首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Yu Wang 《地学学报》2006,18(6):423-431
In eastern China, the Dabie Shan–Su–Lu orogenic belt has been separated by the Tan–Lu sinistral strike–slip fault. Mylonites are exposed along the strike–slip fault system in the southern segment, and along the eastern margin of the Dabie Shan orogenic belt. The country rocks of the mylonites are retrograde UHP eclogites, gneissic granites, muscovite granites and gneisses. The ductile strike–slip shear zone trends 30–40°N (NE30–40°‐trending) and exhibits stretching lineations and nearly vertical, SE‐dipping foliations. Most of the zircon grains separated from mylonites have a weighted average radiometric age of 233 ± 6–225 ± 6 Myr. These data constrain the onset of the Tan–Lu sinistral strike–slip movement and imply that the Tan–Lu sinistral strike–slip motion developed after retrograde UHP metamorphism. The related phengite within the eclogite rocks on the western side of the Tan–Lu fault, with 40Ar/39Ar plateau ages of c. 182–190 Myr, is also deformed and aligned parallel to the almost NE trending stretching lineations. Non‐metamorphosed granites exhibit sinistral strike–slip shearing and indicate that the Tan–Lu fault initially developed after 182–190 Myr. Muscovite collected from the mylonite yields 40Ar/39Ar plateau ages of 162 ± 1–156 ± 2 Myr. The zircon SHRIMP age data, the muscovite 40Ar/39Ar plateau ages, together with structural and petrological field information support the interpretation that the Tan–Lu strike–slip fault was not related to the Yangtze–north China plates collision, but corresponded to the formation of a NE‐trending tectonic framework in eastern China starting c. 165–160 Ma.  相似文献   

2.
Syn-collisional transform faulting of the Tan-Lu fault zone,East China   总被引:21,自引:0,他引:21  
Origin of the continental-scale Tan-Lu fault zone (TLFZ), East China, remains controversial. About 550 km sinistral offset of the Dabie orogenic belt (DOB) and Sulu orogenic belt (SOB) is shown along the NE-NNE-striking TLFZ. Syn-collisional, sinistral ductile shear belts in the TLFZ have been identified. Thirteen phengite bulk separates from the mylonites were dated by the 40Ar/39Ar method. They gave cooling ages of the 198–181 Ma for the shear belts along the eastern margin of the DOB and 221–210 Ma from the western margin of the SOB. Distribution of the foreland basin deposits suggests that sinistral offset of the DOB and SOB by the TLFZ took place prior to deposition of the Upper Triassic strata. The marginal structures around the DOB and SOB support syn-collisional faulting, and indicate anticlockwise rotation of the DOB during the displacement. The folding and thrust faulting related to crustal subduction, coeval with the Tan-Lu faulting, is older than the foreland basin deposition related to the orogenic exhumation. Several lines of evidence demonstrate that the TLFZ was developed as a syn-collisional transform fault during latest Middle to earliest Late Triassic time when the DOB and SOB experienced crustal subduction of the South China Block (SCB). Eastward increase of the crustal subduction rates is believed to be responsible for the sinistral transform faulting.  相似文献   

3.
郯庐断裂带构造演化的同位素年代学制约   总被引:10,自引:0,他引:10       下载免费PDF全文
朱光  张力  谢成龙  牛漫兰  王勇生 《地质科学》2009,44(4):1327-1342
近年来在郯庐断裂带内获得了大量的同位素年龄,为了解该断裂带的演化规律与相关动力学过程提供了有效的制约。该断裂带早期走滑构造带内给出了238~236 Ma的白云母 40Ar/39Ar 变形年龄,指示其起源于华北与华南克拉通碰撞过程的深俯冲阶段,支持其造山期陆内转换断层成因观点。其晚中生代走滑韧性剪切带内已获得的较大白云母 40Ar/39Ar冷却年龄为162~150 Ma,表明其再次左行平移发生在晚侏罗世初或中 晚侏罗世之交,出现在区域压扭性动力学背景下。这一事件应代表了中国东部滨太平洋构造域的开始时间。已获得的一系列断裂带内岩体与火山岩锆石LA ICPMS年龄显示,该断裂带内伸展性背景下最早的岩浆活动时间为136 Ma。而断裂带所控制的断陷盆地内地层时代表明其伸展活动发生在早白垩世初(约145 Ma)。这应指示了中国东部转变为伸展性动力学背景的时间。该断裂带一系列长石40Ar/39Ar年龄与磷灰石裂变径迹年龄,显示其在晚白垩世与古近纪仍处于伸展活动之中。  相似文献   

