首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Ore mineralization and wall rock alteration of Crater Mountain gold deposit, Papua New Guinea, were investigated using ore and host rock samples from drill holes for ore and alteration mineralogical study. The host rocks of the deposit are quartz‐feldspar porphyry, feldspar‐hornblende porphyry, andesitic volcanics and pyroclastics, and basaltic‐andesitic tuff. The main ore minerals are pyrite, sphalerite, galena, chalcopyrite and moderate amounts of tetrahedrite, tennantite, pyrrhotite, bornite and enargite. Small amounts of enargite, tetradymite, altaite, heyrovskyite, bismuthinite, bornite, idaite, cubanite, native gold, CuPbS2, an unidentified Bi‐Te‐S mineral and argentopyrite occur as inclusions mainly in pyrite veins and grains. Native gold occurs significantly in the As‐rich pyrite veins in volcanic units, and coexists with Bi‐Te‐S mineral species and rarely with chalcopyrite and cubanite relics. Four mineralization stages were recognized based on the observations of ore textures. Stage I is characterized by quartz‐sericite‐calcite alteration with trace pyrite and chalcopyrite in the monomict diatreme breccias; Stage II is defined by the crystallization of pyrite and by weak quartz‐chlorite‐sericite‐calcite alteration; Stage III is a major ore formation episode where sulfides deposited as disseminated grains and veins that host native gold, and is divided into three sub‐stages; Stage IV is characterized by predominant carbonitization. Gold mineralization occurred in the sub‐stages 2 and 3 in Stage III. The fS2 is considered to have decreased from ~10?2 to 10?14 atm with decreasing temperature of fluid.  相似文献   

2.
Abstract. The Nena Cu‐Au deposit, located in the Frieda River mineral district of northwestern mainland Papua New Guinea, is a composite structurally‐lithologically controlled high sulfidation (HS) system. Its hydrothermal alteration and Cu‐Au mineralization are presented in this paper. Initially propylitized andesitic volcanics veined by epithermal quartz were pervasively superimposed by zoned HS alteration. The zonation grades from vuggy silica core to sulfur‐rich, pyritic silica‐alunite halo followed by pyrophyllite‐dickite‐kaolinite interval and finally to thin illite‐smectite margin, suggesting progressive decrease in temperature and increase in pH. This zonation is enveloped by chlorite‐epidote‐calcite‐gypsum alteration. The acid altered rocks were then invaded by multiple phases of pyrite, subsequently crosscut by quartz, vein alunite and barite. Then sequential deposition of bladed covellite, enargite, luzonite and stibioluzonite occurred from the NW to the SE portions of the deposit, forming a zonation suggestive of progressive decrease in temperature, sulfur fugacity and sulfidation stage. Most ore mineralization occurs in the vuggy silica core. Gold mineralization commenced from the transition of enargite to luzonite and continued throughout the stibioluzonite stage. Associated with gold deposition are Au‐rich pyrite, tennantite‐tetrahedrite, chalcopyrite‐bornite, native tellurium, electrum, calaverite, bismuthinite and galena. Native sulfur occupied the remaining cavities and represents the waning stage of the hydrothermal system. Fluid inclusions studies distinguished magmatic (>300–350d?C, 9–15 wt% NaCl equiv.) and meteoric (<150–200d?C, 1–2 wt% NaCl equiv.) fluids (Holzberger et al., 1996). Temperatures and salinities of fluid inclusions from barite associated with Cu sulfides show a general decrease from NW (330d?C, 9–15 wt% NaCl equiv.) to SE (172d?C, 10 wt% NaCl equiv.) parts of the deposit, indicating gradual entrainment of ground water (Hitchman and Espi, 1997). Interaction of magmatic fluids with meteoric water accompanied by changes in temperature, salinity, acidity and oxidation state of the resultant fluids is interpreted to have been the main cause of metal precipitation. Finally, supergene processes generated Au zone with an underlying chalcocite‐covellite‐digenite blanket over the primary sulfides at depth. Gold occurs as lattice constituent in scorodite, limonite‐goethite and jarosite. Chalcocite is more abundant and widespread than other Cu sulfides. Acidic fluids deposited powdery alunite and kaolinite, vein alunite and amorphous silica. Weakly secondary biotite‐quartz altered porphyry located below the known HS Cu‐Au deposit contains chalcopyrite‐bornite and is overprinted by quartz‐alunite‐pyro‐phyllite‐pyrite assemblage. This feature indicates close temporal, spatial and genetic relation between the two deposit types.  相似文献   

