首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高放废物深部地质处置目前受到世界各国的高度重视。花岗岩是我国高放废物地质处置工程的候选围岩,深入了解处置库花岗岩的强度及破坏特性对于处置系统的设计及性能评价具有十分重要的意义。作为矿物颗粒的集合体,花岗岩是一种由石英、长石和黑云母等矿物组成的非均质岩石,矿物粒径对其宏观力学特性影响明显。以我国高放地质处置库预选区阿拉善花岗岩为例,选取矿物粒径差异明显的似斑状花岗岩和中粒花岗岩两类岩石,采用单轴压缩试验与数值模拟相结合的方式研究了矿物粒径对岩石力学特性的影响。单轴压缩试验在MTS815岩石力学试验系统进行,数值模拟采用基于离散元的颗粒流程序PFC2D完成。数值模拟过程中,以试件表面图像为基础,采用数字图像处理技术获取岩石内部矿物组分的实际空间分布,从而建立了精确反映花岗岩内部矿物种类及其空间位置的数值模型。利用该模型对花岗岩的单轴压缩试验进行了数值模拟,并与试验结果对比,论证了模型的可靠性。试验及模拟结果表明,阿拉善花岗岩破坏形式为脆性张拉破坏,裂纹大多平行于轴压方向,数字图像数值分析方法可真实地反映材料细观结构。矿物粒径对材料力学特性的影响主要表现为:细粒、等粒结构的岩石强度高,粗粒、不等粒结构的岩石强度低。研究成果可为掌握矿物粒径对岩石强度及变形特性的影响提供依据。  相似文献   

2.
宿辉  杨家琦  胡宝文  高轩  马辉 《岩土力学》2018,39(12):4642-4651
颗粒尺寸是影响颗粒离散元模型宏观力学性质与计算效率的一个重要因素。为充分考虑由模型随机性导致的模拟结果的不确定性,利用统计学方法对模型的颗粒尺寸效应进行研究。整体检验结果表明:特征长度比L/R的改变对模型力学参数(峰值强度、弹性模量、泊松比及峰值应变)与破坏特征参数(黏结破裂率)的总体分布位置均有显著性影响,且各参数的变异系数会随着L/R的减小而增大。进一步的多重比较结果表明:当L/R≥125时,L/R对峰值强度、弹性模量、泊松比及峰值应变的总体分布位置均无显著影响;当L/R≥79时,相邻3个粒径水平的黏结破坏率总体分布位置无显著性差异;随着L/R的减小,模型损伤程度增加,破坏模式由整体剪切破坏转向局部损伤引起的失稳破坏,最终失去模拟岩石材料的效力。最后,综合各项力学参数的统计学检验结果、模型破坏模式及计算效率,岩石模型颗粒的特征长度比取L/R=200较为合适。  相似文献   

3.
《岩土力学》2015,(9):2532-2540
基于大津法(Otsu)多阈值分割方法,利用数字图像处理技术获取了花岗岩细观结构的表征图像,并结合颗粒流程序,重构了反映岩石非均质结构特征的细观模型。通过单轴压缩试验,分析了花岗岩的失稳破坏过程,并研究了细观结构强度对宏观强度及破坏形态的影响。研究发现:花岗岩试件失稳破坏过程中存在4种裂纹形式,加载初期首先产生界面裂纹,其次是云母裂纹,长石和石英在应力接近极限强度时才破坏;当增大胶结界面或矿物强度时,花岗岩的抗压强度随之增加,但增加梯度逐渐减小;胶结界面或3种矿物细观强度的增大会使该结构处裂纹数量减小,而增加其他结构处的裂纹分布;相对于中等强度的长石和高强度的石英,低强度的胶结界面和云母矿物对花岗岩宏观强度和破坏形态的影响较大,是关键细观结构。将Otsu图像处理技术与颗粒流程序相结合,建立反映岩石真实结构的细观模型,为研究岩石非均质性对宏观力学特性的影响提供了一种有效手段。  相似文献   

