首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 234 毫秒
1.
基于1981—2021年北京地区6个气象站的逐日最大冻土深度、平均气温、平均地表温度及5、10、15、20、40、80 cm地温等资料,分析了近40年北京地区最大冻土深度的时空分布特征及其与气温和地温的关系。结果表明:北京地区最大冻土深度总体呈变浅趋势,气候倾向率为-2.3 cm/10 a,各站点最大冻土深度变浅趋势从西到东呈逐渐减弱趋势。北京地区最大冻土深度与40、80 cm地温相关性最好,与地表温度相关性较差。选取2021至2022年北京地区冻土对比试验数据,评估测温式冻土自动观测仪观测精度,发现仪器安装至少一个冻融周期后与冻土人工观测吻合度更好,测温式冻土自动观测仪的观测精度与仪器安装位置的地下岩层、土质分布密切相关,需要在仪器稳定运行后根据当地实际优化算法和冻融阈值。  相似文献   

2.
利用锡林郭勒盟1961—2018年近58a有完整记录的11个气象站的最大冻土深度、冬季11月—翌年3月平均气温和平均地面最低温度资料,利用描述分析、线性趋势拟合、相关性检验、Mann-Kendall突变检验等方法,对锡林郭勒盟最大冻土深度的时间演变、空间分布及与气温、地温的关系进行了分析。结果表明:二连浩特市最大冻土深度的均方差和变差系数最大,稳定性最差;东乌珠穆沁旗、二连浩特市最大冻土深度变浅幅度最大,气候倾向率为-16.25cm/10a和-15.48cm/10a;20世纪70年代是近58a来最大冻土深度最深的时期;全盟11个站中有5个站最大冻土深度发生突变现象,其中一个站突变点在1982年,其他4个站突变点在1989—1991年;锡林郭勒盟最大冻土深度的空间分布特征为东深西浅、北深南浅;锡林郭勒盟各站11月到翌年3月平均气温和平均地面最低温度均呈上升的趋势;最大冻土深度和平均气温、平均地面最低温度均呈负相关,部分台站相关性显著,随着气温和地温的升高冻土深度在变浅。  相似文献   

3.
利用1961—2010年喀什地区所属喀什市、莎车县、巴楚县、塔什库尔干县等4个代表性站50a的年最大冻土深度、冬季平均气温、极端最低气温、极端最低地温等资料,采用气候趋势系数和气候倾向率方法,对1961年以来喀什地区最大冻土深度变化进行了分析。结果表明,喀什地区平原多年平均最大冻土深度为48.1cm,年际最大值与最小值深度差为82cm,年际变化总体呈明显的减小趋势,其变化倾向率为-3.8cm/10a,年代际变化呈阶梯状逐渐减小,冻土深度减小主要受冬季平均气温升高的影响,气温每升高1℃,冻土深度减小7.75cm;山区多年平均最大冻土深度为148.8cm,年际最大值与最小值深度差为88cm,年际变化总体呈明显的减小趋势,其变化倾向率为-2.5cm/10a。  相似文献   

4.
利用1961~2010年喀什地区所属喀什市、莎车县、巴楚县、塔什库尔干县等4个代表性站50a的年最大冻土深度、冬季平均气温、极端最低气温、极端最低地温等资料,采用气候趋势系数和气候倾向率方法,对1961年以来喀什地区最大冻土深度变化进行了分析。结果表明,喀什地区平原多年平均最大冻土深度为48.1 cm,年际最大值与最小值深度差为82cm,随年际变化总体呈明显的减小趋势,其变化倾向率为-3.8cm/10a,年代际变化呈阶梯状逐渐减小,冻土深度减小主要受冬季平均气温升高的影响,气温每升高1℃,冻土深度减小7.75 cm;山区多年平均最大冻土深度为148.8cm,年际最大值与最小值深度差为88cm,随年际变化总体呈明显的减小趋势,其变化倾向率为-2.5cm/10a。  相似文献   

5.
利用1985—2021年呼伦贝尔市15个国家气象站各层地温、第一冻土层下限、最大冻土深度资料,研究呼伦贝尔市冻土气候演变特征,同时采用重标极差(R/S)和非周期循环分析,统计最大冻土深度等气象要素时间序列的Hurst指数、分维数和非周期循环的平均循环长度,分析最大冻土深度等气象要素变化趋势和记忆周期。研究表明:(1)0cm地温、40cm平均地温、80cm平均地温都呈现出增大趋势,且0cm地温增大趋势最显著,特别是0cm地温最小值增大更加明显。(2)冻结持续日数呈缓慢减小趋势,其中中部偏北海拔超过600 m山区持续时间最长,西南部和东南部地区持续时间最短。(3)7月中旬冻土在北部地区开始,9月开始到10月下旬向西南和东南地区扩展,次年5月上旬至6月下旬自西南和东南地区向北部地区开始消失。(4)最大冻土深度呈现逐年减小趋势,突变年份出现在1988年,最大冻土深度在7-9月最浅,次年2-4月最深,10月-次年1月是最大冻土深度不断加深的过程,5-6月是最大冻土深度显著减小的时段,其中最大冻土深度最大值出现在西部偏南地区。(5)R/S和非周期循环分析表明,冻结持续日数和最大冻土深度未来减小趋势仍将持续,持续时间分别为10 a和8 a;0cm地温、40cm平均地温、80cm平均地温未来增大趋势仍将持续,持续时间都为12 a。  相似文献   