3.
The Dayingezhuang gold deposit, hosted mainly by Late Jurassic granitoids on Jiaodong Peninsula in eastern China, contains an estimated 170 t of gold and is one of the largest deposits within the Zhaoping fracture zone. The orebodies consist of auriferous altered pyrite–sericite–quartz granites that show Jiaojia-type (i.e., disseminated and veinlet) mineralization. Mineralization and alteration are structurally controlled by the NE- to NNE-striking Linglong detachment fault. The mineralization can be divided into four stages: (K-feldspar)–pyrite–sericite–quartz, quartz–gold–pyrite, quartz–gold–polymetallic sulfide, and quartz–carbonate, with the majority of the gold being produced in the second and third stages. Based on a combination of petrography, microthermometry, and laser Raman spectroscopy, three types of fluid inclusion were identified in the vein minerals: NaCl–H2O (A-type), CO2–H2O–NaCl (AC-type), and pure CO2 (PC-type). Quartz crystals in veinlets that formed during the first stage contain mainly AC-type fluid inclusions, with rare PC-type inclusions. These fluid inclusions homogenize at temperatures of 251°C–403°C and have low salinities of 2.2–9.4 wt% NaCl equivalent. Quartz crystals that formed in the second and third stages contain all three types of fluid inclusions, with total homogenization temperatures of 216°C–339°C and salinities of 1.8–13.8 wt% NaCl equivalent for the second stage and homogenization temperatures of 195°C–321°C and salinities of 1.4–13.3 wt% NaCl equivalent for the third stage. In contrast, quartz crystals that formed in the fourth stage contains mainly A-type fluid inclusions, with minor occurrences of AC-type inclusions; these inclusions have homogenization temperatures of 106°C–287°C and salinities of 0.5–7.7 wt% NaCl equivalent. Gold in the ore-forming fluids may have changed from Au(HS)0 as the dominant species under acidic conditions and at relatively high temperatures and fO2 in the early stages, to Au(HS)2– under neutral-pH conditions at lower temperatures and fO2 in the later stages. The precipitation of gold and other metals is inferred to be caused by a combination of fluid immiscibility and water–rock interaction.  相似文献   

4.
Abstract: Mineral paragenesis of the alteration, ore and gangue minerals of the Lepanto epithermal copper‐gold deposit and the Victoria gold deposit, Mankayan Mineral District, Northern Luzon, Philippines, is discussed. The principal ore minerals of the Lepanto copper‐gold deposit are enargite and luzonite, with significant presence of tennantite‐tetrahedrite, chalcopyrite, sphalerite, galena, native gold/electrum and gold‐silver tellurides. Pervasive alteration zonations are commonly observed from silicification outward to advanced argillic then to propylitic zone. The ore mineralogy of the Lepanto copper‐gold deposit suggests high fS2 in the early stages of mineralization corresponding to the deposition of the enargite‐luzonite‐pyrite assemblage. Subsequent decrease in the fS2 formed the chalcopyrite‐tennantite‐pyrite assemblage. An increase in the fS2 of the fluids with the formation of the covellite‐digenite‐telluride assemblage caused the deposition of native gold/electrum and gold‐silver tellurides. The principal ore minerals of the Victoria gold deposit are sphalerite, galena, chalcopyrite, tetrahedrite and native gold/electrum. The alteration halos are relatively narrow and in an outward sequence from the ore, silica alteration grades to illitic‐argillic alteration, which in turn grades to propylitic alteration. The Victoria gold mineralization has undergone early stages of silica supersaturation leading to quartz deposition. Vigorous boiling increased the pH of the fluids that led to the deposition of sulfides and carbonates. The consequent decrease in H2S precipitated the gold. Gypsum and anhydrite mainly occur as overprints that cut the carbonate‐silica stages. The crosscutting and overprinting relationships of the Victoria quartz‐gold‐base metal veins on the Lepanto copper‐gold veins manifest the late introduction of near neutral pH hydrothermal fluids.  相似文献   

5.
Mineral assemblages, chemical compositions of ore minerals, wall rock alteration and fluid inclusions of the Gatsuurt gold deposit in the North Khentei gold belt of Mongolia were investigated to characterize the gold mineralization, and to clarify the genetic processes of the ore minerals. The gold mineralization of the deposit occurs in separate Central and Main zones, and is characterized by three ore types: (i) low‐grade disseminated and stockwork ores; (ii) moderate‐grade quartz vein ores; and (iii) high‐grade silicified ores, with average Au contents of approximately 1, 3 and 5 g t?1 Au, respectively. The Au‐rich quartz vein and silicified ore mineralization is surrounded by, or is included within, the disseminated and stockwork Au‐mineralization region. The main ore minerals are pyrite (pyrite‐I and pyrite‐II) and arsenopyrite (arsenopyrite‐I and arsenopyrite‐II). Moderate amounts of galena, tetrahedrite‐tennantite, sphalerite and chalcopyrite, and minor jamesonite, bournonite, boulangerite, geocronite, scheelite, geerite, native gold and zircon are associated. Abundances and grain sizes of the ore minerals are variable in ores with different host rocks. Small grains of native gold occur as fillings or at grain boundaries of pyrite, arsenopyrite, sphalerite, galena and tetrahedrite in the disseminated and stockwork ores and silicified ores, whereas visible native gold of variable size occurs in the quartz vein ores. The ore mineralization is associated with sericitic and siliceous alteration. The disseminated and stockwork mineralization is composed of four distinct stages characterized by crystallization of (i) pyrite‐I + arsenopyrite‐I, (ii) pyrite‐II + arsenopyrite‐II, (iii) galena + tetrahedrite + sphalerite + chalcopyrite + jamesonite + bournonite + scheelite, and iv) boulangerite + native gold, respectively. In the quartz vein ores, four crystallization stages are also recognized: (i) pyrite‐I, (ii) pyrite‐II + arsenopyrite + galena + Ag‐rich tetrahedrite‐tennantite + sphalerite + chalcopyrite + bournonite, (iii) geocronite + geerite + native gold, and (iv) native gold. Two mineralization stages in the silicified ores are characterized by (i) pyrite + arsenopyrite + tetrahedrite + chalcopyrite, and (ii) galena + sphalerite + native gold. Quartz in the disseminated and stockwork ores of the Main zone contains CO2‐rich, halite‐bearing aqueous fluid inclusions with homogenization temperatures ranging from 194 to 327°C, whereas quartz in the disseminated and stockwork ores of the Central zone contains CO2‐rich and aqueous fluid inclusions with homogenization temperatures ranging from 254 to 355°C. The textures of the ores, the mineral assemblages present, the mineralization sequences and the fluid inclusion data are consistent with orogenic classification for the Gatsuurt deposit.  相似文献   

