首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A lift based cycloidal wave energy converter (WEC) was investigated using potential flow numerical simulations in combination with viscous loss estimates based on published hydrofoil data. This type of wave energy converter consists of a shaft with one or more hydrofoils attached eccentrically at a radius. The main shaft is aligned parallel to the wave crests and submerged at a fixed depth. The operation of the WEC as a wave-to-shaft energy converter interacting with straight crested waves was estimated for an actual ocean wave climate. The climate chosen was the climate recorded by a buoy off the north-east shore of Oahu/Hawaii, which was a typical moderate wave climate featuring an average annual wave power PW = 17 kWh/m of wave crest. The impact of the design variables radius, chord, span and maximum generator power on the average annual shaft energy yield, capacity factor and power production time fraction were explored. In the selected wave climate, a radius R = 5 m, chord C = 5 m and span of S = 60 m along with a maximum generator power of PG = 1.25 MW were found to be optimal in terms of annual shaft energy yield. At the design point, the CycWEC achieved a wave-to-shaft power efficiency of 70%. In the annual average, 40% of the incoming wave energy was converted to shaft energy, and a capacity factor of 42% was achieved. These numbers exceeded the typical performance of competing renewables like wind power, and demonstrated that the WEC was able to convert wave energy to shaft energy efficiently for a range of wave periods and wave heights as encountered in a typical wave climate.  相似文献   

2.
波浪与起伏水平板防波堤相互作用数值模拟   总被引:1,自引:1,他引:0  
利用自主研发的基于紧致插值曲线CIP(constrained interpolation profile)方法的数学模型,开展规则波与起伏水平板防波堤相互作用的数值模拟研究。模型在笛卡尔直角坐标下建立,以CIP方法为流场基本求解器,分步求解Navier-Stokes方程,利用高精度的流体体积类型的THINC/SW (tangent of hyperbola for interface capturing with slope weighting)方法重构自由液面,采用浸入边界IBM(immersed boundary method)方法处理波浪与起伏板防波堤的耦合作用问题,通过动量源项造波方法模拟波浪的产生。重点关注波浪的浅水变形和板两端涡旋脱落的非线性现象,分析不同潜深、波要素下的板周围流场分布、板的运动响应和波浪的反透射系数。结果表明:起伏水平板主要通过能量反射、板上浅水变形和板两端的涡脱落消能,能有效减小板后波高,具有作为防波堤的可行性。  相似文献   

3.
The potential energy available in a two-dimensional progressive water wave can be calculated in numerous ways. One derivation of this energy based on the first law of thermodynamics and on the linearized velocity potential for waves, is presented in this paper. The energy densities and total energy expressions are given for deep and finite depth water waves. It is also shown that the travelling component of the energy for deep water waves is the potential energy component.  相似文献   

4.
内孤立波具有振幅尺度大、能量集中的特点,其引起流场和密度场的迅速变化可能对海洋工程结构物以及水下潜体造成严重威胁。因此研究不同造波条件下生成的内孤立波运动的流场特征具有重要的学术意义和实际应用价值。采用直接数值模拟方法和给定的初始密度场密度跃迁函数,对重力塌陷激发内孤立波的运动过程进行研究,探讨了不同造波条件下,激发产生的内孤立波波型、涡度、振幅和水平速度等流场特征。结果表明:(1)直接模拟数值方法能够模拟内孤立波传播过程中的密度界面波型反转现象;(2)从定性和定量的角度,证实了不稳定内孤立波传播过程中存在能量的向后传递;(3)对于相同的台阶深度(水闸两侧初始密度界面的高度差),初始涡流保持相同,但是随着上下层水深比的减小,其强度下降显著;(4)台阶深度对初始涡流的垂直结构的影响要大于上下层水深比,且台阶深度对内孤立波的振幅、水平速度的影响显著。  相似文献   

5.
Edge baroclinic waves are generated in a geostrophic flow with a vertical shear near a solid surface. The study investigates a new class of baroclinic waves in flows with horizontal and vertical shears and a linear distribution of potential vorticity. It is shown that taking account of the horizontal shear leads to the appearance of new features of wave dynamics. These include the nonmodal growth of energy in the initial stage of development, the time dependence of the vertical wave scale, and the possibility of generation of stationary or blocked waves. The horizontal shear makes the mechanism of generation of baroclinic waves by initial vortex perturbations more efficient. One important feature is associated with vortex paths, which are formed by the superposition of a baroclinic wave on the flow with horizontal shear.  相似文献   

