首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
峨眉山大火成岩省在形成后遭受了强烈的风化剥蚀,与右江盆地构成了独特的源-汇沉积体系,相关的碎屑沉积记录是重建峨眉山大火成岩省晚期火山序列、揭示大火成岩省岩浆演化的关键。本文对黔西南地区右江盆地北缘下三叠统下部飞仙关组开展了详细的沉积物源研究。飞仙关组泥岩由长石、石英和黏矿物等组成,具有低SiO2、高TiO2含量和低Al2O3/TiO2值的特征,具Eu的弱负异常,微弱的Nb、Ta负异常。基于Al2O3/TiO2和La/Sm物源图解分析,研究样品的主要物源由峨眉山大火成岩省的高-Ti玄武岩和少量酸性火山岩构成,这与右江盆地晚二叠世的碎屑沉积物源组成一致。碎屑锆石具有~260 Ma的年龄峰值,对应锆石具有较低的Th/Nb和较高的Nb/Hf值,均支持峨眉山大火成岩省作为主要的沉积物源区,而同时存在的>400 Ma的碎屑锆石则对应于峨眉山玄武质岩浆上升时所捕获的华南地壳物质。与上二叠统的碎屑锆石U-Pb年龄组成和锆石...  相似文献   

2.
The Kuznetsk Basin is located in the northern part of the Altai–Sayan Folded Area (ASFA), southwestern Siberia. Its Late Permian–Middle Triassic section includes basaltic stratum-like bodies, sills, formed at 250–248 Ma. The basalts are medium-high-Ti tholeiites enriched in La. Compositionally they are close to the Early Triassic basalts of the Syverma Formation in the Siberian Flood basalt large igneous province, basalts of the Urengoi Rift in the West Siberian Basin and to the Triassic basalts of the North-Mongolian rift system. The basalts probably formed in relation to mantle plume activity: they are enriched in light rare-earth elements (LREE; Lan = 90–115, La/Smn = 2.4–2.6) but relatively depleted in Nb (Nb/LaPM = 0.34–0.48). Low to medium differentiation of heavy rare-earth elements (HREE; Gd/Ybn = 1.4–1.7) suggests a spinel facies mantle source for basaltic melts. Our obtained data on the composition and age of the Kuznetsk basalts support the previous idea about their genetic and structural links with the Permian–Triassic continental flood basalts of the Siberian Platform (Siberian Traps) possibly related to the activity of the Siberian superplume which peaked at 252–248 Ma. The abruptly changing thickness of the Kuznetsk Late Permian–Middle Triassic units suggests their formation within an extensional regime similar to the exposed rifts of Southern Urals and northern Mongolia and buried rifts of the West Siberian Basin.  相似文献   

3.
Current understanding of biodiversity changes in the Permian is presented, especially the consensus and disagreement on the tempo, duration, and pattern of end-Guadalupian and end-Permian mass extinctions. The end-Guadalupian mass extinction (EGME; i.e., pre-Lopingian crisis) is not as severe as previously thought. Moreover, the turnovers of major fossil groups occurred at different temporal levels, therefore the total duration of the end-Guadalupian mass extinction is relatively extended. By comparison, fossil records constrained with high-precision geochronology indicate that the end-Permian mass extinction (EPME) was a single-pulse event and happened geologically instantaneous. Variation of geochemical proxies preserved in the sedimentary records is important evidence in examining potential links between volcanisms and biodiversity changes. Some conventional and non-traditional geochemical proxy records in the Permian show abrupt changes across the Permian-Triassic boundary, reflecting climate change, ocean acidification and anoxia, carbon cycle perturbation, gaseous metal loading, and enhanced continental weathering. These, together with the stratigraphic coincidence between volcanic ashes and the end-Permian mass extinction horizon, point to large-scale volcanism as a potential trigger mechanism.To further define the nature of volcanism which was responsible for global change in biodiversity, main characteristics of four Permian large igneous provinces (LIPs; i.e., Tarim, Panjal, Emeishan, and Siberian) are compared, in terms of timing and tempo, spatial distribution and volume, and magma-wall rock interactions. The comparison indicates that volcanic fluxes (i.e., eruption rates) and gas productions are the key features distinguishing the Siberian Traps from other LIPs, which also are the primary factors in determining the LIP’s potential of affecting Earth’s surface system. We find that the Siberian Traps volcanism, especially the switch from dominantly extrusive eruptions to widespread sill intrusions, has the strongest potential for destructive impacts, and most likely is the ultimate trigger for profound environmental and biological changes in the latest Permian-earliest Triassic. The role of Palaeotethys subduction-related arc magmatism cannot be fully ruled out, given its temporal coincidence with the end-Permian mass extinction. As for the Emeishan LIP, medium volcanic flux and gas emission probably limited its killing potential, as evident from weak changes in geochemical proxies and biodiversity. Because of its long-lasting but episodic nature, the Early Permian magmatism (e.g., Tarim, and Panjal) may have played a positive role in affecting the contemporaneous environment, as implicated by coeval progressive climate warming, termination of the Late Palaeozoic Ice Age (LPIA), and flourishing of ecosystems.  相似文献   