4.
The NE–striking Jiamusi–Yitong fault zone(JYFZ) is the most important branch in the northern segment of the Tancheng–Lujiang fault zone. The precise shearing time of its large–scale sinistral strike–slip has yet to determined and must be constrained. Detailed field investigations and comprehensive analyses show that strike–slip faults or ductile shear belts exist as origination structures along the western region of Yitong Graben. The strike of the shear belts trend to the NE–SW with steep mylonitic foliation. The zircon U–Pb dating result for the granite was 264.1±1 Ma in the ductile shear belt of the JYFZ. The microstructural observation(rotated feldspar porphyroclasts, S–C fabrics, and quartz c–axis fabrics, etc.) demonstrated the sinistral shearing of the ductile shear zones. Moreover, the recrystallized quartz types show a transitional stage of the subgrain rotation toward the recrystallization of the grain boundary migration(SR–GBM). Therefore, we suggest that the metamorphic grade of the shear zone in the ductile shear zones should have reached high greenschist facies conditions, and the deformation temperatures should approximately 450–500°C, which is obviously higher than the blocking temperature of muscovite(300–400°C). Hence, the ~(40)Ar/~(39)Ar isochron age of muscovite from ductile shear zones should be a cooling age(162.7±1 Ma). We infer that the sinistral strike–slipping event at the JYFZ occurred in the late Jurassic period, and it was further inferred from the ages of the main geological events in this region that the second sinistral strike–slip age of the Tancheng–Lujiang fault zone occurred during the period of tectonic movements in the Circum–Pacific tectonic domain. This discovery also indicates the age of the Tancheng–Lujiang fault zone that stretches to northeastern China. The initiation of the JYFZ in the late Jurassic is related to the speed and direction of oblique subduction of the west Pacific Plate under the Eurasian continent and is responsible for collision during the Jurassic period.  相似文献   

5.
郯庐断裂带南段张八岭群变质岩的原岩时代及其构造意义   总被引:4,自引:0,他引:4  
赵田  朱光  林少泽  宋利宏 《地质论评》2014,60(6):1265-1283
大别造山带东缘郯庐断裂带上分布着绿片岩相变质的张八岭群。对于它们的原岩时代长期没有同位素年代学数据,而其变形与变质原因也一直没有明确的认识。本次工作中选择了该带上8处张八岭群变火山岩进行了锆石LA-ICP-MS U-Pb定年。结果表明,它们的原岩时代为748~750 Ma,属于新元古代中期的南华纪,为扬子板块下部盖层而非前人认为的变质基底。结合张八岭群的变形与变质特征及前人白云母40Ar/39Ar定年结果,并与大别造山带进行对比,本文认为大别造山带东南缘张八岭群的变形与变质是造山带内俯冲与折返的结果,而其东缘郯庐断裂带内张八岭群的变形与变质是碰撞造山期该断裂带左行走滑活动所致。这些认识再次为郯庐断裂带起源于华北与扬子板块的碰撞过程中提供了重要的证据,也支持其造山期起源于陆内转换断层或斜向汇聚边界。  相似文献   

6.
郯庐断裂带与大别造山带在大别山东缘相复合 ,并将大别—苏鲁造山带左行错开达 5 0 0km。本文以大别山东缘为研究背景 ,通过对郯庐断裂带两期左旋走滑韧性剪切带温压条件的估算及热年代学信息的分析 ,来探讨大别造山带在早侏罗—早白垩世之间的折返历史与隆升量。通过矿物组合、矿物变形特征以及白云母—绿泥石地质温度计得到郯庐早、晚两期剪切带的形成温度均为 4 0 0~ 4 5 0℃。通过多硅白云母Si原子数地质压力计计算得到早、晚两期剪切带的形成压力分别为 0 .2 5~ 0 .36GPa和 0 .2 4~ 0 .39GPa。考虑到剪切摩擦加热和构造超压的影响 ,笔者推断郯庐两期走滑剪切带形成的最大深度均不超过 12km ,且两期走滑剪切带的形成深度至多相差 1~2km。郯庐断裂带在约 190Ma和 12 8Ma经历了两期走滑冷却事件 ,而在此期间 ,大别造山带东缘经历了一个构造平静期 ,基本没有发生隆升。根据郯庐断裂带的信息 ,造山带在早白垩世的热隆事件中的隆升幅度小于 12km。  相似文献   

