首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Aerosols consist of organic and inorganic species, and the composition and concentration of these species depends on their sources, chemical transformation and sinks. In this study an assessment of major inorganic ions determined in three aerosol particle size ranges collected for 1 year at Welgegund in South Africa was conducted. SO42? and ammonium (NH4+) dominated the PM1 size fraction, while SO42? and nitrate (NO3) dominated the PM1–2.5 and PM2.5–10 size fractions. SO42? had the highest contribution in the two smaller size fractions, while NO3? had the highest contribution in the PM2.5–10 size fraction. SO42? and NO3? levels were attributed to the impacts of aged air masses passing over major anthropogenic source regions. Comparison of inorganic ion concentrations to levels thereof within a source region influencing Welgegund, indicated higher levels of most species within the source region. However, the comparative ratio of SO42? was significantly lower due to SO42? being formed distant from SO2 emissions and submicron SO42? having longer atmospheric residencies. The PM at Welgegund was determined to be acidic, mainly due to high concentrations of SO42?. PM1 and PM1–2.5 fractions revealed a seasonal pattern, with higher inorganic ion concentrations measured from May to September. Higher concentrations were attributed to decreased wet removal, more pronounced inversion layers trapping pollutants, and increases in household combustion and wild fires during winter. Back trajectory analysis also revealed higher concentrations of inorganic ionic species corresponding to air mass movements over anthropogenic source regions.  相似文献   

2.
Aerosol (PM10) samples were collected and its precursor gases, i.e., NH3, NO, NO2, and SO2 measured over Bay of Bengal (BoB) during winter months of December 2008 to January 2009 to understand the relationship between particular matter (PM) and precursor gases. The observations were done under the winter phase of Integrated Campaign on Aerosols, gases and Radiation Budget (W_ICARB). The distribution of water-soluble inorganic ionic composition (WSIC) and its interaction with precursor gases over BoB are reported in present case. Average atmospheric concentration of NH3, NO, NO2, and SO2 were recorded as 4.78?±?1.68, 1.89?±?1.26, 0.31?±?0.14, and 0.80?±?0.30?μg?m?3, whereas WSIC component of PM10, i.e., NH4 +, SO4 2?, NO3 ?, and Cl? were recorded as 1.96?±?1.66, 8.68?±?3.75, 1.92?±?1.75, and 2.48?±?0.78?μg?m?3, respectively. In the present case, abundance of nss-SO4 2? in the particulate matter is recorded as 18?%. It suggests the possibility of long-range transport as well as marine biogenic origin. Higher SO4 2?/(SO2?+?SO4 2?) equivalent molar ratio during the campaign indicates the gas-to-particle conversion with great efficiency over the study region.  相似文献   

3.
基于极端随机树方法的WRF-CMAQ-MOS模型研究   总被引:2,自引:0,他引:2  
随着城市化、工业化的快速发展,空气污染已经成为了公众最关注的问题之一。为了提高空气质量预报的准确度,以多尺度空气质量模型(Community Multi-Scale Air Quality,CMAQ)为工具,结合中尺度WRF(Weather Research and Forecast Model)气象预报数据、气象观测数据、污染物浓度观测数据,基于极端随机树方法建立了WRF-CMAQ-MOS(Weather Research and Forecast Model-Community Multi-Scale Air Quality-Model Output Statistics)统计修正模型。结果表明,结合WRF气象预报的CMAQ-MOS方法明显修正了由于模型非客观性产生的模式预报偏差,提高了预报效果。使用线性回归方法不能获得较好的优化效果,选取极端随机树方法和梯度提升回归树方法对模型进行改进和比较,发现极端随机树方法对结合WRF气象要素的CMAQ-MOS模型有较大的提升。针对徐州地区空气质量预报,进一步使用基于极端随机树方法的WRF-CMAQ-MOS模型对2016年1、2、3月的空气质量指数(AQI)及PM2.5、PM10、NO2、SO2、O3、CO六种污染物优化试验进行验证,发现优化效果最为明显的两种污染物分别是NO2及O3,2016年1、2、3月整体相关系数NO2由0.35升至0.63,O3由0.39升至0.79,均方根误差NO2由0.0346减至0.0243 mg/m3,O3由0.0447减至0.0367 mg/m3。文中发展的WRF-CMAQ-MOS统计修正模型可以有效提升预报精度,在空气质量预报中具有很好的应用前景。   相似文献   