4.
罗荣  曾亚武 《岩土力学》2012,33(7):2221-2228
数值计算中利用随机分布对各单元赋予不同的物理力学参数来考虑岩石的非均质性,赋值过程是纯随机的,并没有考虑岩石矿物组成的结构特征。故提出一种新的岩石非均质参数赋值方法--岩石矿物细胞元随机性参数赋值方法,基于岩石矿物种类及其含量定义细胞元类别判定区间,利用Monte Carlo方法对各个细胞元进行矿物类别判定,并进行相应的参数赋值,通过各矿物细胞元的随机混合体来描述岩石的非均质性。该方法既考虑了组成岩石的矿物种类及其含量(结构特征),又考虑了组成矿物在岩石中的随机分布特征。针对矿物分布的随机特征,利用两矿物细胞元混合模型和三矿物细胞元混合模型进行数值试验,研究了矿物细胞元随机分布特征对岩石宏观力学参数的影响。研究结果表明,岩石矿物细胞元随机性参数赋值方法具有结构性和随机性的双重特性,其随机性不依赖于随机参数,岩石宏观力学参数受细胞元随机性特征的影响很小。  相似文献   

5.
刘建  赵国彦  梁伟章  吴浩  彭府华 《岩土力学》2018,39(Z1):505-512
以有限差分法(FDM)为计算框架,利用Weibull分布描述细观单元弹性模量和单轴抗压强度的分布特征,采用弹塑性应变软化本构模型描述细观单元的力学响应,进而建立一种模拟非均匀岩石介质破裂的数值模型。采用该数值模型探讨了单轴压缩时细观均质度m及细观结构对数值试样宏观特性的影响。结果表明,(1)随着细观均质度提高,数值模型的非线性特征逐渐减弱,脆性逐渐增强;宏观峰值强度及弹性模量逐渐增大,峰值强度与lnm呈线性关系,而弹性模量与1/m为线性关系;数值试样表现出由塑性流动破坏至剪切破坏进而为张拉破坏的破坏模式;(2)当细观均质度一定时,细观结构或细观单元空间排列是决定岩石力学行为波动性的主要因素;应力–应变曲线峰前阶段对细观单元的空间排列不敏感,但峰值强度附近及峰后阶段对细观单元的空间排列比较敏感。  相似文献   

6.
含水合物的沉积物力学参数是水合物储层稳定性评价的基础数据。我国南海神狐海域含水合物的沉积物中含大量的黏土,深入了解黏土矿物对沉积物力学特性的影响对水合物开采具有十分重要的意义。基于PFC三轴压缩模拟,首先分析了沉积物中不含水合物时,黏土矿物颗粒特征的力学效应,然后分析了水合物对颗粒的胶结作用和围压对沉积物力学特性的影响。结果表明,不含水合物模型的偏应力-应变曲线呈明显的应变硬化特征。黏土矿物的含量、颗粒形状和排列对沉积物三轴压缩特性具有显著影响。黏土矿物含量的增多对沉积物力学强度具有明显的降低作用,黏土矿物形状为条形的沉积物强度和弹性模量要明显高于圆颗粒模型,在细观上受颗粒平均接触数影响,条形黏土颗粒的定向排列使模型的力学参数具有各向异性。水合物对颗粒的胶结作用可显著提高模型的峰值强度和弹性模量,随着颗粒胶结程度的增大和围压的减小,含水合物的沉积物的破坏方式由塑性破坏向脆性破坏转换。  相似文献   

7.
罗荣  曾亚武  曹源  黎玲 《岩土力学》2012,33(12):3788-3794
根据非均质岩石参数赋值方法具有随机性的特点,以随机参数的变异系数定义岩石非均质度,推导了Weibull分布参数赋值方法的非均质度计算方法,并与形状参数进行了对比分析;推导了基于矿物细胞元参数赋值方法的岩石非均质度的计算方法;利用上述2种赋值方法研究了岩石非均质度对其力学性能的影响。研究结果表明,利用变异系数定义岩石非均质度是合理的,可用于描述不同非均质岩石模型的非均质程度;非均质岩石的力学特性由细观单元力学特性和其非均质特性共同决定,岩石的非均质性对其极限强度具有弱化影响;对于不同的非均质岩石模型,可建立相同的线性函数关系表示非均质岩石极限强度受其非均质度的影响。  相似文献   

8.
刘亚洲  徐进  吴平  何伟 《岩矿测试》2009,28(5):483-487
对攀枝花钒钛磁铁矿尖山矿区的细粒和中粒辉长岩进行了单轴压缩、常规三轴压缩、抗拉强度和软化等系列岩石力学试验,研究了岩石结构(矿物颗粒大小)、水和围压等因素对岩石强度和变形特性的影响。结果表明,细粒辉长岩单轴抗压强度、弹性模量和压拉比均高于中粒辉长岩,但在三轴压缩情况下,两种岩石的峰值强度、残余强度和弹性模量差异较小;与中粒辉长岩相比,细粒辉长岩的峰值强度的黏聚力C较大,而峰值强度的内摩擦角φ较小;随着围压的增长,辉长岩峰值强度、残余强度与围压近似呈线性关系,剪切破坏角减小,平均模量E增长不明显,割线模量E50增长较显著;辉长岩的软化系数较高,在水的作用下弹性模量降低,泊松比升高。  相似文献   

