首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
用三维梁-颗粒模型BPM3D(beam-particlemodelinthreedimensions)对岩石类非均质脆性材料的力学性质和破坏过程进行了数值模拟。梁-颗粒模型是在离散单元法基础上,结合有限单元法中的网格模型提出的用于模拟岩石类材料损伤破坏过程的数值模型。在模型中,材料在细观层次上被离散为颗粒单元集合体,相邻颗粒单元由有限单元法中的弹脆性梁单元联结。梁单元的力学性质均按韦伯(Weibull)分布随机赋值,以模拟岩石类材料力学参数的空间变异性。材料内部裂纹通过断开梁单元来模拟。通过自动生成的非均质材料模型对岩石类材料的破坏机理进行研究。岩石类非均质脆性材料在单轴压缩状态下破坏过程细观数值模拟结果显示,岩石材料宏观破坏是由于其内部细观裂纹产生、扩展、贯通的结果。通过数值模拟结果之间的对比分析,揭示出岩石试样宏观破坏模式随细观层次上韦伯分布参数的变化而不同。与实际矿柱破坏形态的对比分析表明了模型的适用性。根据数值模拟结果对岩石类非均质材料的破坏机理进行了探讨。  相似文献   

2.
层状岩体的非均质性主要体现在基岩非均质性和层面节理非均质性所表征对象的差异,如何描述基岩和层面节理具有不同的均质性是一项重要工作。为此,将基于Weibull分布的二维非均质线性平行黏结模型(简称WLPB模型)和基于Weibull分布的非均质光滑节理模型(简称WSJ模型)相结合,分别表征基岩和层面节理的非均质性,提出了一种新的层状岩体细观非均质接触力学模型理论和计算分析方法,分析了单轴压缩条件下层状岩样的变形特征、破坏模式及其细观演化规律。结果表明:层状岩样的弹性模量和峰值强度以及破坏模式均表现出明显的各向异性特征,与所开展的室内试验规律基本一致,表明所开发的层状岩体非均质细观力学计算模型的合理性和适应性;当层面对层状岩体力学行为起控制作用时,层面的非均质性是影响层状岩体宏观力学特性的一个重要因素;当层面起控制性作用时,层面间距对岩样的峰值强度影响不明显,但对岩样的变形特性影响明显;解译了在单轴压缩情况下非均质层面不同倾角时层状岩体细观破裂机制及其控制作用的转化规律。  相似文献   

3.
石灰岩和砂岩高温力学特性的试验研究   总被引:3,自引:1,他引:2  
利用自行研制的岩石加温装置和RMT-150C岩石力学试验机, 对石灰岩和砂岩试样高温后的力学特性进行了试验研究。试验结果表明, 随着温度升高, 两种岩石纵波波速逐渐减小。单轴压缩过程中的全程应力应变曲线经历了压密、弹性、屈服、破坏4个阶段; 达到峰值应力后两种岩石均发生脆性破坏, 砂岩破坏时呈锥形炸裂, 而石灰岩则呈草捆状破坏。高温对两种岩石的强度都有一定的弱化作用, 其峰值应力都随温度升高而降低, 石灰岩700 ℃时强度降幅达84.59 %, 而砂岩强度仅比常温降低22 %左右。两种岩石的峰值应变都随温度升高逐渐增大, 但具体表现不尽相同, 石灰岩500 ℃时应变增加了30.57 %, 500 ℃之后峰值应变基本无变化, 甚至到700 ℃时还略有降低; 砂岩700 ℃时峰值应变增加了80.63 %, 其峰值应变的变化与其微观结构变化相关。随着温度升高, 两种岩石的弹性模量和变形模量均减小, 700 ℃时石灰岩弹性模量降幅为86.8 %, 砂岩弹性模量降幅为46.94 %; 700 ℃时石灰岩变形模量下降了83.9 %, 砂岩的变形模量下降了53.06 %。   相似文献   