4.
Beijing is one of the largest and most densely populated cities in China. PM2.5 (fine particulates with aerodynamic diameters less than 2.5 μm) pollution has been a serious problem in Beijing in recent years. To study the temporal and spatial variations in the chemical components of PM2.5 and to discuss the formation mechanisms of secondary particles, SO2, NO2, PM2.5, and chemical components of PM2.5 were measured at four sites in Beijing, Dingling (DL), Chegongzhuang (CG), Fangshan (FS), and Yufa (YF), over four seasons from 2012 to 2013. Fifteen chemical components, including organic carbon (OC), elemental carbon (EC), K+, NH4 +, NO3 ?, SO4 2?, Cl?, Al, Ca, Fe, Mg, Na, Pb, Si, and Zn, were selected for analysis. Overall, OC, SO4 2?, NO3 ?, and NH4 + were dominant among 15 components, the annual average concentrations of which were 22.62 ± 21.86, 19.39 ± 21.06, 18.89 ± 19.82, and 13.20 ± 12.80 μg·m?3, respectively. Compared with previous studies, the concentrations of NH4 + were significantly higher in this study. In winter, the average concentrations of OC and EC were, respectively, 3 and 2.5 times higher than in summer, a result of coal combustion during winter. The average OC/EC ratios over the four sites were 4.9, 7.0, 8.1, and 8.4 in spring, summer, autumn, and winter, respectively. The annual average [NO3 ?]/[SO4 2?] ratios in DL, CG, FS, and YF were 1.01, 1.25, 1.08, and 1.12, respectively, which were significantly higher than previous studies in Beijing, indicating that the contribution ratio of mobile source increased in recent years in Beijing. Analysis of correlations between temperature and relative humidity and between SOR ([SO4 2?]/([SO4 2?] + [SO2])) and NOR ([NO3 ?]/([NO3 ?] + [NO2])) indicated that gas-phase oxidation reactions were the major formation mechanism of SO4 2? in spring and summer in urban Beijing, whereas slow gas-phase oxidation reactions and heterogeneous reactions both occurred in autumn and winter. NO3 ? was mainly formed through year-round heterogeneous reactions in urban Beijing.  相似文献   

5.
The spatial distribution of trace gases exhibit large spatial heterogeneity over the Indian region with an elevated pollution loading over densely populated Gangetic Plains (IGP). The contending role and importance of anthropogenic emissions and meteorology in deciding the trace gases level and distribution over Indian region, however, is poorly investigated. In this paper, we use an online regional chemistry transport model (WRF/Chem) to simulate the spatial distribution of trace gases over Indian region during one representative month of only three meteorological seasons namely winter, spring/summer and monsoon. The base simulation, using anthropogenic emissions from SEAC4RS inventory, is used to simulate the general meteorological conditions and the realistic spatial distribution of trace gases. A sensitivity simulation is conducted after removing the spatial heterogeneity in the anthropogenic emissions, i.e., with spatially uniform emissions to decouple the role of anthropogenic emissions and meteorology and their role in controlling the distribution of trace gases over India. The concentration levels of Ozone, CO, SO2 and NO2 were found to be lower over IGP when the emissions are uniform over India. A comparison of the base run with the sensitivity run highlights that meteorology plays a dominant role in controlling the spatial distribution of relatively longer-lived species like CO and secondary species like Ozone while short-lived species like NOX and SO2 are predominantly controlled by the spatial variability in anthropogenic emissions over the Indian region.  相似文献   

