首页 | 官方网站   微博 | 高级检索  
     

湘赣边界鹿井铀矿床流体包裹体及成矿机制
引用本文:张笑天,潘家永,夏菲,刘颖,黄迪,赵奇峰,张勇,刘国奇,钟福军.湘赣边界鹿井铀矿床流体包裹体及成矿机制[J].地球科学,2022,47(1):192-205.
作者姓名:张笑天  潘家永  夏菲  刘颖  黄迪  赵奇峰  张勇  刘国奇  钟福军
作者单位:1.东华理工大学核资源与环境国家重点实验室, 江西南昌 330013
基金项目:国家自然科学基金项目41772066国家自然科学基金项目41862010国家自然科学基金项目42002095核资源与环境国家重点实验室开放基金2020NRE12核资源与环境国家重点实验室联合创新基金项目NER202109
摘    要:位于南岭成矿带南西部的鹿井矿床是华南热液型铀矿的典型代表. 为查明其成矿流体来源、性质与演化以及成矿机制,开展了不同成矿阶段石英、萤石及方解石中流体包裹体的显微测温和不同阶段石英的氢-氧同位素分析. 矿床地质特征表明成矿过程可划分为(Ⅰ)粗晶石英+黄铁矿±绿泥石±绢云母、(Ⅱ)沥青铀矿+硫化物+绿泥石+绢云母+暗灰色微晶石英、(Ⅲ)紫黑色萤石+肉红色方解石+灰色微晶石英+赤铁矿+铀石±黄铁矿和(Ⅳ)梳状石英+浅色萤石+白色方解石四个阶段;其中阶段Ⅱ和Ⅲ代表成矿主阶段. 成矿早阶段和主阶段捕获水溶液包裹体和少量含CO2包裹体,而晚阶段仅见水溶液包裹体. 早、主、晚阶段包裹体的均一温度依次为186~317、169~236、149~189℃,盐度依次为9.9~12.9、6.3~9.9、4.5~7.0 wt% NaCleqv. 成矿流体自早阶段至晚阶段逐渐由中低温、中低盐度的NaCl-H2O-CO2体系演化为低温、低盐度的NaCl-H2O体系,期间由压力降低引发的流体沸腾作用是重要的成矿机制. H-O同位素数据表明,初始成矿流体来自岩浆水与大气降水的混合,成矿过程伴随着大气降水的持续加入. 

关 键 词:流体包裹体    成矿流体    铀矿    鹿井    诸广山    矿床学
收稿时间:2021-02-24

Fluid Inclusion Constraints on Ore-Forming Mechanism of Lujing Uranium Deposit in Jiangxi-Hunan Border Region
Zhang Xiaotian,Pan Jiayong,Xia Fei,Liu Ying,Huang Di,Zhao Qifeng,Zhang Yong,Liu Guoqi,Zhong Fujun.Fluid Inclusion Constraints on Ore-Forming Mechanism of Lujing Uranium Deposit in Jiangxi-Hunan Border Region[J].Earth Science-Journal of China University of Geosciences,2022,47(1):192-205.
Authors:Zhang Xiaotian  Pan Jiayong  Xia Fei  Liu Ying  Huang Di  Zhao Qifeng  Zhang Yong  Liu Guoqi  Zhong Fujun
Abstract:The Lujing uranium deposit located in the southwestern part of the Nanling metallogenic belt is a representative granite-related hydrothermal uranium deposit in South China. In this paperit presents new detailed fluid inclusion and H-O isotope data to constrain the source, nature, and evolution of the ore-forming fluids and reveal the ore-forming mechanism. Four stages of mineralization have been identified in the Lujing deposit: (Ⅰ) macrocrystalline quartz+pyrite+chlorite+sericite, (Ⅱ) pitchblende+sulfide+chlorite+sericite+microcrystalline quartz, (Ⅲ) purple-black fluorite+reddish calcite+microcrystalline quartz+hematite+coffinite+pyrite, and (Ⅳ) comb quartz+light-green fluorite+white calcite. The stages Ⅱ and Ⅲ represent the main uranium mineralization. The early and main stages of mineralization contain aqueous inclusions and a small amount of CO2-bearing inclusions, whereas the late stage of mineralization contains only aqueous inclusions. The fluid inclusions in early-stage quartz have homogenization temperature of 186-317 ℃ and salinities of 9.9-12.9 wt% NaCleqv. The fluid inclusions in the quartz, fluorite, and calcite forming the main stage have homogenization temperatures of 169-236 ℃ and salinities of 6.3-9.9 wt% NaCleqv. The fluid inclusions in late-stage quartz, fluorite, and calcite have homogenization temperatures of 149-189 ℃ and salinities of 4.5-7.0 wt% NaCleqv. The ore-forming fluid system evolved from a CO2-H2O-NaCl system in the early stage to a NaCl-H2O system in the late stage. Fluid boiling was the dominant mechanism for uranium precipitation. The H-O isotope results indicate that the initial ore-forming fluid is the mixture of magmatic water and meteoric water, and the meteoric water was continuously added to the ore-forming fluids during mineralization. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《地球科学》浏览原始摘要信息
点击此处可从《地球科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号