7.
通过对大别山东端郯庐左旋韧性剪切带中一系列含白云母、黑云母、斜长石和钾长石的糜棱岩样品40Ar-39Ar同位素年代学研究,发现大别山东端的郯庐断裂带在距今139Ma之前发生过一次左行平移运动,随后转变为伸展活动,由走滑向伸展活动转换的时间介于距今139Ma至128Ma之间。在伸展活动中,大别山东端的郯庐走滑韧性剪切带发生了缓慢的抬升和冷却,从而导致封闭温度较低的矿物记录了较小的年龄。黑云母110Ma±以及斜长石97~92Ma的40Ar-39Ar年龄值指示郯庐断裂带的伸展活动一直持续到距今90Ma±。  相似文献   

8.
40Ar-39Ar dating of albite from the Meishan and Taocun iron deposits yields plateau ages of 122.90±0.16 Ma and 124.89±0.30 Ma, and isochron ages of 122.60±0.16 Ma and 124.90±0.29 Ma, respectively. Phlogopite from the Zhongshan-Gushan ore field has a plateau age of 126.7±0.17 Ma and an isochron age of 127.21±1.63 Ma. Analysis of regional geodynamic evolution of the middle-lower Yangtze River region suggests that the porphyry iron deposits were formed as a result of large-scale lithosphere delamination and strong sinistral strike-slip movement of the Tancheng Lujiang fault zone. The copper, molybdenum and gold deposit system in the middle-lower Yangtze River region was formed during the stress transition period of the eastern China continent.  相似文献   

9.
Recent field survey in the eastern Dabieshan Mountains has revealed extensive occurrences of pseudotachylite. The pseudotachylite tends to occur as simple veins and injected networks along the NE-SW-trending fracture zones or shear zones, which are parallel to the Tanlu fault zone and cut all the pre-Cretaceous geological bodies. The characteristics of both the microstructures gained by the optical microscope and SEM imaging and the geochemistry between the pseudotachylites and their host rocks show that the pseudotachylites were formed mainly by ultracataclasis of their wall rocks in which they occur. The bulk K-Ar ages of the pseudotachylites yielded a narrow range of 81 -93 Ma, and moreover the laser-probe 40Ar/39Ar dating of phengite overprinting on the pseudotachylite gave a weighted mean age of 78.9 Ma. These results show that the pseudotachylites from the eastern Dabieshan Mountains formed along the NE-SW-trending fault zone during the uplifting of the orogenic belt at 80-90 Ma, which places impor  相似文献   

10.
西准噶尔成矿带夹持在天山断裂与额尔齐斯断裂之间,是中亚成矿域西部的核心区域之一,广泛发育晚古生代深成岩浆活动、走滑断裂构造和斑岩铜矿、造山型金矿成矿作用。本文在西准噶尔成矿带包古图岩体、康德岩体、加曼岩体、库鲁木苏岩体、别鲁阿嘎希岩体、哈图岩体、阿克巴斯套岩体、庙尔沟岩体、克拉玛依岩体及红山岩体采集12个样品,通过黑云母和钾长石(40)~Ar/(39)~Ar阶段升温测年,给出了该地区(40)~Ar/(39)~Ar冷却年龄。其中,黑云母(40)~Ar/(39)~Ar年龄处在326~302 Ma范围内,钾长石(40)~Ar/(39)~Ar年龄为297~264 Ma,反映了西准噶尔地区晚石炭世-中二叠世的区域中温冷却历史。结合前人报道的锆石U-Pb、角闪石(40)~Ar/(39)~Ar、辉钼矿Re-Os、磷灰石裂变径迹等年龄数据,构建了西准噶尔成矿带晚古生代岩浆侵入,成矿作用与构造抬升,以及晚中生代剥露过程的整个热历史;并与区域左行走滑断裂活动的时间进行了对比,讨论了(40)~Ar/(39)~Ar冷却年龄的构造意义。  相似文献   