6.
Daily rainwater samples collected at Lijiang in 2009 were analyzed for pH, electrical conductivity, major ion (SO4 2?, Cl?, NO3 ?, Na+, Ca2+, Mg2+, and NH4 +) concentrations, and δ18O. The rainwater was alkaline with the volume-weighted mean pH of 6.34 (range: 5.71 to 7.11). Ion concentrations and δ18O during the pre-monsoon period were higher than in the monsoon. Air mass trajectories indicated that water vapor from South Asia was polluted with biomass burning emissions during the pre-monsoon. Precipitation during the monsoon was mainly transported by flow from the Bay of Bengal, and it showed high sea salt ion concentrations. Some precipitation brought by southwest monsoon originated from Burma; it was characterized by low δ18O and low sea salt, indicating that the water vapor from the region was mainly recycled monsoon precipitation. Water vapor from South China contained large quantities of SO4 2?, NO3 ?, and NH4 +. Throughout the study, Ca2+ was the main neutralizing agent. Positive matrix factorization analysis indicated that crustal dust sources contributed the following percentages of the ions Ca2+ 85 %, Mg2+ 75 %, K+ 61 %, NO3 ? 32 % and SO4 2? 21 %. Anthropogenic sources accounted for 79 %, 68 %, and 76 % of the SO4 2?, NO3 ? and NH4 +, respectively; and approximately 93 %, 99 %, and 37 % of the Cl?, Na+, and K+ were from a sea salt source.  相似文献   

7.
Zhang  Xiaoyu  Ji  Guixiang  Peng  Xiaowu  Kong  Lingya  Zhao  Xin  Ying  Rongrong  Yin  Wenjun  Xu  Tian  Cheng  Juan  Wang  Lin 《Journal of Atmospheric Chemistry》2022,79(2):101-115

In this study, 123 PM2.5 filter samples were collected in Wuhan, Hubei province from December 2014 to November 2015. Water- soluble inorganic ions (WSIIs), elemental carbon (EC), organic carbon (OC) and inorganic elements were measured. Source apportionment and back trajectory was investigated by the positive matrix factorization (PMF) model and the hybrid single particle lagrangian integrated trajectory (HYSPLIT) model, respectively. The annual PM2.5 concentration was 80.5?±?38.2 μg/m3, with higher PM2.5 in winter and lower in summer. WSIIs, OC, EC, as well as elements contributed 46.8%, 14.8%, 6.7% and 8% to PM2.5 mass concentration, respectively. SO42?, NO3? and NH4+ were the dominant components, accounting for 40.2% of PM2.5 concentrations. S, K, Cl, Ba, Fe, Ca and I were the main inorganic elements, and accounted for 65.2% of the elemental composition. The ratio of NO3?/SO42? was 0.86?±?0.72, indicating that stationary sources play dominant role on PM2.5 concentration. The ratio of OC/EC was 2.9?±?1.4, suggesting the existence of secondary organic carbon (SOC). Five sources were identified using PMF model, which included secondary inorganic aerosols (SIA), coal combustion, industry, vehicle emission, fugitive dust. SIA, coal combustion, as well as industry were the dominant contributors to PM2.5 pollution, accounting for 34.7%, 20.5%, 19.6%, respectively.

  相似文献   

8.
Measurements of fog and rain water chemistry at the summit of Mt. Fuji, the highest peak in Japan, as well as at Tarobo, the ESE slope of Mt. Fuji in September 2002. The pH of fog and rain water sampled at Mt. Fuji varied over a range of 4.0–6.8. Acidic fogs (pH < 5.0) were observed at the summit when the air mass came from the industrial regions on the Asian continent. The ratio of [SO42−]/[NO3] in the fog water was lower at Tarobo than at the summit. High concentrations of Na+ and Cl were determined in the rain water sampled at the summit, possibly because of the long-range transport of sea-salt particles raised by a typhoon through the middle troposphere. The vertical transport of sea-salt particles would influence the cloud microphysical properties in the middle troposphere. Significant loss of Mg2+ was seen in the rain water at the summit. The concentrations of peroxides in the fog and rain water were relatively large (10–105 μM). The potential capacity for SO2 oxidation seems to be strong from summer to early autumn at Mt. Fuji. The fog water peroxide concentrations displayed diurnal variability. The peroxide concentrations in the nighttime were significantly higher than those in the daytime.  相似文献   