6.
1962-2007年伊犁河谷冻土分析   总被引:1,自引:0,他引:1  
利用1962--2007年伊犁河谷气象站冻土资料,分析了46a伊犁河谷季节性冻土变化情况。伊犁河谷冻土开始日期逐渐延后,各站的平均开始日期从10月29日延后到11月19日,推迟了20d。冻土结束日期提前,冻土持续时间缩短21d。平均冻土深度和最大冻土深度均减小,其中最大冻土深度从62.47cm减少到51.93cm。  相似文献   

7.
利用1960-2018年塔城地区9个气象观测站冻土深度及同期气温观测资料,采用数理统计方法分析了其分布状况、变化特征及其与气象因子的关系,结果表明:近59a塔城地区最大冻土深度均在120cm以上,大值区主要分布在中部、南部及托里,冻结初日最早出现于9月上旬,最晚结束于5月中旬;年最大冻土深度除额敏以4.00cm/10a的速率显著增多外,其余各站均表现为减少趋势,其中克拉玛依减幅最大;月际变化中1月、2月、5月、9月、10月仅个别站表现为增多趋势,其余站表现为减少趋势,而3月、4月、11月、12月9站均表现为一致的减少趋势;塔城地区最大冻土深度年际变异系数均表现为中等变异性,表明其对气候变化的响应较敏感;平均冻土深度年代际变化呈现“浅-深-浅-浅-浅-浅”的变化趋势,从1980年代开始平均冻土深度逐渐变浅;影响最大冻土深度变化的因子主要有年(月)平均气温、平均最低气温及气温日较差。  相似文献   

8.
高寒地区冻土活动层变化特征分析   总被引:5,自引:0,他引:5  
利用1960-2010年黑龙江省83个气象站的冻土和0 cm地温资料,采用线性回归和多项式回归方法,分析了黑龙江省冻土活动层的时空变化特征,揭示了黑龙江省五个典型气候区域最大冻土深度的变化趋势与特征,讨论了黑龙江省冻土活动层的影响因子。结果表明:黑龙江省冻土活动层冻结开始于9月份,至冬季3月份冻土深度达到最大值,8月份时冻土厚度接近于0 cm。由北向南,最大冻土深度逐渐变小,冻结开始时间逐渐推迟,融化结束时间逐渐提前。黑龙江省最大冻土深度均呈显著减小趋势,存在明显的退化趋势。从年代际变化上看,20世纪90年代前黑龙江省最大冻土深度变化不大,最大冻土深度较深,90年代后最大冻土深度呈显著减小趋势。高纬度地区地温低,在同等条件下冻土深度较低纬度地区大。  相似文献   

9.
基于1961-2020年三江源地区21个气象观测站点逐日冻土深度、平均气温和降水资料,利用数理统计方法分析了季节性冻土冻结初始日、融化终止日、最大冻结深度的时空分布特征及其与气温、降水的关系。结果表明:1961-2020年,三江源地区季节性冻土平均冻结初始日始于9月下旬至10月下旬,融化终止日多出现在4-5月。近60年来,三江源地区季节性冻土冻结初始日(融化终止日)显著推迟(提前),尤其是20世纪90年代以来,推迟(提前)尤为明显。三江源地区季节性冻土年最大冻结深度呈显著减小趋势,进入21世纪后,尤其是近10年来最大冻结深度减小明显。在空间分布上,冻结初始日、融化终止日、年最大冻结深度的分布主要受海拔的影响,冻结初始日(融化终止日)由高海拔向低海拔逐渐推迟(提前),年最大冻结深度也由高海拔向低海拔逐渐变浅。近60年来,三江源气候暖湿化导致季节性冻土封冻时间缩短、年最大冻结深度变浅。冻结初始日与10月气温、降水的正相关最高,融化终止日与气温和降水的负相关性在4月达最大,年最大冻结深度与1月气温和上一年8月降水呈显著负相关性。  相似文献   

10.
本文采用乌鲁木齐市国家基准气象站463站的逐日平均、逐日最低和逐日最高气温资料,分析了乌鲁木齐市1976-2017年气温变化趋势和对四季的影响。结果表明:乌市气温有明显上升的趋势,年平均气温的线性增温速率为0.50℃/10a,1997年出现了最暖年,1976年以来最暖的10 a均出现在20世纪末至今;年平均最低气温升温趋势最为明显,倾向率为0.77℃/10a,上升速率约是年平均最高气温的2.5倍;气温上升导致春季和夏季的开始日期提前明显、秋季和冬季开始日期有推后的趋势,使得夏季明显延长,延长率为5.9d/10a,近42a来共增加25d,其他季节则有不同程度的缩短,其中冬季缩短最为明显,缩短率为-3.6d/10a,近42a来共缩短了15d;各季节开始日期不仅与年平均气温相关性很好,且开春期、入夏期分别与3月和6月平均气温显著负相关;入秋期与入冬期分别与9月和11月气温呈显著正相关;夏季和冬季的长度也与年平均气温显著相关,当年平均气温每上升1℃时,夏季将延长6d,而冬季则会缩短7 d。  相似文献   