11.
1.IntroductionFig.1. TectonicpositionoftheDabieorogenicbeltandTanLufaultineasternChina  TheDabieorogenicbeltandTanLustrikeslipfaultaresituatedincentralandeasternChina,respectively(Fig.1).Theirevolutionaryprocesses,relatedtotheadjacentgeologicbloc…  相似文献   

12.
ABSTRACT

The West Junggar Metallogenic Belt (WJMB) is located between the Tianshan fault system and the Ertix fault system in the western part of the Central Asian Metallogenic Domain (CAMD). The belt features widespread late Palaeozoic granitic plutons, strike-slip faults, and porphyry copper and orogenic gold deposits. We collected nine molybdenite samples from the Baogutu III–IV Cu–Mo deposit and the Suyunhe Mo–W deposit, and 12 granitoid samples from the Jiaman, Kangde, Kulumusu, Bieluagaxi, Hatu, Akbastau, Miaoergou, Baogutu, Karamay, and Hongshan plutons in the WJMB. Molybdenite Re–Os dating gives metallogenesis ages of 312.7 and 299.7 Ma for the Baogutu III–IV and Suyunhe deposits, respectively. 40Ar/39Ar thermochronology yields biotite ages ranging from 326 to 302 Ma and K-feldspar ages from 297 to 264 Ma, indicating a regional medium-temperature cooling history in the WJMB during the late Carboniferous to middle Permian. By integrating these data with previous zircon U–Pb, amphibole 40Ar/39Ar, and zircon and apatite fission-track ages, we reconstruct the whole thermal history of the WJMB, which includes late Palaeozoic intrusive magmatism, porphyry Cu and W–Mo mineralization, and late Mesozoic tectonic uplift and exhumation of the WJMB. The regional 40Ar/39Ar cooling ages are consistent with the timing of regional sinistral strike-slip faulting, thereby indicating the tectonic significance of the cooling ages. We suggest that the biotite 40Ar/39Ar ages represent the static cooling of the granitic plutons after emplacement, since the ages are consistent with the U–Pb ages of the plutons. Thereafter, the oldest K-feldspar 40Ar/39Ar age may record the initiation of sinistral strike-slip movement on the Darabut, Mayile, and Baerluke faults. The regional faulting resulted in significant uplift of the WJMB during the early and middle Permian.  相似文献   

13.
Bulk separates of porphyroclastic phengite, neoformed phengite and their mixtures from the Tan-Lu HP mylonites overprinted on the Sulu UHP rocks were analyzed with the 40Ar/39Ar step heating method. Two samples of the neoformed phengite from ultramylonite give 40Ar/39Ar plateau ages of 209.9±1.8 Ma and 214.3±1.8 Ma, which are interpreted as representing cooling times of the TanLu sinistral faulting, and provide geochronological evidence for the syn-orogenic faulting of the Tan-Lu fault zone. The results show that the phengite formed during the retrograde eclogite-facies mylonitization was not contaminated with excess argon and can be used for dating the deformation. Argon closure in previous K-bearing minerals with excess argon under a retrograde HP dry condition is considered to be the reason for lack of excess argon incorporation in the neoformed phengite. Five porphyroclastic phengite samples yield 40Ar/39Ar plateau ages ranging from 666±12 Ma to 307.1±3.3 Ma, which are interpreted as being contaminated with excess argon. Two mixture samples with plateau ages of 239.4±2.1 Ma and 239.3±2.0 Ma show upward-convex age spectra caused by the mixture of older porphyroclastic phengite with excess argon incorporation and younger neoformed phengite without excess argon incorporation. It is demonstrated that excess argon introduced from the previous UHP metamorphism is still preserved in the pre-existing phengite after the Tan-Lu eclogite-facies mylonitization. The intense deformation under HT and HP conditions cannot erase excess argon in the previous phengite totally due to restricted fluid activities. These porphyroclastic phengite previously contaminated with excess argon cannot be used for dating the later HP deformation. This indicates that deformation under a HP dry condition does not play an important role in removing previous 40Are in phengite.  相似文献   