4.
《岩土力学》2015,(9):2532-2540
基于大津法(Otsu)多阈值分割方法,利用数字图像处理技术获取了花岗岩细观结构的表征图像,并结合颗粒流程序,重构了反映岩石非均质结构特征的细观模型。通过单轴压缩试验,分析了花岗岩的失稳破坏过程,并研究了细观结构强度对宏观强度及破坏形态的影响。研究发现:花岗岩试件失稳破坏过程中存在4种裂纹形式,加载初期首先产生界面裂纹,其次是云母裂纹,长石和石英在应力接近极限强度时才破坏;当增大胶结界面或矿物强度时,花岗岩的抗压强度随之增加,但增加梯度逐渐减小;胶结界面或3种矿物细观强度的增大会使该结构处裂纹数量减小,而增加其他结构处的裂纹分布;相对于中等强度的长石和高强度的石英,低强度的胶结界面和云母矿物对花岗岩宏观强度和破坏形态的影响较大,是关键细观结构。将Otsu图像处理技术与颗粒流程序相结合,建立反映岩石真实结构的细观模型,为研究岩石非均质性对宏观力学特性的影响提供了一种有效手段。  相似文献   

5.
以砂岩的室内试验数据为参照,使用颗粒流数值程序PFC3D,建立刚性颗粒组成的模型.通过设置颗粒接触模量、颗粒刚度比和接触粘结强度等细观力学参数,得到有合适宏观力学反应的模型.通过数值模拟获得砂岩微裂隙发展的过程,得到不同围压下砂岩的应力-应变曲线,反应出砂岩试样的弹性模量随围压增大而增大的性质.结果表明,PFC3D程序能够较好地模拟荷载作用下岩石的细观力学特性和宏观力学反应.  相似文献   

6.
刘红岩 《岩土力学》2019,40(Z1):431-439
岩体是同时含有宏、细观缺陷的天然损伤地质体,如何更好地反映该两类缺陷对岩体力学特性的共同影响是亟待解决的一个重点和难点问题。采用FLAC3D中的弹脆性模型和Null模型分别描述完整岩石和上述两类缺陷的力学行为,用超细单元剖分计算模型的方法模拟岩体破坏,同时提出一个利用岩石孔隙率反映细观缺陷的新方法,研究细观缺陷即岩石孔隙率、裂隙倾角及长度等对裂隙岩体力学特性的影响。利用该方法研究了上述两类缺陷对岩质边坡临界滑面(CFS)及安全系数(FS)的影响。结果表明,宏观缺陷对岩体单轴压缩破坏模式、峰值强度和弹性模量起控制作用,同时控制岩质边坡的破坏模式和安全系数;尽管细观缺陷并不能改变宏观缺陷对岩体力学行为的控制作用,但其对这种控制作用将产生一定影响,宏细观缺陷以不同的作用机制对岩体力学特性产生影响。  相似文献   

7.
《岩土力学》2017,(Z1):43-52
为揭示围压及应变速率对页岩力学特性的影响规律,对志留统龙马溪组页岩试样开展了不同围压及不同应变率下的三轴压缩力学试验研究。结果表明,围压和应变率对页岩的弹性模量、峰值强度及破裂形态等均具有显著影响,弹性模量和峰值强度均随围压的升高而增加,峰值强度增加的幅度明显大于弹性模量,峰值强度呈线性增加趋势,低围压时应变率从低到高,弹性模量和峰值强度都呈逐渐升高的趋势,两者与应变率对数的关系可用二次多项式描述;随着围压增大,页岩的应变率效应逐渐减弱,在较高高围压(50 MPa)下峰值强度和弹性模量随应变速率增加而增加现象均变得极不显著。对试验后岩样的破坏模式进行分析可知,页岩在低围压高应变率状态下主要是劈裂–剪切破坏,随着围压的增加和应变率的减小,试样的破坏由脆性劈裂–剪切破坏向单一剪切破坏转变,再逐渐向延性破坏过渡。研究结果对于合理确立页岩力学参数及设计压裂方案具有较好的参考。  相似文献   