9.
单轴压缩下绿砂岩长期强度的尺寸效应研究   总被引:1,自引:0,他引:1  
岩石的蠕变特性是影响岩体工程稳定性的重要因素,而岩石的长期强度是确定岩体工程长期稳定的一个重要指标。由于岩石材料的非均质性,其长期强度具有明显的尺寸效应。为了研究岩石长期强度的尺寸效应,首先,在幂函数模型基础上,基于损伤力学理论,建立了能够描述岩石蠕变全过程的非线性蠕变损伤模型;然后,把运用该模型计算得到的单轴压缩蠕变数值模拟结果与室内单轴压缩蠕变试验结果进行对比,验证了模型的正确性;最后,采用所提出的模型对7个不同尺寸的岩样进行了单轴压缩蠕变数值模拟,并对岩石长期强度尺寸效应进行了分析。数值模拟结果表明:随着试样尺寸的逐渐增大,岩石长期强度值逐渐减小,当试样尺寸增大到一定程度时,岩石长期强度稳定在一个特定值附近。  相似文献   

10.
层状岩体的非均质性主要体现在基岩非均质性和层面节理非均质性所表征对象的差异,如何描述基岩和层面节理具有不同的均质性是一项重要工作。为此,将基于Weibull分布的二维非均质线性平行黏结模型(简称WLPB模型)和基于Weibull分布的非均质光滑节理模型(简称WSJ模型)相结合,分别表征基岩和层面节理的非均质性,提出了一种新的层状岩体细观非均质接触力学模型理论和计算分析方法,分析了单轴压缩条件下层状岩样的变形特征、破坏模式及其细观演化规律。结果表明:层状岩样的弹性模量和峰值强度以及破坏模式均表现出明显的各向异性特征,与所开展的室内试验规律基本一致,表明所开发的层状岩体非均质细观力学计算模型的合理性和适应性;当层面对层状岩体力学行为起控制作用时,层面的非均质性是影响层状岩体宏观力学特性的一个重要因素;当层面起控制性作用时,层面间距对岩样的峰值强度影响不明显,但对岩样的变形特性影响明显;解译了在单轴压缩情况下非均质层面不同倾角时层状岩体细观破裂机制及其控制作用的转化规律。  相似文献   

11.
针对深井、超深井钻遇的花岗岩地层,通过对花岗岩进行加温后纵波波速测量和常规三轴压缩试验,并基于所得到的试验结果研究不同温度后花岗岩的纵波波速和三轴压缩状态下的宏观力学特性,分析了花岗岩纵波波速、峰值应力、弹性模量、峰值应变与温度的关系;同时对三轴压缩条件下花岗岩的宏观破坏形式进行总结。研究结果表明,经过加温冷却后,花岗岩的纵波波速随着温度的升高呈降低趋势;同时,围压一定时,温度为20~200 ℃时,随着温度的升高,试样的峰值应力、弹性模量、峰值应变呈增大趋势,而在200~400 ℃,这些力学参数呈降低趋势。温度的升高,不仅会使得岩石内部的含水量逐渐减小,而且由于岩石内部矿物成分的热膨胀性不同等因素使得岩石内部产生附加热应力,从而使得岩石内部的初始裂纹发生扩展、贯通或产生新裂纹,进而影响井壁及围岩的稳定性。  相似文献   

12.
《岩土力学》2017,(8):2425-2433
目前在颗粒材料的尺寸效应研究中,极少考虑颗粒的复杂形状和内部结构非均匀性。采用随机散粒体不连续变形分析方法(SGDD),引入无厚度界面单元和凝聚力模型模拟颗粒破碎,对5组不同粒径的堆石颗粒进行单颗粒压缩试验的数值模拟,分析了颗粒内界面单元强度对颗粒破碎的影响,并采用Weibull分布模型分析颗粒破碎强度的尺寸效应。通过与室内单颗粒压缩试验对比,试验的数值模拟能真实地再现单颗粒压缩下的破碎过程,不同颗粒的压缩曲线规律相似,达到峰值荷载前,承载力曲线急剧上升,随后颗粒发生致命破碎,承载能力骤降。不同粒径组的单颗粒破碎强度均服从Weibull分布,平均Weibull模数为2.48。不同粒径组的颗粒特征强度存在明显的尺寸效应,特征强度随着颗粒尺寸的增大而减小,与颗粒尺寸呈幂指数关系,但小于Weibull模型的预测值。  相似文献   