6.
Several high‐sulfidation epithermal gold orebodies in the Mankayan Mineral District were formed in an environment that has been already affected by earlier porphyry‐type mineralization. This study reports the geologic and geochemical characteristics of the Carmen and Florence epithermal orebodies, which are located in the south of the Lepanto main enargite–gold orebody. The gold‐bearing epithermal quartz veins in the Carmen and Florence areas are of two types: (i) the enargite‐rich veins and (ii) the quartz–pyrite–gold (QPG) veins. The two types of veins are mainly hosted by the Cretaceous Lepanto Metavolcanics basement rocks, with minor veins cutting the Pleistocene Imbanguila Dacite Pyroclastics. The mineral assemblages and homogenization temperatures of fluid inclusions indicate that the Carmen and Florence orebodies were deposited by fluids varying from high to very high sulfidation state. The enargite and QPG epithermal veins of Carmen and Florence cut porphyry‐type quartz veinlet stockworks and veins that host polyphase hypersaline fluid inclusions that did not homogenize at or below 400°C. These high‐temperature quartz exhibits distinctly different mineral chemistry from the quartz of the QPG and enargite‐rich epithermal veins. In particular, the Ti content of quartz of the porphyry‐type veinlet stockwork is elevated (>100 ppm), whereas the Ti concentration of the epithermal vein quartz crystals are below detection limits. The Fe concentration of quartz is high in epithermal vein quartz (>300 ppm), whereas nearly undetected in the porphyry‐type stockwork veinlet quartz. Multiple generations of quartz with different mineral chemistry, fluid inclusions morphology, temperature, salinity and bulk gas compositions, and stable isotopic ratios indicate the variable hydrothermal conditions throughout the mineralization history of the Mankayan District. The temperature, pH, sulfidation state, oxidation state, and fluid composition vary among the orebodies in Carmen and Florence areas. Furthermore, the characteristics of earlier alteration affected the apparent characteristics of subsequent mineralization.  相似文献   

7.
浙西南治岭头斑岩钼矿体流体包裹体研究   总被引:2,自引:0,他引:2       下载免费PDF全文
江治岭头矿床自 20 世纪中叶勘查开发黄铁矿起,陆续发现了黄铁矿、铅锌矿及金银矿等矿床。在近些年的地质勘 察和深部探矿中,在治岭头矿区深部发现了斑岩型钼矿。钼矿体主要产于斑岩体外接触带八都群变质岩中,从矿体部位向 外围发育典型的斑岩蚀变分带,从内向外依次是钾化黑云母化带—黄铁绢英岩化带—绿泥石碳酸盐化带。成矿流体分为 成矿早期、主成矿期、成矿晚期3个阶段,成矿早期以Ia型包裹体为代表,其均一温度为354~442°C,具有中等盐度,为 12.3~19.4wt% NaCl;主成矿期发育II型 和III型包裹体,其中II型包裹体均一温度329~406°C,盐度为3.5~6.2 wt% NaCl,III 型包裹体均一温度为 305~375°C,盐度为 30.6~45.8 wt% NaCl;成矿晚期Ib 型包裹体,其均一温度为 187~285°C,盐度为 3.5~8.4 wt% NaCl。成矿期发生了强烈的流体沸腾作用,导致钼矿化。激光拉曼探针结果显示,治岭头钼矿三期石英中流体主要为 H2O-NaCl 流体。氢氧同位素,成矿流体由成矿前、成矿期的岩浆热液演化为成矿后的大气降水。  相似文献   

8.
位于南岭成矿带南西部的鹿井矿床是华南热液型铀矿的典型代表.为查明其成矿流体来源、性质与演化以及成矿机制,开展了不同成矿阶段石英、萤石及方解石中流体包裹体的显微测温和不同阶段石英的氢?氧同位素分析.矿床地质特征表明成矿过程可划分为(I)粗晶石英+黄铁矿±绿泥石±绢云母、(II)沥青铀矿+硫化物+绿泥石+绢云母+暗灰色微晶...  相似文献   

9.
小秦岭东桐峪金矿床的流体包裹体研究   总被引:4,自引:2,他引:2  
东桐峪金矿床位于小秦岭金矿田的中西部,其含金石英脉受韧性剪切构造带的控制。该矿床的构造-成矿过程可划分为4个阶段:Ⅰ黄铁矿-乳白色石英脉阶段;Ⅱ灰白色石英-黄铁矿阶段;Ⅲ石英-多金属硫化物阶段;Ⅳ石英-碳酸盐阶段。相对于小秦岭地区的其他金矿床,东桐峪金矿床的流体包裹体研究资料相对缺乏。文章表明,该矿床内的流体包裹体类型主要为CO2-H2O包裹体和水溶液包裹体,见少量纯液相CO2包裹体。显微测温表明,Ⅰ阶段的构造-成矿流体以中温、富CO2等挥发分为特征,包裹体均一温度为221~392℃,盐度w(NaCleq)为5.5%~7.9%,密度为0.84~0.93 g/cm3;Ⅱ阶段和Ⅲ阶段以CO2-H2O±CH4流体为主,包裹体均一温度为205~350℃(Ⅱ阶段)和224~271℃(Ⅲ阶段),盐度w(NaCleq)集中于5.1%~7.1%,密度为0.83~0.96 g/cm3;Ⅳ阶段的流体演化为中-低温、低盐度的盐水溶液体系,包裹体均一温度为175~185℃。文章对该矿床各成矿阶段的压力进行了估算,Ⅰ、Ⅱ、Ⅲ阶段的流体最小捕获压力分别为123~160 MPa、160~170 MPa、170 MPa左右。  相似文献   