8.
陈松  乔春生  叶青  邓斌 《岩土力学》2018,39(10):3612-3622
针对工程实际中断续节理裂隙岩体的损伤本构模型,假设岩石微元强度服从Weibull随机分布,以摩尔-库仑破坏准则作为描述微元强度的表示方法,推导出细观损伤变量。利用能量和断裂力学理论,综合考虑节理几何特征及力学特性,推导宏观损伤变量计算公式。基于Lemaitre应变等效假设,考虑宏细观缺陷耦合作用,推导出复合损伤变量,建立了基于摩尔-库仑准则的宏细观缺陷耦合作用的断续裂隙岩体损伤本构模型。研究结果表明:(1)采用摩尔-库仑准则作为描述微元强度的统计分布变量建立的损伤模型能够较好地反映岩石内部缺陷分布和变形特征,该模型真实地反映岩石微元强度受应力状态的影响。(2)该模型建立的理论曲线与断续节理岩体的试验曲线吻合较好。(3)节理裂隙岩体宏观损伤变量及峰值强度随节理倾角的变化规律与综合考虑宏细观耦合作用下的损伤变量及裂隙岩体峰值强度随节理倾角的变化规律基本一致。(4)宏细观耦合作用下的等效弹性模量与节理贯通率呈非线性负相关;在节理倾角一定的情况下,损伤变量与节理长度呈非线性正相关;在贯通率较小时,岩体的宏观损伤变量与内摩擦角的关系呈线性负相关变化,贯通率达到一定程度,线性关系变成非线性关系。  相似文献   

9.
针对工程实际中断续节理裂隙岩体的损伤本构模型,假设岩石微元强度服从Weibull随机分布,以摩尔–库仑破坏准则作为描述微元强度的表示方法,推导出细观损伤变量。利用能量和断裂力学理论,综合考虑节理几何特征及力学特性,推导宏观损伤变量计算公式。基于Lemaitre应变等效假设,考虑宏细观缺陷耦合作用,推导出复合损伤变量,建立了基于摩尔–库仑准则的宏细观缺陷耦合作用的断续裂隙岩体损伤本构模型。研究结果表明:(1)采用摩尔–库仑准则作为描述微元强度的统计分布变量建立的损伤模型能够较好地反映岩石内部缺陷分布和变形特征,该模型真实地反映岩石微元强度受应力状态的影响。(2)该模型建立的理论曲线与断续节理岩体的试验曲线吻合较好。(3)节理裂隙岩体宏观损伤变量及峰值强度随节理倾角的变化规律与综合考虑宏细观耦合作用下的损伤变量及裂隙岩体峰值强度随节理倾角的变化规律基本一致。(4)宏细观耦合作用下的等效弹性模量与节理贯通率呈非线性负相关;在节理倾角一定的情况下,损伤变量随节理长度呈非线性正相关;在贯通率较小时,岩体的宏观损伤变量与内摩擦角的关系呈线性负相关变化,贯通率达到一定程度,线性关系变成非线性关系。  相似文献   

10.
单轴压缩下绿砂岩长期强度的尺寸效应研究   总被引:1,自引:0,他引:1  
岩石的蠕变特性是影响岩体工程稳定性的重要因素,而岩石的长期强度是确定岩体工程长期稳定的一个重要指标。由于岩石材料的非均质性,其长期强度具有明显的尺寸效应。为了研究岩石长期强度的尺寸效应,首先,在幂函数模型基础上,基于损伤力学理论,建立了能够描述岩石蠕变全过程的非线性蠕变损伤模型;然后,把运用该模型计算得到的单轴压缩蠕变数值模拟结果与室内单轴压缩蠕变试验结果进行对比,验证了模型的正确性;最后,采用所提出的模型对7个不同尺寸的岩样进行了单轴压缩蠕变数值模拟,并对岩石长期强度尺寸效应进行了分析。数值模拟结果表明:随着试样尺寸的逐渐增大,岩石长期强度值逐渐减小,当试样尺寸增大到一定程度时,岩石长期强度稳定在一个特定值附近。  相似文献   