4.
《Sedimentology》2018,65(2):335-359
Predominantly fine‐grained strata were deposited in the Smith Bank Formation (Early Triassic) in the Central North Sea area of the Northern Permian Basin. Previously regarded as monotonous red claystone, examination of continuous core reveals abundant stratification, significant variation in colour, siltstone as the prevalent average grain size, and claystone is rare. Loessite occurs beyond the north‐western lacustrine margin, and aerosol dust has inundated clay pellets derived from aeolian reworking of the desiccated lake floor. The loessite has limited evidence of pluvial reworking but rare fossil roots testify to sufficient moisture to sustain plants. Loessite has not previously been differentiated successfully from other fine‐grained strata in the subsurface, but this study defines the presence of random grain‐fabric orientation as an intrinsic unequivocal characteristic of loessite that formed during air‐fall deposition of aerosol dust. Comparison with outcrop data verifies the utility of grain fabric to differentiate loessite. Tosudite, an aluminous di‐octahedral regularly ordered mixed‐layer chlorite/smectite, which is rare in sedimentary rock, forms a significant proportion (10 to 21%) of the clay mineral fraction of loessite along with a similar quantity of kaolinite. In all other samples, only illite and chlorite are identified, which is typical of fine‐grained Triassic strata. In a location, close to the southern lake margin, lacustrine strata are characterized by fining‐upward couplets of very fine‐grained sandstone into siltstone and mudstone, with occasional desiccated surfaces. Small sand injections and associated sand extrusions are common and indicate periodic fluidization of sand. Precise stratigraphic location of the Smith Bank Formation is problematic because of extremely sparse fossil preservation; however, there is no sedimentological evidence for a period of hyperaridity known from the early Olenekian in continental Europe, which may mean that the North Permian Basin was never hyperarid or that the Smith Bank Formation is restricted to the Induan.  相似文献   

5.
Sedimentary successions provide direct evidence of climate and tectonics, and these give clues about the causes of the mass extinction around the Permian–Triassic boundary. Terrestrial Permian–Triassic boundary strata in the eastern Ordos Basin, North China, include the Late Permian Sunjiagou, Early Triassic Liujiagou and late Early Triassic Heshanggou formations in ascending order. The Sunjiagou Formation comprises cross-bedded sandstones overlaid by mudstones, indicating meandering rivers with channel, point bar and floodplain deposits. The Liujiagou Formation was formed in braided rivers of arid sand bars interacting with some aeolian dune deposits, distinguished by abundant sandstones where diverse trough and planar cross-bedding and aeolian structures (for example, inverse climbing-ripple, translatent-ripple lamination, grainfall and grainflow laminations) interchange vertically and laterally. The Heshanggou Formation is a rhythmic succession of mudstones interbedded with thin medium-grained sandstones mainly deposited in a shallow lacustrine environment. Overall, the sharp meandering to braided to shallow lake sedimentary transition documents palaeoenvironmental changes from semi-arid to arid and then to semi-humid conditions across the Permian–Triassic boundary. The die-off of tetrapods and plants, decreased bioturbation levels in the uppermost Sunjiagou Formation, and the bloom of microbially-induced sedimentary structures in the Liujiagou Formation marks the mass extinction around the Permian–Triassic boundary. The disappearance of microbially-induced sedimentary structures, increasingly intense bioturbation from bottom to top and the reoccurrence of reptile footprints in the Heshanggou Formation reveal gradual recovery of the ecosystem after the Permian–Triassic boundary extinction. This study is the first to identify the intensification of aeolian activity following the end-Permian mass extinction in North China. Moreover, while northern North China continued to be uplifted tectonically from the Late Palaeozoic to Late Mesozoic, the switch of sedimentary patterns across the Permian–Triassic boundary in Shanxi is largely linked to the development of an arid and subsequently semi-humid climate condition, which probably directly affected the collapse and delayed recovery in palaeoecosystems.  相似文献   