10.
Hydrothermal alteration and mineralization at the Wunugetu porphyry Cu–Mo deposit, China, include four stages, i.e., the early stage characterized by quartz, K-feldspar and minor mineralization, followed by a molybdenum mineralization stage associated with potassic alteration, copper mineralization associated with sericitization, and the last Pb–Zn mineralization stage associated with carbonation. Hydrothermal quartz contains three types of fluid inclusions, namely aqueous (W-type), daughter mineral-bearing (S-type) and CO2-rich (C-type) inclusion, with the latter two types absent in the late stage. Fluid inclusions in the early stage display homogenization temperatures above 510°C, with salinities up to 75.8 wt.% NaCl equivalent. The presence of S-type inclusions containing anhydrite and hematite daughter minerals and C-type inclusions indicates an oxidizing, CO2-bearing environment. Fluid inclusions in the Mo- and Cu-mineralization stages yield homogenization temperatures of 342–508°C and 241–336°C, and salinities of 8.6–49.4 and 6.3–35.7 wt.% NaCl equivalent, respectively. The presence of chalcopyrite instead of hematite and anhydrite daughter minerals in S-type inclusions indicates a decreasing of oxygen fugacity. In the late stage, fluid inclusions yield homogenization temperatures of 115–234°C and salinities lower than 12.4 wt.% NaCl equivalent. It is concluded that the early stage fluids were CO2 bearing, magmatic in origin, and characterized by high temperature, high salinity, and high oxygen fugacity. Phase separation occurred during the Mo- and Cu-mineralization stages, resulting in CO2 release, oxygen fugacity decrease and rapid precipitation of sulfides. The late-stage fluids were meteoric in origin and characterized by low temperature, low salinity, and CO2 poor.  相似文献   

11.
The Sawayaerdun gold deposit, located in Wuqia County, Southwest Tianshan, China, occurs in Upper Silurian and Lower Devonian low‐grade metamorphic carbonaceous turbidites. The orebodies are controlled by a series of NE‐NNE‐trending, brittle–ductile shear zones. Twenty‐four gold mineralized zones have been recognized in the Sawayaerdun ore deposit. Among these, the up to 4‐km‐long and 200‐m wide No. IV mineralized zone is economically the most important. The average gold grade is 1–6 g/t. Gold reserves of the Sawayaerdun deposit have been identified at approximately 37 tonnes and an inferred resource of 123 tonnes. Hydrothermal alteration is characterized by silicification, pyritization, arsenopyritization, sericitization, carbonatization and chloritization. On the basis of field evidence and petrographic analysis, five stages of vein emplacement and hydrothermal mineralization can be distinguished: stage 1, early quartz stage, characterized by the occurrence of quartz veins; stage 2, arsenopyrite–pyrite–quartz stage, characterized by the formation of auriferous quartz veinlets and stockworks; stage 3, polymetallic sulfide quartz stage, characterized by the presence of auriferous polymetallic sulfide quartz veinlets and stockworks; stage 4, antimony–quartz stage, characterized by the formation of stibnite–jamesonite quartz veins; and stage 5, quartz–carbonate vein stage. Stages 2 and 3 represent the main gold mineralization, with stage 4 representing a major antimony mineralization episode in the Sawayaerdun deposit. Two types of fluid inclusion, namely H2O–NaCl and H2O–CO2–NaCl types, have been recognized in quartz and calcite. Aqueous inclusions show a wide range of homogenization temperatures from 125 to 340°C, and can be correlated with the mineralization stage during which the inclusions formed. Similarly, salinities and densities of these fluids range for each stage of mineralization from 2.57 to 22 equivalent wt% NaCl and 0.76 to 1.05 g/cm3, respectively. The ore‐forming fluids thus are representative of a medium‐ to low‐temperature, low‐ to medium‐salinity H2O–NaCl–CO2–CH4–N2 system. The δ34SCDT values of sulfides associated with mineralization fall into a narrow range of ?3.0 to +2.6‰ with a mean of +0.1‰. The δ13CPDB values of dolomite and siderite from the Sawayaerdun gold deposit range from ?5.4 to ?0.6‰, possibly reflecting derivation of the carbonate carbon from a mixed magmatic/sedimentary source. Changes in physico‐chemical conditions and composition of the hydrothermal fluids, water–rock exchange and immiscibility of hydrothermal fluids are inferred to have played important roles in the ore‐forming process of the Sawayaerdun gold–antimony deposit.  相似文献   