13.
固体颗粒破碎强度的尺寸效应是一种普遍存在的现象,冰块、岩石颗粒、陶瓷和混凝土块等的破碎强度都表现出随颗粒直径增加而减小的现象,分形模型为解释固体颗粒破碎强度的尺寸效应提供了可行的方法。本文采用Steacy和Sammis分形模型模拟了岩石颗粒压碎特征,分析岩石颗粒破碎后的颗粒分布规律,给出颗粒破碎分维的确定方法,建立颗粒压碎强度与粒径的理论关系,颗粒破碎强度与颗粒粒径的关系用分维D表示为fdD-3。已有的颗粒破碎分布的数据表明,岩石颗粒破碎的分维大约为2.50~2.60,颗粒破碎强度符合用分维表示的尺寸效应。  相似文献   

14.
岩石抗压强度和变形参数是岩石工程设计的重要指标。由于岩石是典型的非均质材料,其强度和变形特性随样品尺 寸的变化而不同。本文采用PFC2D程序模拟了不同围压下不同尺寸岩样的压缩试验。结果表明(1) 岩样具有明显的尺寸效 应。同一围压下,尺寸越大,岩石强度、峰值应变和压缩模量越小,尺寸的变化对岩样的破坏模式影响较小;(2) 岩样具 有明显的围压效应。同一尺寸的岩样,随着围压的增大,岩石强度、峰值应变和压缩模量均增加,其中强度和峰值应变随 围压的增加呈线性增加。同时,随着围压的增大,岩石破裂模式由轴向劈裂破坏向剪切破坏变化;(3) 围压的存在会影响 岩样的尺寸效应。不同尺寸岩样的强度和峰值应变在相同围压区间内的增量基本相同,同时随着围压的增大,其强度和峰 值应变增加,进而使岩石强度和峰值应变的尺寸效应弱化;而不同尺寸岩样的压缩模量在相同围压区间内的增长率大致相 同,因而造成围压对压缩模量尺寸效应的影响较小  相似文献   

15.
化学溶液及其水压作用下单裂纹灰岩破裂的细观试验   总被引:3,自引:0,他引:3  
采用岩石破裂全过程的细观力学试验系统进行了化学溶液及其水压力作用下单裂纹灰岩压缩破裂试验。通过电镜扫描、X衍射、水质分析等分析方法,对岩石微观形貌、矿物成分等进行研究。采用数字显微系统,对其压缩破裂过程进行实时观测和记录,得到了岩石破裂过程的细观图像;探讨了蒸馏水、不同pH值的0.1 mol/L Na2SO4溶液及其水压力作用对单裂纹灰岩变形和强度特性的影响。研究表明,受化学侵蚀后岩石的结构及成分均发生了不同程度的变化,导致其非均质性增加,而强度、弹性模量等降低,其力学性质劣化的程度与岩石中矿物成分的变化程度相关;孔隙水压的作用改变了岩石内部裂隙面和颗粒间的受力状态,加速了岩石裂纹的扩展,降低了岩石强度,水化学溶液及其水压作用使得岩石的破裂形式变得更为复杂。  相似文献   

16.
根据岩石材料内部所含缺陷分布具有随机性的特点,基于Weibull分布,采用Mohr-Coulomb准则来表示岩石细观单元的计算强度,建立了考虑围压影响的岩石强度尺寸效应统计模型。利用该模型探讨了均质度和围压对强度尺寸效应的影响,结果表明:不均匀性是强度离散性和存在尺寸效应的根本原因,材料越均匀,强度值的离散性越低,而尺寸效应也越不明显;围压会影响材料强度对试样尺寸变化的敏感性;围压越大,材料强度增大,与尺寸效应有关的材料强度所占比例减小,材料强度尺寸效应变得不明显。  相似文献   