6.
《Coastal Engineering》2005,52(3):257-283
Vortex generation and evolution due to flow separation around a submerged rectangular obstacle under incoming cnoidal waves is investigated both experimentally and numerically. The Particle Image Velocimetry (PIV) technique is used in the measurement. Based on the PIV data, a characteristic velocity, phrased in terms of incoming wave height, phase speed, dimension of the obstacle, and a local Reynolds number are proposed to describe the intensity of vortex. The numerical model, which solves the two dimensional Reynolds Averaged Navier Stokes (RANS) equations, is used to further study the effects of wave period on the vortex intensity. Measurements for the mean and turbulent velocity fields further indicate that the time history of the intensity of fluid turbulence is closely related to that of the vortex intensity.  相似文献   

7.
OWC wave energy devices with air flow control   总被引:1,自引:0,他引:1  
A theoretical model is developed to simulate the energy conversion, from wave to turbine shaft, of an oscillating-water-column (OWC) plant equipped with a Wells air-turbine and with a valve (in series or in parallel with the turbine) for air-flow control. Numerical simulations show that the use of a control valve, by preventing or reducing the aerodynamic stall losses at the turbine rotor blades, may provide a way of substantially increasing the amount of energy produced by the plant, particularly at the higher incident wave power levels. From the hydrodynamic point of view, a by-pass valve or a throttle valve should be used depending on whether the wave energy absorbing system is over-damped or under-damped by the turbine.  相似文献   

8.
以Spar型浮式风机为研究对象,研究涡激力对于浮式风机系统运动的影响。对多体动力学软件FAST进行二次开发,加入涡激力的计算接口,实现了在平台涡激、波激、空气动力载荷及系泊联合作用下的Spar浮式风机系统的运动响应的计算。计算了在风、浪、流联合作用下,频率锁定现象发生时,Spar基础的运动响应,分析了风浪下Spar风机运动响应的涡激运动特性,并研究了不同的入流角度的影响。结果表明:考虑涡激力后,Spar基础的横荡运动明显增大;风浪流同向时,风浪的存在会抑制流载荷引起的横荡在涡泄频率的运动;在流与风浪垂直时,会激发Spar基础的更大的纵荡运动响应。  相似文献   

9.
A spectral model suitable for the representation of wave energy converters is developed. A spectral model is an extension of a frequency-domain model that allows inclusion of non-linear forces and thereby provides improved estimates of wave energy converter performance, without the high computational cost of a time-domain model. The suitability and accuracy of a spectral model representation is demonstrated for a flap-type wave energy converter, by modelling the effect of vortex shedding and large amplitudes of motion. The development of a spectral model of wave energy converters also means that they can be represented in spectral wave models and included explicitly in software tools such as SWAN or Mike21 SW. This means that tools familiar to the industry could be used to determine the environmental impact and energy yield of wave farms efficiently.  相似文献   

10.
The performance of an oscillating water column (OWC) wave energy converter depends on many factors, such as the wave conditions, the tidal level and the coupling between the chamber and the air turbine. So far most studies have focused on either the chamber or the turbine, and in some cases the influence of the tidal level has not been dealt with properly. In this work a novel approach is presented that takes into account all these factors. Its objective is to develop a virtual laboratory which enables to determine the pneumatic efficiency of a given OWC working under specific conditions of incident waves (wave height and period), tidal level and turbine damping. The pneumatic efficiency, or efficiency of the OWC chamber, is quantified by means of the capture factor, i.e. the ratio between the absorbed pneumatic power and the available wave energy. The approach is based on artificial intelligence—in particular, artificial neural networks (ANNs). The neural network architecture is chosen through a comparative study involving 18 options. The ANN model is trained and, eventually, validated based on an extensive campaign of physical model tests carried out under different wave conditions, tidal levels and values of the damping coefficient, representing turbines of different specifications. The results show excellent agreement between the ANN model and the experimental campaign. In conclusion, the new model constitutes a virtual laboratory that enables to determine the capture factor of an OWC under given wave conditions, tidal levels and values of turbine damping, at a lower cost and in less time than would be required for conventional laboratory tests.  相似文献   