11.
周喻  王莉  丁剑锋  吴昊燕 《岩土力学》2016,37(7):2085-2095
以白云鄂博露天铁矿东矿岩质高边坡为工程背景,结合现场地质调查、室内岩石和节理力学试验等数据,采用等效岩体技术,构建能充分反映节理分布特征的实验室、现场原位试验和工程尺度等多尺度等效岩体模型。通过对各类等效岩体模型进行单轴压缩试验,研究岩体单轴抗压强度、弹性模量等力学特性的尺寸效应和各向异性。研究表明:节理的存在使岩体表现出尺寸效应和各向异性,且随着尺寸的增大,这种特性基本呈逐渐减弱的趋势;研究区域岩体的表征单元体积、单轴抗压强度和弹性模量分别为20 m×10 m×10 m、1.46 MPa和3.91 GPa;岩体单轴抗压强度、弹性模量与轴向尺寸的关系,近似符合渐进式指数函数关系,且该函数能直观地给出工程尺度岩体的力学特性。  相似文献   

12.
岩石细观结构对其变形强度影响的数值分析   总被引:1,自引:0,他引:1  
于庆磊  杨天鸿  郑超  唐春安  王培涛 《岩土力学》2011,32(11):3468-3472
利用数字图像处理技术表征岩石的非均匀性,并映射到有限元网格中,建立了能比较准确地反映岩石细观结构的数值模型。通过对花岗岩数字图像的处理,利用该模型进行花岗岩单轴压缩数值试验,研究花岗岩细观结构对其变形和强度的影响。研究表明,花岗岩细观结构对应力集中影响显著,在不同方向对花岗岩进行加载时,其抗压强度差异较大,表现出较强的各向异性行为,但对花岗岩弹性模量的影响很小。基于数字图像的数值分析方法为研究岩石细观力学性质提供了一种新的方法。  相似文献   

13.
余华中  阮怀宁  褚卫江 《岩土力学》2016,37(9):2712-2720
在黏结颗粒模型中引入强度弱化因子生成弱化介质材料,进行弱化模型试件的单轴抗压强度试验。结果表明,弱化作用在降低试件单轴抗压强度的同时,还将导致试件弹性模量逐步下降。这一结果符合相关室内试验的研究成果。为进一步对岩石强度弱化模拟方法进行效果检验,利用颗粒流程序内置的FISH语言建立弱化岩石节理直剪试验模型,进行不同法向应力条件下弱化岩石节理的直剪试验。结果表明:弱化节理模型试件表现出类似于真实节理的一系列宏观剪切力学特征;不同壁面弱化程度条件下,节理模型试件的抗剪强度及剪切峰值膨胀角的试验结果与法向应力的依存关系均符合经典的JRC-JCS模型。由此表明,所采用的岩石强度弱化模拟方法可以较好地再现岩石介质的强度弱化效应。通过模型试件内微裂纹发展演化特征的研究表明,壁面弱化作用可导致试件内裂纹发育数目的快速增长、微裂纹分布范围的迅速扩大,以及剪切裂纹发育比例的迅速提高,由此从细观角度揭示了弱化节理面更易于产生宏观剪切破坏的原因。研究成果可以为弱化岩石节理的抗剪强度及大型岩质边坡的稳定性研究提供参考。  相似文献   