6.
浙江长兴煤山地区晚二叠世末、早三叠世初的火山活动   总被引:14,自引:2,他引:14  
<正> 近年来,不少学者分别从生物地层(赵金科等,1981;盛金章等,1983;王义刚,1984;Sheng Jinzhang et al.,1984),事件地层(孙亦因等,1984;何锦文,1985),岩相、生物相(杨万容等,1981;芮琳等,1984),粘土矿物(何锦文,1981),元素地球化学特征(柴之芳等,1986),构造岩浆活动(周瑶琪,1986)以及碳同位素(陈锦石等,1984)等方面对浙江  相似文献   

7.
The temporal coincidence between the Late Permian mass extinction (LPME) and the emplacement of Siberian Trap basalts suggests a causal link between the two events. Here, we discuss stratigraphic changes of organic and inorganic (including isotopic) geochemical properties of marine sediments across the Permian–Triassic boundary (PTB) in the Hovea-3 core, Western Australia, a key PTB section in the southern Neo-Tethys ocean. These data are compared with published data from the Meishan section, southern China, and from the Opal Creek section in western Canada, providing a view of Tethys and Panthalassa changes at the PTB. Trace metal and N-isotopic data, together with organic matter properties suggest that anoxic conditions were established prior to the LPME, intensified close to the LPME, and continued with photic-zone euxinia into the Early Triassic. For the Hovea-3 section, Re-Os ages confirm Changhsingian (253.5 ± 1.4 Ma) deposition of the dated interval sampled immediately below the stratigraphic level characterized by major lithological and isotopic changes. Evaluation of Re-Os, N, and Hg elemental and isotopic data for Hovea-3 suggests that anoxic conditions in the latest Permian were generally unrelated to direct magmatic contributions. A major increase in the initial Os isotopic ratio of Lower Triassic shales suggest an ~8× increase in the Early Triassic continental runoff, based on moderately conservative assumptions for end-members contributing Os to the Permian–Triassic ocean. Comparison to other PTB sections confirms a global signal of increasing Re/Os ratios in the Late Permian, and major and long-lived changes in the isotopic composition of the post-extinction ocean. A distinct peak in Hg concentrations carrying a volcanic isotopic signature, also identified in other PTB sections, likely represents a major pulse of Siberian Trap volcanism. This Hg peak in the Hovea-3 section, however, is detected above the stratigraphic level containing multiple other widely recognized and more permanent geochemical changes. Therefore, direct volcanic inputs to the Permian–Triassic Ocean likely post-date the LPME in this Western Australian section.  相似文献   

8.
陆相二叠纪-三叠纪地层划分与对比研究对认识该时期全球性重大生物和环境事件具有重要意义.以大兴安岭南段阿鲁科尔沁旗坤都地区新发现的下三叠统老龙头组为研究对象, 重点对二叠系-三叠系接触关系开展详细调查研究, 系统采集了界线上下的古生物化石, 对老龙头组火山岩进行了锆石U-Pb同位素测试分析, 并确定了老龙头组与下伏林西组呈平行不整合接触关系, 两者之间存在短暂沉积间断.生物地层显示林西组时代为晚二叠世晚期, 老龙头组古生物匮乏, 可能与二叠系-三叠系之交的生物灭绝事件有关.而老龙头组中3个同位素年龄值分别为251.5±2.2 Ma、249.7±2.5 Ma和249.5±1.8 Ma, 时代指示为早三叠世, 然而二叠系-三叠系界线的准确位置还需进一步研究.大兴安岭南段普遍存在可能与古亚洲洋闭合有关的早三叠世岩浆事件, 古亚洲洋沿着西拉木伦河缝合带发生碰撞闭合, 其闭合时限至少持续至早三叠世, 老龙头组是两大板块拼贴碰撞作用的产物.   相似文献   