9.
Near real-time measurements of PM2.5 ionic compositions were performed at the summit of the highest mountain in the central-eastern plains in the spring and summer of 2007 in order to characterize aerosol composition and its interaction with clouds. The average concentrations of total water soluble ions were 27.5 and 36.7 μg?m?3, accounting for 44% and 62% of the PM2.5 mass concentration in the spring and summer, respectively. A diurnal pattern of SO 4 2- , NH 4 + and NO 3 - was observed in both campaigns and attributed to the upslope/downslope transport of air mass and the development of the planetary boundary layer (PBL). The average SO2 oxidation ratio (SOR) in summer was 57% (±27%), more than twice that in spring 24% (±16%); the fine nitrate oxidation ratio (NOR) was comparable in the two seasons (9?±?6% and 11?±?10% in summer and spring, respectively). This result indicates strong summertime production of sulfate aerosol. A principal component analysis shows that short-range and long-range transport of pollution, cloud processing, and crustal source were the main factors affecting the variability of the measured ions (and other trace gases and aerosols) at Mt. Tai. Strong indications of biomass burning were observed in summer. Cloud scavenging rates showed larger variations for different ions and in different cloud events. The elevated concentrations of the water soluble ions at Mt. Tai indicate serious aerosol pollution over the North China plain of eastern China.  相似文献   

10.
The present paper reports chemistry and fluxes of dust-carbon mixed coarse particles. For the purpose of this study, different carbonaceous fractions i.e. organic carbon ((OC), elemental carbon (EC) and carbonate carbon (CC) of atmospheric dust and their respective local soils were quantified at three sites of National Capital Region (NCR) of Delhi viz. Jawaharlal Nehru University campus (JNU), Connaught Place (CP) and Vishali area of Ghaziabad (GB). It has been observed that the OC and EC levels were approximately five to nine times higher in urban atmospheric dust than their corresponding soils, whereas CC levels were about three times higher than the corresponding soils. Average dustfall fluxes were significantly different at all the sites due to their different land-use patterns. At urban background site (JNU), the dust flux was lowest (172 mg/m2/day) followed by CP, a commercial site, (192 mg/m2/day) and GB, an industrial/residential area, (302 mg/m2/day). Similar to the dustfall pattern, the mean values of OC, EC and CC deposition fluxes were also observed to be lowest at JNU (9.2, 0.8 and 1.0 mg/m2/day, respectively) as compared to CP (12.2, 1.2 and 1.3 mg/m2/day, respectively) and GB sites (11.1, 1.1 and 1.4 mg/m2/day, respectively). Interestingly, unlike fine mode, different correlation pattern of OC and EC in coarse mode dust aerosols at three sites has suggested their independent deposition processes and source contribution. Fluxes of major water soluble inorganic ions (Na+, NH4 +, K+, Ca2+, Mg2+, F?, Cl?, NO3 ? and SO4 2?) were also determined. Ca2+, Cl? and SO4 2? were found to be the major ionic species of water soluble fraction of the urban dust at all the sites. These interactions are corroborated by the morphology of the mixed aerosols. High levels of measured chemical species and their spatial distribution revealed close correspondence with the local emissions from transport, industries, biomass burning, road dust and construction activities etc.  相似文献   

11.
PM10 samples were collected over three years at Monzenmachi, the Japan Sea coast, the Noto Peninsula, Ishikawa, Japan from January 17, 2001 to December 18, 2003, using a high volume air sampler with quartz filters. The concentrations of the water-soluble inorganic ions in PM10 were determined with using ion chromatography. By analyzing the characteristics of these, the evidences were found that the Asian outflow had an obviously influence on the air quality at our study site. The results were as follows: the secondary pollutants SO42−, NO3 and NH4+ were the primary water-soluble inorganic ions at our study site. The monthly mean concentrations of SO42−, NH4+, NO3 and Ca2+ have prominent peak in spring due to the strong influence of the Asian continent outflow—these according to backward air trajectory analysis, the maximum of which were 6.09 for nss-SO42− in May, 2.87 for NO3 and 0.68 μg m−3 for nss-Ca2+ in April, respectively. Comparable to similar data reported from various points around East Asia, it had the characteristics of a polluted coastal area at our study site. The concentration of nss-Ca2+ in PM10 drastically increased when the Asian dust invaded, the mean value during the Asian dust days(AD) was 0.86 μg m−3, about 4 times higher than those of normal days (NAD). Meanwhile, the mean concentrations of nss-SO42−, NO3 and NH4+ in AD periods were higher than those in NAD periods which were 5.87, 1.76 and 1.82 μg m−3, respectively, it is due to the interaction between dust and secondary particles during the long-range transport of dust storms. Finally, according to the source apportionment with positive matrix factorization (PMF) method in this study, the major source profiles of PM10 at our study site were categorized as (1) marine salt, (2) secondary sulfate, (3) secondary nitrate and (4) crustal source.  相似文献   