14.
高地应力区地下岩体工程开挖常形成围岩拉-压应力状态,发生岩体张性破坏灾害。本文针对传统PFC平行黏结模型不能模拟脆性岩石高单轴压缩与拉伸强度比的问题,建立双抗拉强度参数的平行黏结强度准则,开展岩石拉-压数值模拟试验,得到了与物理试验接近的拉-压强度,实现了岩石高压拉强度比的模拟,并深入分析了破坏机制。研究结果表明随着围压的增加,破裂面倾角逐渐增大,由拉伸破裂转化为拉-剪破裂,发现了拉-压应力状态下破裂面处的雁行裂纹。根据细观颗粒位移场揭示了破裂面力学性质,随着围压的增加(破裂面倾角逐渐增大),破裂面张性逐渐减弱而剪性增强。可将拉-压应力状态下岩石损伤演化过程大致分为弹性变形阶段、稳定破裂发展阶段、不稳定破裂发展阶段和整体破裂阶段(峰后应力跌落及残余阶段)。围压较大时弹性变形和稳定破裂发展阶段相对较短,不稳定破裂发展阶段相对较长较剧烈,峰后残余阶段破裂面摩擦更强、应力波动较大。  相似文献   

15.
In this paper, firstly the mesoscopic elemental mechanical model for elastic damage is developed and implemented into the rock and tool interaction code (R-T2D). Then the failure processes of a heterogeneous rock specimen subjected to a wide variety of confining pressures (0–80 MPa) are numerically investigated using the R-T2D code. According to the simulated results, on the one hand, the numerical simulation reproduced some of the well-known phenomena observed by previous researchers in triaxial tests. Under uniaxial compression, rock failure is caused by a combination of axial splitting and shearing. Dilatancy and a post-failure stage with a descending load bearing capacity are the prominent characteristics of the failure. As the confining pressure increases, the extension of the failed sites is suppressed, but the individual failure sites become dense and link with each other to form a shear fracture plane. Correspondingly, the peak strength, the residual strength and the shear fracture plane angle increase, but the brittleness decreases. When the confining pressure is high enough, the specimen behaves in a plastic manner and a narrow shear fracture plane leads to its failure. The prominent characteristics are volume condensation, ductile cataclastic failure, and a constant load bearing capacity with increasing strain. On the other hand, the numerical simulation revealed some new phenomena. The highest microseismicity events occur in the post-failure stage instead of the maximal stress, and most of the microseismicity energies are released in the failure localization process. As the confining pressure increases, the microseismicity events in the non-linear deformation stage increase dramatically and the ratio between the energies dissipated at the non-linear deformation stage and those dissipated in the whole loading process increases correspondingly. Therefore, it is concluded that the developed mesoscopic elemental mechanical model for elastic damage is able to reproduce accurately the failure characteristics in loading rock specimens under triaxial conditions, and the numerical modelling can furthermore obtain some new clarifications of the rock fracture process.  相似文献   

16.
雪峰山隧道砂板岩各向异性力学特性的试验研究   总被引:4,自引:0,他引:4  
高春玉  徐进  李忠洪  邓建辉 《岩土力学》2011,32(5):1360-1364
利用MTS815 Flex GT岩石力学试验系统,对雪峰山隧道围岩中的砂板岩开展单轴和三轴试验,研究这种砂板岩中的细微层理对岩石变形特性、强度特性及其参数的影响,结果表明:岩石力学特性的各向异性特征显著。层理面与轴向力夹角0°时应力-应变曲线呈不稳定破裂特征,破坏面沿层理面方向发育;夹角90°时曲线呈峰后迅速软化特征,破坏面为对角贯通性剪切破坏。单轴试验中夹角0°的抗压强度比夹角90°高出约20%,弹性模量和变形模量比夹角90°分别约大50%和80%。三轴试验中2种夹角情况破坏时主应力差 相近,夹角0°的弹性模量和变形模量分别比夹角90°时约大6%和20%,围压对砂板岩的各向异性特征有弱化效应。这些结论揭示了该砂板岩各向异性的力学特性,对解决工程实际问题有重要的参考价值  相似文献   