9.
《Gondwana Research》2014,26(4):1680-1689
In southern Tibet, Late Triassic sequences are especially important to understanding the assembly of the Lhasa terrane prior to Indo-Asian collision. We report new data relevant to the provenance of a Late Triassic clastic sequence from the Mailonggang Formation in the central Lhasa terrane, Tibet. Petrographic studies and detrital heavy mineral assemblages indicate a proximal orogenic provenance, including volcanic, sedimentary and some ultramafic and metamorphic rocks. In situ detrital zircon Hf and U–Pb isotope data are consistent with derivation of these rocks from nearby Triassic magmatic rocks and basement that comprise part of the newly recognized Late Permian–Triassic Sumdo–Cuoqen orogenic belt. The new data suggests correlation with the Upper Triassic Langjiexue Group which lies on the opposing (southern) side of Indus–Yarlung ophiolite. Sediments from both the Mailonggang Formation and Langjiexue Group are interpreted to represent formerly contiguous parts of a sequence deposited on the southern flanks of the Sumdo–Cuoqen belt.  相似文献   

10.
拉萨却桑地区的原早中三叠世查曲浦组由下部碳酸盐岩和上部火山岩组成,下部碳酸盐岩产丰富的化石,时代为早—中三叠世,上部火山岩无古生物和年代学资料,根据叠置关系作为查曲浦组上部,时代也为早—中三叠世,并且成为该地区经典地层层序而被广泛引用。最近在原查曲浦组上部火山岩段玄武质安山岩中获得248Ma±4Ma的锆石SHRIMP U-Pb年龄,厘定原查曲浦组上部火山岩时代为早三叠世,原查曲浦组存在倒转,火山岩段应位于碳酸盐岩段之下,其下与列龙沟组整合过渡,证明该区二叠系与三叠系是连续沉积的,进一步说明早三叠世该区存在岩浆活动。查曲浦组层序的厘定对探讨冈底斯地区构造演化过程具有重要意义。  相似文献   

11.
拉萨却桑地区的原早中三叠世查曲浦组由下部碳酸盐岩和上部火山岩组成,下部碳酸盐岩产丰富的化石,时代为早—中三叠世,上部火山岩无古生物和年代学资料,根据叠置关系作为查曲浦组上部,时代也为早—中三叠世,并且成为该地区经典地层层序而被广泛引用。最近在原查曲浦组上部火山岩段玄武质安山岩中获得248Ma±4Ma的锆石SHRIMP U-Pb年龄,厘定原查曲浦组上部火山岩时代为早三叠世,原查曲浦组存在倒转,火山岩段应位于碳酸盐岩段之下,其下与列龙沟组整合过渡,证明该区二叠系与三叠系是连续沉积的,进一步说明早三叠世该区存在岩浆活动。查曲浦组层序的厘定对探讨冈底斯地区构造演化过程具有重要意义。  相似文献   

12.
在豫西济源地区发现的陆相微生物成因构造(Microbially Induced Sedimentary Structures,MISSs),主要发育在孙家沟组和刘家沟组,可分为2大类即微生物席生长构造和微生物席破坏构造,8小类即生长脊构造、瘤状突起、曲形脱水裂痕、纺锤状脱水裂痕、似正弦状构造、树枝状脱水裂痕、多边形脱水裂痕和直脊状脱水裂痕。镜下分析显示具有大"U"形脊、定向排列的石英颗粒、近平行的暗色黏土矿物条带及悬浮排列的云母颗粒等微生物成因特征。通过与鲁山、黎城中元古界以及宜阳、柳林早三叠系微生物成因构造对比研究,认为研究区的微生物成因构造具有较为特殊的埋藏学特征,受二叠纪末灾变事件、适宜的沉积条件和气候因素控制,代表着研究区以微生物群落为主、后生动物稀少、植被贫乏、气候炎热和水土流失严重等特征的一种陆相灾后生态系。  相似文献   