14.
There is a large ductile shear zone, 2 km wide and more than 3SO km long, in the South Qilian Mountains, western China. It is composed of volcanic, granitic and calcareous mylonites. The microstructures of the ductile shear zone show nearly E-W extending subvertical foliation, horizontal and oblique stretching lineations, shearing sense from sinis-tral to oblique sinistral strike-slip from east to west, "A" type folds and abundant granitic veins. Measured lattice preferred orientations (LPOs) of the mylonitic and recrystallized quartz of the granitic mylonite in the west segment suggest a strong LPO characterized by the dominant slip systems {1010} formed at high temperature (>650℃). K-feldspar of the mylonite shows an 39Ar/40Ar high-temperature plateau age of 243.3±1.3 Ma, and biotite, 250.5±0.5 Ma, which represent the formation age of the ductile shear zone. The 39Ar/40Ar plateau ages of 169.7±0.3 Ma and 160.6±0.1 Ma and the 39Ar/40Ar isochron ages of 166.99±2.37 Ma and 160.6±0.1 Ma of biot  相似文献   

15.
郯庐断裂带肥东韧性剪切带的几何学形态为一正花状左行平移断裂带,目前出露的为该韧性剪切带的根部,具有典型的深层次左行走滑变形特征,肥东韧性剪切带中糜棱岩,超糜棱岩测得的^40Ar/^39Ar全岩年龄分别为120.48Ma和118.75Ma,说明郯庐断裂带的大规模左行平移时代为早白垩世,对该带构造变形和构造叠加的研究表明,肥东浮槎山一带是被郯庐断裂带截切,牵引,叠加,改造的印支期大别一胶南造山带的残块,郯庐断裂带与大别-胶南造山带是不同时期,不同构造系统的产物,前者属于滨太平洋构造系统,后者属于特提斯构造系统。  相似文献   

16.
郯庐断裂带南段并无巨大平移—来自安徽境内的证据   总被引:26,自引:3,他引:26  
汤加富  许卫 《地质论评》2002,48(5):449-456
本文根据新近1:5万地质填图和构造调查所获资料,依据郯庐断裂带两侧标志地质体(西冷岩组火山岩,宿松岩群和肥东岩群中磷矿层,大别岩群和阚集岩群)的构造型式和错位情况,拉伸线理的性质和动向,以及郯庐断裂带两侧的次级断裂带特征等,都不能判定郯庐断裂带存在巨大左行平移,故认为大别-苏鲁造山带呈弧形展布,基本代表了原始构造方位,郯庐断裂带是多期构造变动形成的负向构造带,综合造就的一种假位错效应。  相似文献   

17.
超高压变质岩的折返过程是陆陆碰撞边界演化的关键问题。南倾的花凉亭-弥陀剪切带位于南大别低温-超高压变质 带和中大别中温-超高压变质带之间,矿物拉伸线理倾伏向为SE,逆冲和走滑分量大致相等。电子背散射衍射分析表明: 花凉亭-弥陀剪切带大多数样品的石英组构记录了上盘向NW的剪切变形,反映了中大别超高压变质岩向SE的快速折返, 而部分样品的石英具有上盘向SE的剪切指向,与早白垩世花岗岩穹隆发育导致的区域伸展有关。对前人的岩石学和年代学 成果进行总结,发现大别山进变质和超高压变质峰期/退变质的锆石U-Pb年龄从南往北逐渐变新,南大别和中大别在215~ 225 Ma同时经历了高压榴辉岩相退变质作用,在191~195 Ma经历了绿片岩相变质作用。超高压变质岩的白云母和黑云母的 40Ar/39Ar年龄靠近郯庐断裂时偏年轻,可能受到郯庐断裂活动的影响。南大别和中大别变质峰期温压的等值线与花凉亭-弥 陀剪切带的走向斜交,反映了超高压变质岩的斜向折返。因此,南大别低温-超高压变质带在~236 Ma最先开始折返,之后 中大别和北大别依次发生快速折返,具有不同折返速率和折返角度的构造岩片通过韧性剪切带调节相对运动。  相似文献   