12.
The Youjiang basin, which flanks the southwest edge of the Yangtze craton in South China, contains many Carlin-type gold deposits and abundant paleo-oil reservoirs. The gold deposits and paleo-oil reservoirs are restricted to the same tectonic units, commonly at the basinal margins and within the intrabasinal isolated platforms and/or bioherms. The gold deposits are hosted by Permian to Triassic carbonate and siliciclastic rocks that typically contain high contents of organic carbon. Paragenetic relationships indicate that most of the deposits exhibit an early stage of barren quartz ± pyrite (stage I), a main stage of auriferous quartz + arsenian pyrite + arsenopyrite + marcasite (stage II), and a late stage of quartz + calcite + realgar ± orpiment ± native arsenic ± stibnite ± cinnabar ± dolomite (stage III). Bitumen in the gold deposits is commonly present as a migrated hydrocarbon product in mineralized host rocks, particularly close to high grade ores, but is absent in barren sedimentary rocks. Bitumen dispersed in the mineralized rocks is closely associated and/or intergrown with the main stage jasperoidal quartz, arsenian pyrite, and arsenopyrite. Bitumen occurring in hydrothermal veins and veinlets is paragenetically associated with stages II and III mineral assemblages. These observations suggest an intimate relationship between bitumen precipitation and gold mineralization. In the paleo-petroleum reservoirs that typically occur in Permian reef limestones, bitumen is most commonly observed in open spaces, either alone or associated with calcite. Where bitumen occurs with calcite, it is typically concentrated along pore/vein centers as well as along the wall of pores and fractures, indicating approximately coeval precipitation. In the gold deposits, aqueous fluid inclusions are dominant in the early stage barren quartz veins (stage I), with a homogenization temperature range typically of 230°C to 270°C and a salinity range of 2.6 to 7.2 wt% NaCl eq. Fluid inclusions in the main and late-stage quartz and calcite are dominated by aqueous inclusions as well as hydrocarbon- and CO2-rich inclusions. The presence of abundant hydrocarbon fluid inclusions in the gold deposits provides evidence that at least during main periods of the hydrothermal activity responsible for gold mineralization, the ore fluids consisted of an aqueous solution and an immiscible hydrocarbon phase. Aqueous inclusions in the main stage quartz associated with gold mineralization (stage II) typically have a homogenization temperature range of 200–230°C and a modal salinity around 5.3 wt% NaCl eq. Homogenization temperatures and salinities of aqueous inclusions in the late-stage drusy quartz and calcite (stage III) typically range from 120°C to 160°C and from 2.0 to 5.6 wt% NaCl eq., respectively. In the paleo-oil reservoirs, aqueous fluid inclusions with an average homogenization temperature of 80°C are dominant in early diagenetic calcite. Fluid inclusions in late diagenetic pore- and fissure-filling calcite associated with bitumen are dominated by liquid C2H6, vapor CH4, CH4–H2O, and aqueous inclusions, with a typical homogenization temperature range of 90°C to 180°C and a salinity range of 2–8 wt% NaCl eq. It is suggested that the hydrocarbons may have been trapped at relatively low temperatures, while the formation of gold deposits could have occurred under a wider and higher range of temperatures. The timing of gold mineralization in the Youjiang basin is still in dispute and a wide range of ages has been reported for individual deposits. Among the limited isotopic data, the Rb–Sr date of 206 ± 12 Ma for Au-bearing hydrothermal sericite at Jinya as well as the Re–Os date of 193 ± 13 Ma on auriferous arsenian pyrite and 40Ar/39Ar date of 194.6 ± 2 Ma on vein-filling sericite at Lannigou may provide the most reliable age constraints on gold mineralization. This age range is comparable with the estimated petroleum charging age range of 238–185 Ma and the Sm–Nd date of 182 ± 21 Ma for the pore- and fissure-filling calcite associated with bitumen at the Shitouzhai paleo-oil reservoir, corresponding to the late Indosinian to early Yanshanian orogenies in South China. The close association of Carlin-type gold deposits and paleo-oil reservoirs, the paragenetic coexistence of bitumens with ore-stage minerals, the presence of abundant hydrocarbons in the ore fluids, and the temporal coincidence of gold mineralization and hydrocarbon accumulation all support a coeval model in which the gold originated, migrated, and precipitated along with the hydrocarbons in an immiscible, gold- and hydrocarbon-bearing, basinal fluid system.  相似文献   

13.
The operating Rodalquilar gold deposit and the abandoned Triunfo and Maria Josefa gold mines are located within the Sierra del Cabo de Gata volcanic field some 40 km east of Almeria in SE Spain. While the gold mineralization at Rodalquilar is mainly controlled by caldera-tectonics, vein structures at Triunfo and Maria Josefa are not. Wall-rock alteration at Triunfo and Maria Josefa is characterized by argillic alteration (illite/sericite, kaolinite). The alteration zonation around the gold-mineralized vein structures at Rodalquilar ranges from advanced argillic alteration (porous quartz, alunite, pyrophyllite, dickite) over argillic alteration into a regionally developed propylitization. Fluid inclusion studies from all three mines indicate that gold was deposited from low-salinity fluids (2–5 wt.% NaCl equivalent) between 170° and 250 °C. However, the hydrothermal system at Rodalquilar was fed by a second fluid source. High-salinity, halite and/or sylvite-bearing, liquid-rich, and vapour-dominated, CO2-bearing fluid inclusions are assumed to be of magmatic origin. High sulfidation ore mineral assemblages at depth (covellite, enargite, tennantite) and part of the advanced argillic alteration can be related to these fluids. Thus, part of those features which attribute the Rodalquilar gold deposit to the acid-sulfate or high sulfidation type of epithermal gold deposits, stem from magmatically derived fluids which are typical for a porphyry environment, whereas gold mineralization at all three localities is associated with low-salinity fluids, probably of marine origin.  相似文献   