13.
The paper reviews geological, geochronological and geochemical data from the Late Paleozoic – Mesozoic magmatic complexes of the Siberian continent north of the Mongol-Okhotsk suture. These data imply that these complexes are related to the subduction of the Mongol-Okhotsk Ocean under the Siberian continent. We suggest that this subduction started in the Devonian, prior to the peak of magmatic activity. Studied magmatic complexes are of variable compositions possibly controlled by changes of the subduction regime and by possible input from enriched mantle sources (hot spots).The oceanic lithosphere of the Mongol-Okhotsk Ocean had shallowly subducted under the Siberian continent in the Devonian. Steeper subduction in the Early – Late Carboniferous led to switching from an extensional to compressional tectonic regime resulting in fold-thrust deformation, to the development of duplex structures and finally to the thickening of the continental crust. This stage was marked by emplacement of voluminous autochthonous biotite granites of the Angara-Vitim batholith into the thickened crust. The igneous activity in the Late Carboniferous – Early Permian was controlled by the destruction of the subducted slab. The allochthonous granitoids of the Angara-Vitim batholith, and the alkaline granitoids and volcanics of the Western Transbaikalian belt were formed at this stage. All these complexes are indicative of extension of the thickened continental crust. A normal-angle subduction in the Late Permian – Late Triassic caused emplacement of various types of intrusions and volcanism. The calc-alkaline granitoids of the Late Permian – Middle Triassic Khangay batholith and Late Triassic Khentey batholith were intruded near the Mongol-Okhotsk suture, whereas alkaline granitoids and bimodal lavas were formed in the hinterland above the broken slab. The Jurassic is characterized by a significant decrease of magmatic activity, probably related to the end of Mongol-Okhotsk subduction beneath the studied area.The spatial relationship of the Late Permian – Middle Triassic granitoids, and the Late Triassic granitoids is typical for an active continental margin developing above a subduction zone. All the Late Carboniferous to Late Jurassic mafic rocks are geochemically similar to subduction-related basalts. They are depleted in Nb, Ta, Ti and enriched in Sr, Ba, Pb. However, the basaltoids located farther from the Mongol-Okhotsk suture are geochemically similar to a transition type between island-arc basalts and within-plate basalts. Such chemical characteristics might be caused by input of hot spot related enriched mantle to the lithospheric mantle modified by subduction. The Early Permian and Late Triassic alkaline granitoids of southern Siberia are of the A2-type geochemical affinities, which is also typical of active continental margins. Only the basaltoids generated at the end of Early Cretaceous are geochemically similar to typical within-plate basalts, reflecting the final closure of the Mongol-Okhotsk Ocean.  相似文献   

14.
The Permian–Triassic boundary interval in shallow shelf seas of South China shows Upper Permian limestones overlain by lowermost Triassic microbialites. Global sea‐level rose across the Permian–Triassic boundary, but an irregular top‐Permian erosion surface across a 10 km north–south transect of the Great Bank of Guizhou contains evidence of sea‐level fluctuation. The surface represents the ‘event horizon’ of mass extinction, below the biostratigraphic Permian–Triassic boundary defined by first appearance datum of conodont Hindeodus parvus. An Upper Permian foraminiferal grainstone beneath this surface contains geopetal sediments, etched grains, and pendent and meniscus cements interpreted here as vadose. However, these latter diagenetic processes occurred before the event horizon and were followed by erosion of the final Permian surface. This erosion cuts previous fabrics but lacks evidence of weathering or bioerosion. A few centimetres below is an earlier grainstone that was also eroded but lacks proof of sub‐aerial processes. Samples therefore reveal one, or possibly two, small‐scale relative sea‐level changes before the Triassic transgression in this area, and these may relate to local tectonics. The final Permian surface is subject to at least four interpretations: (i) sub‐aerial physical erosion and dissolution by carbon dioxide‐enriched fresh water or carbon dioxide‐enriched mixed water, prior to Triassic transgression; (ii) sub‐aerial physical erosion overprinted by dissolution related to carbon dioxide‐enriched sea water in the Early Triassic transgression; (iii) submarine dissolution affected by acidified sea water due to rapid increase in volcanically‐derived carbon dioxide and oxidized methane released from marine clathrates; (iv) submarine dissolution due to acid anoxic waters rising across the continental shelf, unrelated to atmospheric carbon dioxide or oxidized methane. Field and petrographic evidence suggests that (i) is the simplest option; and it is possible that (ii) and (iii) occurred, but none are proved. Option (iv) is unlikely given the evidence and modelling of supersaturation of upwelled waters with respect to bicarbonate.  相似文献   