11.
The variations in the quantity of wave power available to a wave energy converter by filtering out short-period waves have been examined in this paper. Ocean wave data recorded at three different locations and water depths around northern Europe are used for this purpose along with numerically synthesized wave time series. A wave power ratio, defined as the ratio between the wave power for the filtered and unfiltered data, is calculated for each data set, and the variation of this quantity with the degree of filtering is investigated. Two new parameters namely, R and S are defined to quantify the effect of this filtering on the variation of wave-to-wave period and height. It is shown that removing the shorter period waves has little effect upon the power available for extraction but may significantly reduce the rate at which the wave energy converter must retune to achieve optimum power conversion.  相似文献   

12.
The paper presents a concept of a wave energy converter and the numerical model to calculate the hydrodynamic responses in waves and the power produced by the power take off system. The system consists of an asymmetric floater with an interior U-tank partially filled with water and two lateral air chambers connected by a duct. The motion of the U-shaped oscillating water column, mainly induced by the rolling of the floater, forces the air through the duct where a Wells turbine is installed to absorb the wave energy.The wave-floater hydrodynamics is calculated with a Green's function panel method, while the oscillating water column motions hydro-mechanics are derived from the one-dimensional Euler's equation. The dynamics of the Wells turbine is realistically represented by one additional differential equation on the unknown air pressure fluctuation. This equation is derived assuming small amplitude motions of the water column and assuming the linear isentropic relation is valid for the air thermodynamics in the air chambers. The Wells turbine is characterized by a drastic drop of efficiency above a critical pressure value due to stalling on the blades. The effect of a by-pass valve to prevent stalling is introduced in the numerical model in a simplistic way. The numerical model is implemented and tested for a wave energy converter with a displacement of 1150 t, including 490 t for the interior water column, and an installed turbine with 2.3 m of diameter. An analysis of the influence of changing different design parameters on the system efficiency is also presented.  相似文献   

13.
It is well known that wave induced bottom oscillations become more and more negligible when the water depth exceeds half the wavelength of the surface gravity wave. However, it was experimentally demonstrated for regular waves that the bottom pressure oscillations at both first and second wave harmonic frequencies could be significant even for incoming waves propagating in deep water condition in the presence of a submerged plate [16]. For a water depth h of about the wavelength of the wave, measurements under the plate (depth immersion of top of plate h/6, length h/2) have shown bottom pressure variations at the wave frequency, up to thirty times larger than the pressure expected in the absence of the plate. In this paper, not only regular but also irregular wave are studied together with wave following current conditions. This behavior is numerically verified by use of a classical linear theory of waves. The wave bottom effect is explained through the role of evanescent modes and horizontally oscillating water column under the plate which still exist whatever the water depth. Such a model, which allows the calculation of the velocity fields, has shown that not only the bottom pressure but also the near bed fluid velocity are enhanced. Two maxima are observed on both sides of the location of the plate, at a distance of the plate increasing with the water depth. The possible impact of such near bed dynamics is then discussed for field conditions thanks to a scaling based on a Froude similarity. It is demonstrated that these structures may have a significant impact at the sea bed even in very deep water conditions, possibly enhanced in the presence of current.  相似文献   

14.
The pycnocline in a closed domain is tilted by external wind forcing and tends to restore to a level posi- tion when the wind falls. An internal seiche oscillation exhibits if the forcing is weak, otherwise internal surge and internal solitary waves emerge, which serve as a link to cascade energy to small-scale processes. A two-dimensional non-hydrostatic code with a turbulence closure model is constructed to extend previous laboratory studies. The model could reproduce all the key phenomena observed in the corresponding labo- ratory experiments. The model results further serve as a comprehensive and reliable data set for an in-depth understanding of the related dynamical process. The comparative analyses indicate that nonlinear term favors the generation of internal surge and subsequent internal solitary waves, and the linear model predicts the general trend reasonably well. The vertical boundary can approximately reflect all the incoming waves, while the slope boundary serves as an area for small-scale internal wave breaking and energy dissipation. The temporal evolutions of domain integrated kinetic and potential energy are also analyzed, and the results indicate that about 20% of the initial available potential energy is lost during the first internal wave breaking process. Some numerical tactics such as grid topology and model initialization are also briefly discussed.  相似文献   

15.
Experimental studies of wave transmission by overtopping for a smooth impermeable breakwater with 1:1.5 slope under both regular and random waves were conducted. A resulting relationship between the transmission coefficient (determined by wave height and wave period) and a breakwater height above mean water level normalized with the height of wave run-up measured directly by capacity wave meter is reported. Meanwhile, their discrepancies in both regular and random waves are also discussed in this study. The authors find also that the transmitted significant wave period by overtopping of random waves may be much longer than those of the incoming wave. This characteristic is especially prominent and probably creates the oscillation phenomenon in the wave basin at the back of breakwater when the breakwater height (above mean water level) to water depth ratio is greater than 0.23 and the incoming wave period is longer than 8 sec.  相似文献   