14.
At Rodalquilar gold mineralization is found in Late Tertiary volcanic rocks of the Sierra del Cabo de Gata and is related to a caldera collapse. Radial and concentric faults were preferred sites for gold deposition. Hydrothermal activity produced a specific alteration zoning around gold-bearing vein structures, grading from an innermost advanced argillic via an argillic into a more regionally developed propylitic zone. Advanced argillic alteration with silica, pyrophyllite, alunite, and kaolinite extends down to several hundred m indicating a hypogene origin. High-grade gold mineralization in vein structures is confined to the near-surface part of the advanced argillic alteration. Fine-grained gold is associated with hematite, jarosite, limonite, or silica. At a depth of about 120 m, the oxidic ore assemblage grades into sulfide mineralization with pyrite and minor chalcopyrite, covellite, bornite, enargite, and tennantite. Two types of fluids from different sources were involved in the hydrothermal system. Overpressured and hypersaline fluids of presumably magmatic origin initiated the hydrothermal system. Subsequent hydrothermal processes were characterized by the influx of low-salinity solutions of probable marine origin and by interactions between both fluids. Deep-reaching, advanced argillic alteration formed from high-salinity fluids with 20–30 equiv. wt% NaCl at about 225°C. Near-surface gold precipitation and silification are related to fluids with temperatures of about 175°C and 3–4 equiv. wt% NaCl. Gold was transported as Au(HS) 2 , and precipitation resulted from boiling with a concomitant decrease in temperature, pressure, and pH and an increase in fO2. All features of the Rodalquilar gold deposit reveal a close relationship to acid-sulfate-type epithermal gold mineralization.  相似文献   

15.
The vein system in the Arinem area is a gold‐silver‐base metal deposit of Late Miocene (8.8–9.4 Ma) age located in the southwestern part of Java Island, Indonesia. The mineralization in the area is represented by the Arinem vein with a total length of about 5900 m, with a vertical extent up to 575 m, with other associated veins such as Bantarhuni and Halimun. The Arinem vein is hosted by andesitic tuff, breccia, and lava of the Oligocene–Middle Miocene Jampang Formation (23–11.6 Ma) and overlain unconformably by Pliocene–Pleistocene volcanic rocks composed of andesitic‐basaltic tuff, tuff breccia and lavas. The inferred reserve is approximately 2 million tons at 5.7 g t?1 gold and 41.5 g t?1 silver at a cut‐off of 4 g t?1 Au, which equates to approximately 12.5t of Au and 91.4t of Ag. The ore mineral assemblage of the Arinem vein consists of sphalerite, galena, chalcopyrite, pyrite, marcasite, and arsenopyrite with small amounts of pyrrhotite, argentite, electrum, bornite, hessite, tetradymite, altaite, petzite, stutzite, hematite, enargite, tennantite, chalcocite, and covellite. These ore minerals occur in quartz with colloform, crustiform, comb, vuggy, massive, brecciated, bladed and calcedonic textures and sulfide veins. A pervasive quartz–illite–pyrite alteration zone encloses the quartz and sulfide veins and is associated with veinlets of quartz–calcite–pyrite. This alteration zone is enveloped by smectite–illite–kaolinite–quartz–pyrite alteration, which grades into a chlorite–smectite–kaolinite–calcite–pyrite zone. Early stage mineralization (stage I) of vuggy–massive–banded crystalline quartz‐sulfide was followed by middle stage (stage II) of banded–brecciated–massive sulfide‐quartz and then by last stage (stage III) of massive‐crystalline barren quartz. The temperature of the mineralization, estimated from fluid inclusion microthermometry in quartz ranges from 157 to 325°C, whereas the temperatures indicated by fluid inclusions from sphalerite and calcite range from 153 to 218 and 140 to 217°C, respectively. The mineralizing fluid is dilute, with a salinity <4.3 wt% NaCl equiv. The ore‐mineral assemblage and paragenesis of the Arinem vein is characteristically of a low sulfidation epithermal system with indication of high sulfidation overprinted at stage II. Boiling is probably the main control for the gold solubility and precipitation of gold occurred during cooling in stage I mineralization.  相似文献   

16.
黑龙江乌拉嘎金矿是我国陆相火山岩区的重要金矿之一。构造位置处于古亚洲构造域与滨太平洋构造域交接复合部位的东北缘,矿体主要分布于团结沟斜长花岗斑岩接触带部位的隐爆角砾岩带和黑龙江群变质岩的层间裂隙中。斜长花岗斑岩的石英斑晶中发育3类包裹体:熔体包裹体、原生的L-V包裹体(及少量的L-V-S包裹体)和次生的L-V包裹体。玻璃质熔体包裹体相当于酸性殘浆的成分(SiO2达69.5%~73.8%),其捕获温度大于800℃。石英斑晶中次生L-V包裹体均一温度集中在210~350℃、盐度5%~7%NaCleqv,代表了次火山岩浆热液的特征,与黄铁矿-早期白色玉髓状石英阶段中Q1的包裹体均一温度范围很接近,而盐度略高于白色玉髓状石英Q1的。乌拉嘎金矿的金成矿可划分3个成矿阶段,发育盐水溶液包裹体:(1)黄铁矿-早期白色玉髓状石英阶段,包裹体均一温度为154~355℃,集中在190~330℃,盐度为1.3%~8.2%NaCleqv,密度为0.53~0.88g/cm3。(2)烟灰色玉髓状石英-多金属硫化物阶段,石英中包裹体均一温度为159~196℃,集中在170~190℃,盐度为2.2%~3.2%NaCleqv,密度0.79~0.92g/cm3。(3)碳酸盐-石英阶段,方解石中包裹体均一温度集中在170~270℃;盐度0.5%~2.9%NaCleqv。成矿流体以中低温、低盐度、贫CO2的盐水体系为特征,与国内外陆相火山-次火山热液矿床十分相似。石英斑晶中熔体、流体包裹体及其共存反映了次火山岩浆活动晚期,由硅酸盐熔体通过不混溶产生含矿的盐水溶液的可能,说明了金成矿与斑岩的成因联系,乌拉嘎金矿应该属于陆相火山-次火山活动有关的中低温浅成热液金矿床。  相似文献   