15.
上扬子西南缘地区广泛分布峨眉山玄武岩,受其影响在中带金阳和外带荥经地区嘉陵江组发育滨岸和潮坪环境沉积物。本文在交错层理恢复的物源方向基础上,根据重矿物组成、重矿物电子探针和碎屑锆石测年结果,综合分析不同区域嘉陵江组物源区,进而探讨嘉陵江组形成的构造环境。嘉陵江组砂岩碎屑重矿物锆石、磷灰石、铬尖晶石等指示物源主要来自于岩浆岩,且自中带至外带基性岩浆岩所占比重逐渐减少。电气石电子探针分析显示,二者物源主要来自于贫锂花岗岩和变质砂岩、板岩。铬尖晶石显示,金阳地区物源来自峨眉山玄武岩和洋岛岩浆岩类岩石,荥经物源主要来自洋岛岩浆岩类岩石,个别为峨眉山玄武岩。碎屑锆石表明,嘉陵江组物源主要来自于新元古代岩浆岩和晚二叠世峨眉山玄武岩,前者经历再搬运。综合物源分析表明,嘉陵江组物源主要来自康滇古陆,岩石类型主要为峨眉山玄武岩和砂岩等。沉积序列和物源分析表明,嘉陵江组反映了沉积物蚀顶过程。结合地震资料、大火成岩省的分析成果表明,嘉陵江组形成于火山型裂谷边缘。  相似文献   

16.
In this paper we present geochemical, zircon U–Pb and Hf isotopic data on the late Paleozoic volcanic rocks of the Dashizhai Formation, which are exposed along the northwestern margin of the Songnen terrane in eastern Inner Mongolia. Our aim is to constrain the petrogenesis and tectonic setting of the volcanic rocks and to unravel the late Paleozoic tectonic evolution of the northwestern part of the Songnen terrane, along the eastern segment of the Central Asian Orogenic Belt. Lithologically, the Dashizhai Formation is composed mainly of rhyolitic tuff, rhyolite, dacite, andesite, basaltic andesite and basalt, with minor basaltic trachyandesite. The zircons separated from these rocks are euhedral–subhedral, have high Th/U ratios (0.2–1.6), and display broad oscillatory growth zoning, indicating a magmatic origin. The results of zircon U–Pb dating indicate the volcanic rocks formed during the early Permian (295–283 Ma). Geochemically, these volcanic rocks belong to the mid-K to high-K calc-alkaline series and are characterized by an enrichment in large ion lithophile elements (LILEs) and a depletion in high field strength elements (HFSEs, such as Nb, Ta, and Ti), similar to igneous rocks that form in active continental margin settings. Most magmatic zircons of the rhyolites show positive εHf(t) values (+ 3.65 to + 13.0) and two-stage model ages (TDM2) of 1396–551 Ma. These geochemical characteristics indicate that the acidic volcanic rocks of the Dashizhai Formation were most likely derived from the partial melting of dominantly juvenile crustal components with a possible addition of “old” materials. In contrast, the basic to intermediate volcanic rocks were derived from the partial melting of a depleted lithospheric mantle that had been metasomatized by fluids derived from a subducted slab. These data, together with regional geological investigations, suggest that the generation of the early Permian volcanic rocks of the Dashizhai Formation was related to the southward subduction of the Paleo–Asian oceanic plate beneath the Songnen terrane. This also implies that the terminal collision between the Songnen and Xing'an terranes did not occur before the early Permian.  相似文献   