12.
The temporal variation of ambient SO2 and the chemical composition of particulate matters (PM2.5 and PM10) were studied at National Physical Laboratory (NPL), New Delhi (28°38′N, 77°10′E). Spatial variation of SO2 at seven air quality monitoring stations over Delhi was also studied simultaneously. Wide range of ambient SO2 was recorded during winter (2.55 to 17.43 ppb) compare to other seasons. SO2 mixing ratio was recorded significantly high at industrial sites during winter and summer; however, no significant spatial difference in SO2 mixing ratio was recorded during monsoon. SO 4 2? /(SO2+SO 4 2? ) ratio was recorded high (0.74) during winter and low (0.69) during summer. Monthly variation of PSCF was analyzed using HYSPLIT seven days backward trajectories and daily average SO2 data. PSCF analysis suggests that, during winter (December, January, February) ambient SO2 at the study site might have contributed from long distance sources, located towards west and southwest directions; during monsoon (July, August, September) marine contribution was noticed; whereas, during summer (April, May and June) it was from regional sources (located within few 100 km of study site). During winter there was significant contribution from the long distance sources located in western Asia, northwestern Pakistan, Rajasthan and Punjab provinces of India. Coal used in thermal power plants at Panipat (in the northwestern side) and Faridabad (in the southeastern side), local industries, soil erosion and biomass burning may be major contributing factors for SO2 during summer. The study establishes that the transport sector may not be the major source of ambient SO2 in Delhi.  相似文献   

13.
Temporal trends in wet deposition of major ions were explored at nationwide remote sites in Japan from April 1991 to March 2009 by using the seasonal Kendall slope estimator and the nonparametric seasonal Kendall test. For the trend analysis, datasets from eight remote sites (Rishiri, Echizenmisaki, Oki, Ogasawara, Shionomisaki, Goto, Yakushima, and Amami) were selected from the Japanese Acid Deposition Survey (JADS) conducted by the Ministry of the Environment. Deposition of H+ has been increasing at remote sites in Japan on a national scale. Significant (p????0.05) increases in H+ deposition were detected with changes of +3?C+9?%?year?1 at seven sites, while insignificant increases were observed at one site. Depositions of non-sea salt (nss)-SO 4 2? and NO 3 ? significantly increased at four and six sites, respectively, with changes of +1?C+3?%?year?1. Significant increases in precipitation at four sites would have contributed to the increase in depositions of H+, nss-SO 4 2? , and NO 3 ? . The emission trends of SO2 and NOx did not corresponded to the deposition trends of nss-SO 4 2? and NO 3 ? . The different trends indicated that temporal variation of precipitation amount trend dominated the deposition trends.  相似文献   

14.
采用(美国环保部的MODEL-3系统的)CMAQ源同化模型及4种不同空间分辨率的SO2、NO2实测资料,反演得到中国不同尺度的同化修正排放源,利用新一代中尺度气象模式WRF与多尺度空气质量模式CMAQ,模拟分析了中国不同观测信息密度对SO2、NO2源同化反演及其浓度预报的影响,重点分析了华北地区SO2、NO2浓度加密观测对改善SO2、NO2排放源和空气质量预报的重要影响。结果表明,采用不同分辨率的实测资料时,SO2、NO2的趋势预报效果改善程度有一定差异;采用较高分辨率的实测资料进行SO2、NO2源同化修正时,可明显减小SO2、NO2浓度的预报误差。华北地区较高分辨率的观测信息对于改进源同化修正效果及SO2、NO2浓度的趋势预报十分重要,尤其是对SO2浓度的预报尤为重要;采用经高分辨率的实测资料同化修正的排放源时,WRF-CMAQ模式对北京城市尺度SO2、NO2浓度的变化趋势、浓度水平和空间分布特征具有较好的预报效果。高分辨率的观测资料和区域源同化反演方法对于区域污染物浓度预报及排放源清单具有显著的改进作用。  相似文献   