11.
为了掌握沈阳地区地温变化规律,并提供更好的大田地温预报服务,降低播种风险,提高粮食生产安全,利用沈阳地区7个气象站点1981-2015年地温和气温数据,运用数理统计方法,分析近35 a地温和气温的变化规律,建立了春播期(4月和5月)地温预报模型。结果表明:1981-2010年,年代际温度呈上升趋势,气温的变化导致地温的变化也更加明显,气温和各层地温的气候倾向率为0.426-0.549℃/10 a,4-10月0-5 cm、5-10 cm、10-20 cm每一层的地温差为1.5℃、0.5℃和0.5℃;0-20 cm地温以及气温在1996年前后发生了突变;春播期西部地区0 cm、5 cm、10 cm的地温和气温差值4-5月由较低转为较高;地温预报模型t检验的P值在P=0.01水平差异均不显著,相对误差控制在±10%以内,可以用于沈阳春播期(4月和5月)地温预测。  相似文献   

12.
晁华  徐红  王当  王小桃  朱玲  顾正强 《气象科技》2017,45(1):116-121
利用辽宁省61个气象站1964—2013年的冻土观测资料,采用线性回归、相关性分析、不同气候期对比等方法,结合ArcGIS分析了辽宁省冻土的空间和时间变化特征。结果表明:辽宁省冻土随纬度呈带状分布;土壤冻结具有明显的季节变化特征,冻结期在10月至翌年5月,冬末春初冻结的面积和深度达到最大值;冻结日自北向南逐渐推迟,消融日则相反;在全球变暖背景下,冻土深度随温度的上升而减小;大部分地区年平均气温和地表温度与最大冻土深度呈显著负相关,是影响冻土深度的重要因素;从各气候期100cm等深度线也可以明显看出最大冻土深度呈逐渐减小趋势。  相似文献   

13.
探讨石家庄冻土变化特征与气候因子的关系,以期作好土壤冻融预测.利用石家庄地区5个观测站1981—2010年逐日地温、降水量、蒸发量和冻土观测数据,采用线性趋势、完全相关系数和多元回归方法,分析讨论了该地区冻土变化特征与地温、降水量、蒸发量的变化关系.结果表明:石家庄地区土壤表面始冻期呈现明显推迟趋势,土壤表面解冻期呈现明显提前趋势,其中,中部地区始冻期推迟,解冻期提前趋势最为明显;11—12月平均地面最低温度与土壤表面始冻期正相关明显,2—3月平均地面最低温度与土壤表面解冻期负相关明显;秋季降水量和蒸发量对土壤表面始冻期推迟,冬季降水量和蒸发量对土壤表面解冻期提前影响较小.  相似文献   

14.
基于山西68个气象观测站1960—2018年月最大冻土深度资料,应用EOF和小波分析等方法,研究山西年最大冻土深度的时空分布特征。结果表明:(1)1960—2018年山西68站平均年最大冻土深度平均值为71 cm,极端最大值为192 cm,极端最小值为7 cm。近59 a山西68站平均年最大冻土深度呈显著减小趋势,气候倾向率为-1.394 cm·(10 a)^(-1),且在1986年发生一次显著的气候突变。(2)山西68站平均年最大冻土深度存在准4 a周期。(3)山西年最大冻土深度空间分布整体上南浅北深、东浅西深。(4)山西年最大冻土深度EOF分解前2个模态的累积方差贡献率达58.4%,第1模态空间型为全省一致型,第2模态空间型为南北反向型。  相似文献   

15.
青藏高原多年冻土区典型下垫面冻融过程作用分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用青藏高原腹地安多站土壤观测资料,根据10cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,并结合感热通量、积雪深度、相对湿度和降水资料定性的探讨了冻融过程对地气热量、水分交换的影响。结果表明:各层土壤在东亚季风爆发前期由上至下完成融化过程,10月中旬~12月上旬完成冻结过程,融化期普遍长于冻结期。土壤湿度大值区在时间上集中在高原雨季,空间上10cm深度以上为湿度大值区,而且上层土壤的温度梯度要明显大于下层。在融化阶段整层土壤的温度长期保持0℃的等温相变现象,此时,表层土壤温度日变化幅度为全年最大,最高日变幅达22.5℃。安多站地面除12月个别天数和1月上旬是冷源外,全年为地面热源,近地面感热通量从1月开始增大,到6月上旬达到峰值,之后逐渐减小。同时,感热通量的变化对相对湿度、降水和积雪的变化较为敏感。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号