17.
The main stages of the Paleozoic intrusive magmatism in the Urals, 460–420, 415–395, 365–355, 345–330, 320–315, and 290–250 Ma, as well as two virtually amagmatic periods, 375–365 Ma (Frasnian-early Famennian) and 315–300 Ma (Late Carboniferous), are recognized. The Cambrian-Early Ordovician pause predated the onset of igneous activity in the Ural Orogen, while the Early Triassic pause followed by an outburst of trap magmatism postdated this activity. The interval from 460 to 420 Ma is characterized by mantle magma sources that produced ultramafic and mafic primary melts. The dunite-clinopyroxenite-gabbro association of the Platinum Belt and miaskite-carbonatite association are specific derivatives of these melts. The rift-related (?) Tagil Synform functioned at that time. The volcanic-plutonic magmatism in this oldest magmatic zone of the Uralides comprises gabbro, gabbro-granitoid, and gabbro-syenite series and comagmatic volcanic rocks. After a break almost 20 Ma long, this magmatism ended in the Early Devonian (405–400 Ma) with the formation of small K-Na gabbro-granitoid plutons. The magmatic intervals of 415–395, 365–355, and 320–315 Ma are characterized by the mantle-crustal nature. The first interval accompanied obduction of the oceanic lithosphere on the continental crust. The subsequent magmatic episodes presumably were related to the subduction of the island-arc (?) lithosphere beneath the continent and to the collision. The intense granitoid magmatism started 365–355 Ma ago. As in the following interval 320–315 Ma, the tonalite-granodiorite complexes, accompanied by hydrous basic magmatism, were formed. Amphibole gabbro and diorite served as a source of heat and material for the predominant tonalite and granodiorite. The Permian granitic magmatism had crustal sources. Thus, the mantle-derived Ordovician-Middle Devonian magmatism gave way to the mantle-crustal Late Devonian-Early Carboniferous plutonic complexes, while the latter were followed by the crustal Permian granites. This sequence was disturbed by rifting and formation of continental arcs accompanied by specific Early Carboniferous Magnitogorsk gabbro-granitoid series and Early Permian Stepnoe monzodiorite-granite series, which deviate from the general evolutional trend.  相似文献   

18.
ABSTRACT

The Upper Triassic Langjiexue Group, which lies immediately south of the Yarlung-Tsangpo Suture Zone in the Shannan area of southeastern Tibet, represents an important part of the Tethyan Himalayan Sequence (THS). Its provenance and palaeogeography have been the subject of debate. We present new data on petrographic composition, whole-rock geochemistry, and detrital zircon U–Pb geochronology to constrain the provenance of the Langjiexue Group. The dominance of quartz grains and felsic volcanic lithic fragments suggests that the sandstones are litho-quartzose. The trace element geochemical signatures (V–Ni–Th*10, Co/Th–La/Sc, Eu/Eu*–Th/Sc) suggest derivation from felsic igneous sources. The detrital zircon age spectra display three major peaks: a Meso-to-Neoproterozoic peak (1200–900 Ma, 7–18%), a Neoproterozoic-to-Late Cambrian peak (750–500 Ma, 32–65%), and a Late Carboniferous-to-Late Triassic peak (300–200 Ma, 11–33%). The maximum depositional age of early Carnian (236–235 Ma) is obtained by calculating weighted average ages of the youngest zircons (≤250 Ma). The youngest age cluster (300–200 Ma) is incompatible with sources from neighbouring terranes, including the South Qiangtang terrane, Lhasa terrane, THS, and Higher Himalayan Crystalline. Correlations of the Permian–Triassic zircons with those of time-equivalent strata in northwest Australia, west Burma, and the Banda Arc unveil a potential connection to the Tasmanides along the convergent margin of eastern Australia. The New England Orogen (300–230 Ma) could have supplied the Langjiexue Group with magmatic materials via continent-scale drainage systems or a submarine fan complex. This scenario provides a new perspective into the transport of detritus from distal orogens to sedimentary basins thousands of kilometres away.  相似文献   