15.
For the first time, simultaneous study on physical and chemical characteristics of PM10, PM2.5, and rainwater chemistry was attempted over the Bay of Bengal in monsoon season of 2009. The aerosols and rainwater samples were collected onboard ship ‘SK-261, ORV Sagar Kanya’ during Oceanographic Observations in the Northern Bay of Bengal under the Continental Tropical Convergence Zone (CTCZ) program conducted during 16 July to 19 Aug 2009. Aerosol samples collected by PM10 and PM2.5 were analyzed for various water soluble (Na+, K+, Ca2+, Mg2+, NH 4 + , Cl?, SO 4 2? and NO 3 ? and acid soluble (Fe2+, Al3+, Zn2+, Mn3+ and Ni2+) ionic constituents. The pH of rainwater varied from 5.10 to 7.04. Chloride ions contributed most to the total ion concentration in aerosol and rainwater, followed by Na+. Significant contributions of SO 4 2? , NO 3 ? and NH 4 + found in PM2.5, PM10 and high concentrations of TSP and non sea-salt SO 4 2? over the mid-ocean is attributed to the long range transport of anthropogenic pollution from the Indian continent. The scavenging ratio was maximum for coarse particles such as Ca2+ and minimum for fine particles like NH 4 + .  相似文献   

16.
During the MILAGRO campaign, March 2006, eight-stage cut impactors were used to sample atmospheric particles at Tecámac (T1 supersite), towards the northeast edge of the Mexico City Metropolitan Area, collecting fresh local emissions and aged pollutants produced in Mexico City. Particle samples were analyzed to determine total mass concentrations of Ca2+, Mg2+, NH4 +, K+, Cl?, SO4 2?, and NO3 ?. Average concentrations were 22.1 ± 7.2 μg m?3 for PM10 and 18.3 ± 6.2 μg m?3 for PM1.8. A good correlation between PM10 and PM1.8, without influence from wind patterns, indicates that local emissions are more important than the city’s pollution transported to the site, despite the fact that Tecámac is just 40 km away from Mexico City. A lack of diurnal patterns in the PM2.5/PM1.8 ratio supports this conclusion. The inorganic composition of particles suggests that vehicles, soil resuspension, and industries are the main pollutant sources. Finally, the particles were found to be neutralized, in agreement with observations in the Mexico City Metropolitan Area.  相似文献   

17.
We used the global atmospheric chemical transport model,GEOS-Chem,to simulate the spatial distribution and seasonal variation of surface-layer methane (CH4) in 2004,and quantify the impacts of individual domestic sources and foreign transport on CH4 concentrations over China.Simulated surface-layer CH4 concentrations over China exhibit maximum concentrations in summer and minimum concentrations in spring.The annual mean CH4 concentrations range from 1800 ppb over western China to 2300 ppb over the more populated eastern China.Foreign emissions were found to have large impacts on CH4 concentrations over China,contributing to about 85% of the CH4 concentrations over western China and about 80% of those over eastern China.The tagged simulation results showed that coal mining,livestock,and waste are the dominant domestic contributors to CH4 concentrations over China,accounting for 36%,18%,and 16%,respectively,of the annual and national mean increase in CH4 concentration from all domestic emissions.Emissions from rice cultivation were found to make the largest contributions to CH4 concentrations over China in the summer,which is the key factor that leads to the maximum seasonal mean CH4 concentrations in summer.  相似文献   