17.
The Bilimoia deposit (2.23 Mt, 24 g/t Au), located in the eastern Central Mobile Belt of mainland Papua New Guinea, is composed of fault‐hosted, NW–NNW‐trending Irumafimpa–Kora and Judd–Upper Kora Au‐quartz veins hosted by Middle–Late Triassic basement that was metamorphosed to medium‐grade greenschist facies between Middle–Late Triassic and Early–Middle Jurassic. Mineralizing fluids were introduced during crustal thickening, rapid uplift, change of plate motions from oblique to orthogonal compression, active faulting and S3 and S4 events in an S1–S4 deformation sequence. The Bilimoia deposit is spatially and temporally related to I‐type, early intermediate to felsic and late mafic intrusions emplaced in Late Miocene (9–7 Ma). Hydrothermal alteration and associated mineralization is divided into 10 main paragenetic stages: (1) chlorite–epidote‐selvaged quartz–calcite–specularite vein; (2) local quartz–illite–pyrite alteration; (3) quartz–sericite–mariposite–fuchsite–pyrite wall‐rock alteration that delimits the bounding shears; (4) finely banded, colloform‐, crustiform‐ and cockade‐textured and drusy quartz ± early wolframite ± late adularia; (5) hematite; (6) pyrite; (7) quartz ± amethyst‐base metal sulfides; (8) quartz–chalcopyrite–bornite–Sn and Cu sulfides–Au tellurides and Te ± Bi ± Ag ± Cu ± Pb phases; (9) Fe ± Mn carbonates; and (10) supergene overprint. Fluid inclusions in stage 4 are characterized by low salinity (0.9–5.4 wt% NaCl equivalent), aqueous–carbonic fluids with total homogenization temperatures ranging from 210 to 330°C. Some of the inclusions that homogenized between 285 and 330°C host coexisting liquid‐ and vapor‐rich (including carbonic) phases, suggesting phase separation. Fluid inclusions in quartz intergrown with wolframite have low salinity (0.9–1.2 wt% NaCl equivalent), aqueous–carbonic fluids at 240–260°C, defining the latter’s depositional conditions. The ore fluids were derived from oxidized magmatic source initially contaminated by reduced basement rocks. Wall‐rock alteration and involvement of circulating meteoric waters were dominant during the first three stages and early part of stage 4. Stage 5 hematite was deposited as a result of stage 4 phase separation or entrainment of oxygenated groundwater. Gold is associated with Te‐ and Bi‐bearing minerals and mostly precipitated as gold‐tellurides during stage 8. Gold deposition occurred below 350°C due to a change in the sulfidation and oxidation state of the fluids, depressurization and decreasing temperature and activities of sulfur and tellurium. Bisulfides are considered to be the main Au‐transporting complexes. The Bilimoia deposit has affinities that are similar to many gold systems termed epizonal orogenic and intrusion‐related. The current data allow us to classify the Bilimoia deposit as a fault‐controlled, metamorphic‐hosted, intrusion‐related mesothermal to low sulfidation epithermal quartz–Au–Te–Bi vein system.  相似文献   

18.
Abstract: The Lepanto Far Southeast porphyry Cu‐Au deposit is located beneath and to the southeast of the Lepanto enargite‐luzonite Cu–Au deposit in Mankayan, Benguet Province, Philippines. The principal orebody consists of potassic alteration subjected to partial retrograde chlorite alteration that rims stock‐work of quartz‐anhydrite veinlets. Fluid inclusions found in stockwork quartz and anhydrite in the biotitized orebody center are dominated by polyphase inclusions that homogenize at temperatures of >500C. Sulfur isotopic thermometry applied to the sulfides‐anhydrite pairs suggests around 500C. The principal ore minerals associated with quartz‐anhydrite stockworks are chalcopyrite and pyrite with minor bornite and Bi–Te–bearing tennantite, with trace of native gold. Rounded pyrite grains appear fractured and corroded and are interpreted as remnants of primary intermediate solid solution + pyrite assemblage. A breccia pipe truncates the deposit. Mineralization in the breccia pipe is brought by quartz‐anhydrite veinlets and infilling in the interstices between clasts. Chalcopyrite‐Au mineralization associated with molybdenite is recognized in the deeper zone in the breccia pipe. Fluid inclusion microthermometry on polyphase inclusions in veinlet quartz as well as sulfur isotope thermometry applied for the pair of anhydrite and sulfides suggests >450C. Fluid inclusions in veinlet quartz and anhydrite in the fringe advanced argillic alteration are chiefly composed of coexisting liquid‐rich inclusions and gas‐rich inclusions, in addition to coexisting polyphase inclusions and gas‐rich inclusions. These inclusions exhibit a wide range of homogenization temperatures, suggesting heterogeneous entrapping in the two‐fluid unmixing region. Sulfur isotopes of aqueous sulfide and sulfate exhibit a general trend from the smallest fractionation pairs (about 11%) in the biotitized orebody center to the largest fractionation (about 25%) pairs in the fringe advanced argillic alteration, suggesting a simple evolution of hydrothermal system. The slopes of arbitrary regression lines in δ34S versus 34S[SO4 = –H2S] diagram suggest that the abundance ratio of aqueous sulfate to sulfide in the hydrothermal fluid has been broadly constant at about 1:3 through temperature decrease. The intersection of these two regression lines at the δ34S axis indicates that the bulk δ34S is about +6%. Thus, the Lepanto FSE deposit is a further example which confirms enrichment in 34S in the hydrous intermediate to silicic magmas and associated magmatic hydrothermal deposits in the western Luzon arc.  相似文献   