17.
颗粒配比对岩石力学特征影响的数值模拟研究   总被引:1,自引:1,他引:0  
岩石是矿物颗粒的集合体同时也是一种重要的非均质材料,了解它的力学特征对岩土工程及矿产开采都具有重要的指导作用。作为典型的颗粒材料,颗粒单元体的粒径分布配比必然影响着岩石的宏观力学表现。通过设置不同体积配比下的颗粒材料单元体,利用PCF2D软件模拟了相同颗粒材料单元体不同配比下岩石模型的力学特征。模拟结果表明颗粒单元体配比对岩石的力学特征有明显的影响。在模拟过程中大颗粒的配比显著影响着岩石的抗压强度,大颗粒含量相对越高,抗压强度越大。而细颗粒的配比影响着岩石的抗拉强度,细颗粒含量相对越高,抗拉强度越大,但是过多的细颗粒会降低岩石的抗拉强度。考虑岩石压缩过程中裂缝形态的影响。结果表明均匀分布、5:2:3、7:2:1的颗粒配比形成了贯穿裂缝,而1:2:7和3:2:5的颗粒配比未能形成贯穿裂缝,且细颗粒配比越高,裂缝数目出现高值的概率也越大。   相似文献   

18.
颗粒的破碎强度随着粒径的增大而减小,即颗粒破碎的尺寸效应,分形模型为解释固体颗粒破碎的尺寸效应提供了可行的方法。根据岩石颗粒破碎时的分形特征,采用Sammis破碎准则,通过模拟分析得出岩石颗粒破碎能量和强度的分形模型,建立和验证用分维D来表示岩石颗粒破碎的能量和强度准则,得出并验证了岩石颗粒破碎分维的确定方法。利用离散元软件PFC2D的黏结颗粒模型BPM(Bonded Particle Model)模拟了小孔隙率n=0.12和大孔隙率n=0.3,即密实和松散两种情况。其中小孔隙率采用在模型上添加小颗粒的新方法,分别做了400组粒径不等的数值模拟试验,从粒径与破碎强度、破碎能量之间的关系和应力-应变曲线3个方面进行了统计,验证了岩石颗粒破碎强度与分维D的理论关系为σf∝dD-3,并得出颗粒破碎时的能量和与分维D之间的关系为Ef∝dD-1。验证了分形理论在分析颗粒破碎的尺寸效应中的较好应用,为确定岩石颗粒的破碎强度和岩石堆砌体剪切强度提供新的方法和参考意见。  相似文献   

19.
未来人类的地外天体勘探、太空资源开发、地外基地建设等活动都离不开岩土工程技术的发展。目前,人类获得太空岩石样本仅有太空飞行器取样和收集陨石两种途径。由于陨石存量稀少、价格昂贵、尺寸小并且形状任意,因此难以加工成传统力学试验与模拟(mechanical testing&simulation,简称MTS)材料试验机等宏观岩石力学试验所需要的高质量标准岩样。基于微观岩石力学试验和统计分布模型,发展了适用于小尺寸陨石的力学参数测量新技术。首先,应用矿物自动定量分析系统(TESCAN integrated mineral analyzer,简称TIMA)获得NWA13618陨石成岩矿物组成、含量和分布。然后,利用网格纳米压痕技术进行大量压痕试验获得多点弹性模量;之后,利用高斯混合模型,统计求解NWA13618陨石中4种主要矿物的力学参数。橄榄石、辉石、铁镍金属、长石的弹性模量分别为116.73、101.77、87.24、70.74 GPa;最后,基于岩石力学试验结果,采用Mori-Tanaka均质化方法获得NWA13618陨石宏观cm尺度弹性模量为90.48 GPa。提出的微观岩石力学试...  相似文献   

20.
《岩土力学》2017,(Z1):43-52
为揭示围压及应变速率对页岩力学特性的影响规律,对志留统龙马溪组页岩试样开展了不同围压及不同应变率下的三轴压缩力学试验研究。结果表明,围压和应变率对页岩的弹性模量、峰值强度及破裂形态等均具有显著影响,弹性模量和峰值强度均随围压的升高而增加,峰值强度增加的幅度明显大于弹性模量,峰值强度呈线性增加趋势,低围压时应变率从低到高,弹性模量和峰值强度都呈逐渐升高的趋势,两者与应变率对数的关系可用二次多项式描述;随着围压增大,页岩的应变率效应逐渐减弱,在较高高围压(50 MPa)下峰值强度和弹性模量随应变速率增加而增加现象均变得极不显著。对试验后岩样的破坏模式进行分析可知,页岩在低围压高应变率状态下主要是劈裂–剪切破坏,随着围压的增加和应变率的减小,试样的破坏由脆性劈裂–剪切破坏向单一剪切破坏转变,再逐渐向延性破坏过渡。研究结果对于合理确立页岩力学参数及设计压裂方案具有较好的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号