16.
Propagation of a solitary wave over rigid porous beds   总被引:1,自引:0,他引:1  
The unsteady two-dimensional Navier–Stokes equations and Navier–Stokes type model equations for porous flows were solved numerically to simulate the propagation of a solitary wave over porous beds. The free surface boundary conditions and the interfacial boundary conditions between the water region and the porous bed are in complete form. The incoming waves were generated using a piston type wavemaker set up in the computational domain. Accuracy of the numerical model was verified by comparing the numerical results with the theoretical solutions. The main characteristics of the flow fields in both the water region and the porous bed were discussed by specifying the velocity fields. Behaviors of boundary layer flows in both fluid and porous bed regions were also revealed. Effects of different parameters on the wave height attenuation were studied and discussed. The results of this numerical model indicate that for the investigated incident wave as the ratio of the porous bed depth to the fluid depth exceeds 10, any further increase of the porous bed depth has no effect on wave height attenuation.  相似文献   

17.
When hydraulic power take off (PTO) is used to convert the mechanical energy of a wave energy converter (WEC) into a more useful form of energy, the PTO force needs to be controlled. Continuous controlled variation of the PTO force can be approximated by a set of discrete values. This can be implemented using either variable displacement pumps or several hydraulic cylinders or several high pressure accumulators with different pressure levels. This pseudo-continuous control could lead to a complex PTO with a lot of components. A simpler way for controlling this hydraulic PTO is declutching control, which consists in switching on and off alternatively the wave energy converter's PTO. This can be achieved practically using a simple by-pass valve. In this paper, the control law of the valve is determined by using the optimal command theory. It is shown that, theoretically when considering a wave activated body type of WEC, declutching control can lead to energy absorption performance at least equivalent to that of pseudo-continuous control. The method is then applied to the case of the SEAREV wave energy converter, and it is shown than declutching control can even lead to a higher energy absorption, both in regular and irregular waves.  相似文献   

18.
The effect of water depth on the performance of a small surging wave energy converter (WEC) is investigated analytically, numerically and experimentally. It is shown that although the average annual incident wave power is significantly reduced by water depth, a large proportion of this reduction is due to the dissipation of highly energetic, but largely unexploitable seas. It is also shown that the power capture is related more closely to incident wave force than incident wave power. Experimental results demonstrate that both the surge wave force and power capture of a flap-type WEC increase in shallow water.  相似文献   

19.
Experimental studies were conducted on a trapezoidal pendulum wave energy converter in regular waves. To obtain the incident wave height, the analytical method (AM) was used to separate the incident and reflected waves propagating in a wave flume by analysing wave records measured at two locations. The response amplitude operator (RAO), primary conversion efficiency and the total conversion efficiency of the wave energy converter were studied; furthermore, the power take-off damping coefficients corresponding to the load resistances in the experiment were also obtained. The findings demonstrate that the natural period for a pendulum wave energy converter is relatively large. A lower load resistance gives rise to a larger damping coefficient. The model shows relatively higher wave energy conversion efficiency in the range of 1.0?1.2 s for the incident wave period. The maximum primary conversion efficiency achieved was 55.5%, and the maximum overall conversion efficiency was 39.4%.  相似文献   

20.
合理的刚度和潜深设计可以使升沉水平板获得优异的消浪性能。基于考虑流体黏性的二维不可压缩Navier-Stokes方程,以高阶紧致插值CIP(constrained interpolation profile)方法求解方程对流项,采用VOF(volume of fluid)方法重构自由液面,构建二维数值波浪水槽。采用试验数据验证模型后,研究孤立波与升沉水平板相互作用,分析相对刚度K*、相对潜深d/h、相对波高H/h对于升沉板的消浪性能和运动响应的影响,揭示升沉板对孤立波的消浪机理。研究表明:在孤立波通过时,升沉板会经历一个先上升后下降的运动,随后非线性自由振动,板下方水体近似均匀流动,且水流的垂向流动与板的垂荡方向一致;升沉板主要通过不对称涡旋脱落、浅水变形、波浪反射与辐射波转化等方式消耗孤立波能量;一定条件下,采用最优相对刚度K*=4.0和最优相对潜深d/h=0.52可以取得良好的消浪效果,此时透射系数最小,同时升沉板的运动响应在合理的范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号