19.
Baranevskoy金-银矿床产于巴尔喀什火山的火山口,该火山坐落在堪察加中部矿区东南部。本文基于矿物学原理和流体包裹体数据分析探讨了Baranevskoy金-银矿床的成矿环境及其物理化学条件。Baranevskoy金-银矿床的围岩为中新世—上新世的安山岩和玄武岩。热液蚀变活动随深度逐渐变化,从而可以进一步划分出最深部的石英带、中部的石英-绢云母(明矾石)-黄铁矿-铁钛氧化物带及其伴生的石英-绢云母-伊利石-黄铁矿矿物组合和浅部的石英-冰长石-水云母-黏土矿物-碳酸盐岩带。成矿早期存在密集浸染的铜矿化,主要矿石矿物有黄铜矿、斑铜矿、砷黝铜矿-黝铜矿,并在Rhzavaya矿脉中存在少量的自然金。其中砷黝铜矿-黝铜矿系列以砷黝铜矿和黝铜矿两个端员作为代表,且以黝铜矿为主。成矿后期产出代表晚期金-银矿化的自然金、黄铁矿、黄铜矿、闪锌矿、方铅矿、碲化物和硫酸盐等标志性矿物。早期铜矿化(第一期)被认为是中硫阶段,紧随其后的为低硫型金-银矿化(第二期和第三期)。金从第一期到第三期都有沉淀。经研究发现,自然金也赋存于变质围岩的岩石裂隙内。早期的自然金相对富银,其中金的摩尔分数为59%~65%,低于后期(第二、第三期)自然金中金的摩尔分数(64%~72%)。流体包裹体显微测温结果显示,位于中部(Central)矿脉的包裹体均一温度为190~280 ℃,Rzhavaya矿脉的包裹体为190~240 ℃,产出自然金的蚀变围岩中石英的包裹体温度为230~310 ℃。包裹体总体表现出低盐度(0.9%~2.4% NaCleq)特征,推测存在大气水的混入。  相似文献   

20.
Gold ore-forming fluids of the Tanami region, Northern Australia   总被引:1,自引:0,他引:1  
Fluid inclusion studies have been carried out on major gold deposits and prospects in the Tanami region to determine the compositions of the associated fluids and the processes responsible for gold mineralization. Pre-ore, milky quartz veins contain only two-phase aqueous inclusions with salinities ≤19 wt% NaCl eq. and homogenization temperatures that range from 110 to 410°C. In contrast, the ore-bearing veins typically contain low to moderate salinity (<14 wt% NaCl eq.), H2O + CO2 ± CH4 ± N2-bearing fluids. The CO2-bearing inclusions coexist with two-phase aqueous inclusions that exhibit a wider range of salinities (≤21 wt% NaCl eq.). Post-ore quartz and carbonate veins contain mainly two-phase aqueous inclusions, with a last generation of aqueous inclusions being very CaCl2-rich. Salinities range from 7 to 33 wt% NaCl eq. and homogenization temperatures vary from 62 to 312°C. Gold deposits in the Tanami region are hosted by carbonaceous or iron-rich sedimentary rocks and/or mafic rocks. They formed over a range of depths at temperatures from 200 to 430°C. The Groundrush deposit formed at the greatest temperatures and depths (260–430°C and ≤11 km), whereas deposits in the Tanami goldfield formed at the lowest temperatures (≥200°C) and at the shallowest depths (1.5–5.6 km). There is also evidence in the Tanami goldfield for late-stage isothermal mixing with higher salinity (≤21 wt% NaCl eq.) fluids at temperatures between 100 and 200°C. Other deposits (e.g., The Granites, Callie, and Coyote) formed at intermediate depths and at temperatures ranging from 240 to 360°C. All ore fluids contained CO2 ± N2 ± CH4, with the more deeply formed deposits being enriched in CH4 and higher level deposits being enriched in CO2. Fluids from deposits hosted mainly by sedimentary rocks generally contained appreciable quantities of N2. The one exception is the Tanami goldfield, where the quartz veins were dominated by aqueous inclusions with rare CO2-bearing inclusions. Calculated δ 18O values for the ore fluids range from 3.8 to 8.5‰ and the corresponding δD values range from −89 to −37‰. Measured δ 13C values from CO2 extracted from fluid inclusions ranged from −5.1 to −8.4‰. These data indicate a magmatic or mixed magmatic/metamorphic source for the ore fluids in the Tanami region. Interpretation of the fluid inclusion, alteration, and structural data suggests that mineralization may have occurred via a number of processes. Gold occurs in veins associated with brittle fracturing and other dilational structures, but in the larger deposits, there is also an association with iron-rich rocks or carbonaceous sediments, suggesting that both structural and chemical controls are important. The major mineralization process appears to be boiling/effervescence of a gas-rich fluid, which leads to partitioning of H2S into the vapor phase resulting in gold precipitation. However, some deposits also show evidence of desulfidation by fluid–rock interaction and/or reduction of the ore-fluid by fluid mixing. These latter processes are generally more prevalent in the higher crustal-level deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号