill connecting the inner Harbour to the deep and relatively quiescent Bedford Basin. Local wind driven variability is strongest in winter as expected but it is also shown that a significant part of the temperature and salinity variability is driven by physical processes occurring on the adjacent inner continental shelf, especially during storm and coastal upwelling events.  相似文献   

17.
Numerical modeling was used in order to study the effect of tidal currents within a breakwater scheme that has reached morphodynamic equilibrium. Tidal flow is simulated, using a downscaling procedure from a regional numerical model, in order to investigate the small-scale hydrodynamic modifications caused by the structures in the absence of waves. Sediment transport processes at different stages of the neap and spring tidal cycle are also considered over the entire scheme. Significant modifications to the tidal currents were identified, caused by the presence of the following structures: (1) obstruction of the main tidal flow and (2) flow channelization between the structures and the coastline, leading to flow acceleration over the salients. Furthermore, the effect of the modified tidal regime on bedload sediment transport processes was investigated. The design characteristics of the scheme (i.e., gap width, offshore distance, and relative angle with respect to the tidal currents) are found to influence locally the tidal flow and the bedload transport, over the top of the salients, modulating their growth. Despite being located in a mixed-energy, wave-dominated environment, the shear stress ratio between currents and waves show a dominance of tidal processes at the sheltered areas of the scheme (i.e., behind the breakwaters) that diminishes as the incident wave period increases. Hence, in order to correctly predict the morphological evolution of such coast under the influence of coastal protection schemes, the tidal processes have to be studied in addition to the wave processes.  相似文献   

18.
The effect of hydro-meteorological forcings (tidal and wind-induced flows) on the transport of suspended particulate matter (SPM), on the formation of high-concentrated mud suspensions and on the occurrence of sand–mud suspensions has been studied using long-term multi-parametric observations. Data have been collected in a coastal turbidity maximum area (southern North Sea) where a mixture of sandy and muddy sediments prevails. Data have been classified according to variations in subtidal alongshore currents, with the direction of subtidal flow depending on wind direction. This influences the position of the turbidity maximum; as such also the origin of SPM. Winds blowing from the NE will increase SPM concentration, whilst SW winds will induce a decrease. The latter is related to advection of less turbid English Channel water, inducing a shift of the turbidity maximum towards the NE and the Westerschelde estuary. Under these conditions, marine mud will be imported and buffered in the estuary. Under persistent NE winds, high-concentrated mud suspensions are formed and remain present during several tidal cycles. Data show that SPM consists of a mixture of flocs and locally eroded sand grains during high currents. This has implications towards used instrumentation: SPM concentration estimates from optical backscatter sensors will only be reliable when SPM consists of cohesive sediments only; with mixtures of cohesive and non-cohesive sediments, a combination of both optical and acoustic sensors are needed to get an accurate estimate of the total SPM concentration.  相似文献   

19.
A numerical modeling study of the influence of the lateral flow on the estuarine exchange flow was conducted in the north passage of the Changjiang estuary. The lateral flows show substantial variabilities within a flood-ebb tidal cycle. The strong lateral flow occurring during flood tide is caused primarily by the unique cross-shoal flow that induces a strong northward (looking upstream) barotropic force near the surface and advects saltier water toward the northern part of the channel, resulting in a southward baroclinic force caused by the lateral density gradient. Thus, a two-layer structure of lateral flows is produced during the flood tide. The lateral flows are vigorous near the flood slack and the magnitude can exceed that of the along-channel tidal flow during that period. The strong vertical shear of the lateral flows and the salinity gradient in lateral direction generate lateral tidal straining, which are out of phase with the along-channel tidal straining. Consequently, stratification is enhanced at the early stage of the ebb tide. In contrast, strong along-channel straining is apparent during the late ebb tide. The vertical mixing disrupts the vertical density gradient, thus suppressing stratification. The impact of lateral straining on stratification during spring tide is more pronounced than that of along-channel straining during late flood and early ebb tides. The momentum balance along the estuary suggests that lateral flow can augment the residual exchange flow. The advection of lateral flows brings low-energy water from the shoal to the deep channel during the flood tide, whereas the energetic water is moved to the shoal via lateral advection during the ebb tide. The impact of lateral flow on estuarine circulation of this multiple-channel estuary is different from single-channel estuary. A model simulation by blocking the cross-shoal flow shows that the magnitudes of lateral flows and tidal straining are reduced. Moreover, the reduced lateral tidal straining results in a decrease in vertical stratification from the late flood to early ebb tides during the spring tide. By contrast, the along-channel tidal straining becomes dominant. The model results illustrate the important dynamic linkage between lateral flows and estuarine dynamics in the Changjiang estuary.  相似文献   

20.
Previous studies on tidal dynamics of coastal aquifers have focussed on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Aquifers at natural coasts can also be influenced by tidal waves in nearby estuaries, resulting in a more complex behaviour of head fluctuations in the aquifers. We present an analytical solution to the two-dimensional depth-averaged groundwater flow equation for a semi-infinite aquifer subject to oscillating head conditions at the boundaries. The solution describes the tidal dynamics of a coastal aquifer that is adjacent to a cross-shore estuary. Both the effects of oceanic and estuarine tides on the aquifer are included in the solution. The analytical prediction of the head fluctuations is verified by comparison with numerical solutions computed using a standard finite-difference method. An essential feature of the present analytical solution is the interaction between the cross- and along-shore tidal waves in the aquifer area near the estuary’s entry. As the distance from the estuary or coastline increases, the wave interaction is weakened and the aquifer response is reduced, respectively, to the one-dimensional solution for oceanic tides or the solution of Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour Res 1997;33:1429–35) for two-dimensional non-interacting tidal waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号