19.
Recently it has been suggested that the major influence on the environment from Siberian Traps magmatism was due to the interaction of magma and organic-rich shale and petroleum-bearing evaporites, with the subsequent creation and outburst of toxic gases (Siberian gas venting: SGV model). In part this idea was supported by a U-Pb age of 252.0 ± 0.4 Ma for one of the dolerite sills in the southeastern Siberian Traps: the age corresponds to the Permo-Triassic boundary and its known mass extinctions of biota. In this study two other dolerite sills were dated using zircons by the U-Pb SHRIMP method at 254.2 ± 2.3 Ma and 249.6 ± 1.5 Ma. The former age is in agreement within error with the age previously published for the dolerite sills, whereas the latter age is in agreement with U-Pb ages published for lava and intrusions from the northern Siberian Traps. The new ages corresponds to the Cahngshingian/Wuchiapingian or Permian/Triassic and Spathian/Smithian boundaries, respectively. Review of 40Ar/39Ar and U-Pb SHRIMP ages previously published for the southeastern Siberian Traps shows that three other pulses of magmatism probably took place at respectively Anisian/Spathian, Late/Middle Anisian and Landian/Anisian boundaries. Thus it is possible that the SVG model can be applied also to lesser biotic extinctions and recoveries in proximity and aftermath to the main Permo-Triassic extinction.  相似文献   

20.
Although the Permian–Triassic Semanggol Formation is widely distributed in northwestern Peninsula Malaysia and is made of various lithofacies, its sedimentology and possible relation with the Permian–Triassic boundary (PTB) were not considered before. In this study, detailed facies analysis was conducted for two sections of the Semanggol Formation at the Bukit Kukus and Baling areas, South Kedah to clarify its sedimentology and relation to the PTB. Four facies from the Permian part of the Semanggol Formation that were identified at the Bukit Kukus section include laminated black mudstone, interbedded mudstone and sandstone, volcanogenic sediments, and bedded chert. In Baling area, the Triassic part of the formation is classified into three members. The lower member comprises of claystone and bedded chert facies, while the middle member is composed of sandstone and claystone interbeds (rhythmite). On the other hand, the upper member is grouped into two main units. The lower unit is mainly claystone and includes two facies: the varve-like laminated silt and clay and massive black claystone. The upper unit is composed of various sandstone lithofacies ranging from hummocky cross stratified (HCS) sandstone to thinly laminated sandstone to burrowed sandstone facies. The HCS sandstones occur as two units of fine-grained poorly sorted sandstone with clay lenses as flaser structure and are separated by a hard iron crust. They also show coarse grains of lag deposits at their bases. The laminated black mudstone at the lowermost part of the Semanggol Formation represents a reducing and quite conditions, which is most probably below the fairweather wave base in offshore environment that changed upwards into a fining upward sequence of tide environment. Abundance of chert beds in the volcanogenic sediments suggests the deposition of tuffs and volcanic ashes in deep marine setting which continues to form the Permian pelagic bedded chert and claystone. The bedded chert in the lower member of the Triassic section suggests its formation in deep marine conditions. The rhythmic sandstone and claystone interbeds of the middle member are suggestive for its formation as a distal fan of a turbidite sequence. Lithology and primary sedimentary structure of the upper member suggest its deposition in environments range from deep marine represented by the varve-like laminated silt and clay to subtidal environment corresponds to the massive black claystone to coastal environment represented by the hummocky sandstone units and reaches the maximum regression at the hiatus surface. Another cycle of transgression can be indicated from the second hummocky unit with transgressive lag deposits that develops to relatively deeper conditions as indicated from the formation of relatively thick laminated sandstone and bioturbated massive sandstone facies that represent tidal and subtidal environment, respectively. Late Permian lithological variation from the radiolarian chert into early Triassic claystone probably resulted from a decrease in productivity of radiolarians and might represent a PTB in the Semanggol Formation. Volcanogenic sediments in the studied section can be used as an evidence for volcanic activities at the end of the Permian, which is probably connected to the nearby volcanic ash layers in the eastern China, the ultimate cause of the PTB in this area. Black mudstone in the Permian part of the studied section may be interrelated to the Latest Permian Anoxia that started to build in the deep ocean well before the event on shallow shelves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号