18.
A global three-dimensional model of the tropospheric sulfur cycle   总被引:9,自引:0,他引:9  
The tropospheric part of the atmospheric sulfur cycle has been simulated in a global three-dimensional model. The model treats the emission, transport, chemistry, and removal processes for three sulfur components; DMS (dimethyl sulfide), SO2 and SO4 2– (sulfate). These processes are resolved using an Eulerian transport model, the MOGUNTIA model, with a horizontal resolution of 10° longitude by 10° latitude and with 10 layers in the vertical between the surface and 100 hPa. Advection takes place by climatological monthly mean winds. Transport processes occurring on smaller space and time scales are parameterized as eddy diffusion except for transport in deep convective clouds which is treated separately. The simulations are broadly consistent with observations of concentrations in air and precipitation in and over polluted regions in Europe and North America. Oxidation of DMS by OH radicals together with a global emission of 16 Tg DMS-S yr–1 from the oceans result in DMS concentrations consistent with observations in the marine boundary layer. The average turn-over times were estimated to be 3, 1.2–1.8, and 3.2–6.1 days for DMS, SO2, and SO4 2– respectively.  相似文献   

19.
Haze-fog conditions over northern India are associated with visibility degradation and severe attenuation of solar radiation by airborne particles with various chemical compositions. PM2.5 samples have been collected in Delhi, India from December 2011 to November 2012 and analyzed for carbonaceous and inorganic species. PM10 measurements were made simultaneously such that PM10–2.5 could be estimated by difference. This study analyzes the temporal variation of PM2.5 and carbonaceous particles (CP), focusing on identification of the primary and secondary aerosol emissions, estimations of light extinction coefficient (bext) and the contributions by the major PM2.5 chemical components. The annual mean concentrations of PM2.5, organic carbon (OC), elemental carbon (EC) and PM10–2.5 were found to be 153.6 ± 59.8, 33.5 ± 15.9, 6.9 ± 3.9 and 91.1 ± 99.9 μg m?3, respectively. Total CP, secondary organic aerosols and major anions (e.g., SO4 2? and NO3 ?) maximize during the post-monsoon and winter due to fossil fuel combustion and biomass burning. PM10–2.5 is more abundant during the pre-monsoon and post-monsoon. The OC/EC varies from 2.45 to 9.26 (mean of 5.18 ± 1.47), indicating the influence of multiple combustion sources. The bext exhibits highest values (910 ± 280 and 1221 ± 371 Mm?1) in post-monsoon and winter and lowest in monsoon (363 ± 110 and 457 ± 133 Mm?1) as estimated via the original and revised IMPROVE algorithms, respectively. Organic matter (OM =1.6 × OC) accounts for ~39 % and ~48 % of the bext, followed by (NH4)2SO4 (~21 % and ~24 %) and EC (~13 % and ~10 %), according to the original and revised algorithms, respectively. The bext estimates via the two IMPROVE versions are highly correlated (R2 = 0.95, root mean square error = 38 % and mean bias error = 28 %) and are strongly related to visibility impairment (r = ?0.72), mostly associated with anthropogenic rather than natural PM contributions. Therefore, reduction of CP and precursor gas emissions represents an urgent opportunity for air quality improvement across Delhi.  相似文献   

20.
Anthropogenic emissions of methane (CH4) and nitrous oxide (N2O) from livestock agriculture (enteric fermentation, animal waste management systems, and pasture manure) and plant growing of the Russia (CH4 emissions from rice fields, direct and indirect N2O emissions from agricultural lands) are considered. In 2004, the total emissions of these greenhouse gases in the agricultural sector amounted to 1.4 × 105 thousand t CO2-equivalent, which corresponds to 45% of the 1990 level (3.1 × 105 thousand t CO2-equivalent). In 2004, the contribution of N2O to the total agricultural emissions was approximately twice (67.0%) that of CH4 (33.0%). Direct N2O emissions from agricultural soils (0.5 × 105 thousand t CO2-equivalent) and CH4 emissions from the internal fermentation of domestic animals (0.4 × 105 thousand t CO2-equivalent) are the most significant sources in the agricultural sector of the Russian Federation. In 2004, all these agricultural sources emitting methane and nitrous oxide contributed about 7% CO2-equivalent to the total emission of the anthropogenic greenhouse gases in Russia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号