17.
袁小清  刘红岩  刘京平 《岩土力学》2015,36(10):2804-2814
针对非贯通裂隙岩体工程结构中的受荷岩体,提出受荷细观损伤与裂隙宏观损伤的概念。以完整岩石的初始损伤状态作为基准损伤状态,综合考虑裂隙宏观缺陷的存在、微裂纹细观缺陷在受荷下的损伤扩展以及宏细观缺陷在受荷过程中的耦合,基于Lemaitre应变等效假设,推导了考虑宏细观缺陷耦合的复合损伤变量,并给出同时考虑试件尺寸、裂隙几何与力学特性的宏观损伤变量的计算公式,从而建立了基于宏细观缺陷耦合的非贯通裂隙岩体在荷载作用下的损伤本构模型。用宏细观损伤耦合的本构模型来描述非贯通裂隙岩体在受荷过程中的细观损伤演化与宏观损伤行为,与非贯通裂隙岩体实际受荷情况符合较好。研究结果表明:(1)完整岩样和裂隙岩样的应力-应变行为在峰值强度之前差异较大,峰值强度以后差异逐渐减小,最后趋于一致,二者具有相近的残余强度;(2)裂隙岩体强度随裂隙贯通率的增加而增大,随裂隙倾角的变化具有明显的各向异性,同时还与裂隙面的内摩擦角有关;(3)裂隙倾角为90°时,裂隙岩样的峰值强度最高;张开型裂隙岩样的裂隙倾角为45°时,峰值强度最低;(4)非贯通裂隙岩体工程结构中的受荷岩体,其力学性能由受荷细观损伤与裂隙宏观损伤及其耦合效应所决定,基于宏细观损伤耦合的复合损伤变量可以较好地反映非贯通裂隙岩样的力学特性。  相似文献   

18.
针对金属矿山接触带复合岩体非协调变形现象,开展物理相似试样单轴压缩试验,结合理论分析,研究不同介质力学性质的差异对复合试样力学特性及破坏形式的影响。试验结果表明:复合试样的单轴抗压强度和弹性模量相对两种介质中较大的单轴抗压强度和弹性模量减小,减小幅度随介质力学性质差异程度(λ)的增大而增大,同时,随着差异程度(λ)的增大,复合试样逐渐由单斜面剪切破坏变为复杂的横向拉伸破坏。理论分析表明,不同介质泊松比的差异(Δv)导致接触面处产生非协调变形,形成的侧向约束应力弱化了复合试样的力学性能,通过引入非协调变形系数α量化了非协调变形程度与泊松比的差异(Δv)之间的相关性;构建了由两种介质力学参数确定的复合试样弹性模量的表达式和轴向应力-应变本构关系式。研究结果可为接触带复合岩体非协调变形破坏的进一步分析提供理论基础。  相似文献   

19.
Numerical Study of Failure Mechanism of Serial and Parallel Rock Pillars   总被引:4,自引:2,他引:2  
Using a numerical modelling code, rock failure process analysis, 2D, the progressive failure process and associated acoustic emission behaviour of serial and parallel rock samples were simulated. Both serial- and parallel sample models are presented for investigating the mechanism of rock pillar failure. As expected, the numerical results show that not only the stiffness, but also the uniaxial compressive strength of the rock plays an important role in pillar instability. For serial pillars, the elastic rebound of a rock pillar with higher uniaxial compressive strength can lead to the sudden failure of an adjacent rock pillar with lower uniaxial compressive strength. The failure zone forms and develops in the pillar with lower uniaxial compressive strength; however, the failure zone does not pass across the interface of the two pillars. In comparison, when two pillars have the same uniaxial compressive strengths but different elastic moduli, both serial pillars fail, and the failure zone in the two pillars can interact, passing across the interface and entering the other pillar. For parallel pillars, damage always develops in the pillar having the lower uniaxial compressive strength or lower elastic modulus. Furthermore, in accordance with the Kaiser effect, the stress-induced damage in a rock pillar is irreversible, and only when the previous stress state in the failed rock pillar is exceeded or the subsequent applied energy is larger than the energy released by the external loading will further damage continue to occur. In addition, the homogeneity index of rock also can affect the failure modes of parallel pillars, even though the uniaxial compressive strength and stiffness of each pillar are the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号