18.
刘江  张进江  郭磊  戚国伟 《岩石学报》2014,30(7):1899-1908
晚中生代,内蒙古大青山依次经历晚侏罗世盘羊山逆冲推覆、早白垩世呼和浩特变质核杂岩伸展、早白垩世大青山逆冲推覆断层及早白垩世以来高角度正断层复杂构造演化。其中,呼和浩特变质核杂岩韧性剪切带的冷却时间和抬升机制的制约尚不明确。本文在野外考察和显微构造分析基础上,采用逐步加热40Ar-39Ar定年法对韧性剪切带内不同单矿物的冷却年龄进行了测定。角闪石、白云母、黑云母和钾长石单矿物40Ar-39Ar冷却年龄处于120~116Ma之间。结合已有年龄数据及单矿物封闭温度,构建了韧性剪切带的冷却曲线。结果表明,韧性剪切带在122~115Ma期间存在一个明显的快速冷却过程。这一阶段快速冷却是与变质核杂岩拆离断层相关核部杂岩拆离折返作为大青山逆冲推覆断层上盘抬升的结果。  相似文献   

19.
吴皓然 《地质与勘探》2022,58(4):798-808
内蒙古沙麦钨矿床位于中亚造山带东段(或称兴蒙造山带),矿体主要赋存在黑云母二长花岗(斑)岩内,主要矿化类型为伟晶岩型和云英岩型。本文利用40Ar/39Ar同位素测年方法对沙麦钨矿成矿阶段形成的白云母进行了年龄测定,获得白云母Ar-Ar坪年龄为138.4 ± 0.84 Ma,对应的正、反等时线年龄分别为137.32 ± 0.73 Ma和137.35 ± 0.73 Ma。所测坪年龄与正反等时线年龄具有很好的一致性,可以代表矿床钨矿体的形成年龄,表明该矿床的形成与沙麦地区燕山晚期的岩浆活动有关,这与区域上的成矿事件相吻合。结合区域地球动力学背景的研究成果,认为沙麦钨矿床形成于陆-陆碰撞造山后的陆内伸展环境。  相似文献   

20.
Regional‐scale 40Ar–39Ar data presented in this paper reveal significant across‐strike and along‐strike age differences in the Committee Bay belt (CBb), Rae Province, Nunavut, Canada, that complement variations in observed monazite ages. 40Ar–39Ar hornblende ages are c. 1795, 1775, and 1750 Ma in the western, eastern and central parts of the Prince Albert Group (PAG) domain respectively. The migmatite domain and Walker Lake intrusive complex are characterized by c. 1750–1730 40Ar–39Ar hornblende ages without significant along‐strike variation. The 40Ar–39Ar data provide important constraints on the cooling history and on thermal modelling that elucidates the controls on diachroneity and metamorphic patterns within the belt. In the western CBb, prograde monazite growth occurred 26 ± 10 Myr earlier in the migmatite domain (1864 ± 9 Ma; peak P–T = 5 kbar?700 °C) than in the PAG domain (1838 ± 5 Ma; peak P–T = 5 kbar?580 °C). Calculations indicate that this earlier monazite growth results from tectonic thickening of higher heat productivity Archean lithologies in the migmatite domain, which undergoes more rapid prograde heating than the less radiogenetic and lower grade rocks of the PAG domain. Granite generation via biotite dehydration melting at 800 °C and 20 km depth is predicted to occur c. 1835 Ma, in agreement with geochronological constraints. The tectonic burial of crustal domains with contrasting radiogenic properties also explains the general congruence of lower to upper amphibolite facies metamorphic zones generated during the two main orogenic cycles (i.e. M2–D1 and M3–D2). The modelled timing of prograde monazite growth in the migmatite domain suggests that D2 tectonic thickening began at 1872 ± 9 Ma, some 8 ± 3 Myr before monzazite growth, coeval with the inferred time of collision of the Meta Incognita terrane with the southern Rae Province. Along‐strike diachroneity, reflected in 25 Myr younger monazite and 40Ar–39Ar hornblende ages in the eastern relative to the western PAG domain, cannot be accounted for by heat productivity contrasts along the belt. Instead the younger deformation and metamorphism in the eastern CBb was driven by its proximity to the eastern promontory of the Superior Province which collided with the Rae Province at c. 1820 Ma. The 40Ar–39Ar data presented here support the interpretation that the youngest monazite in the CBb crystallized at c. 1790 Ma in the central CBb when this part of the belt was downfolded into a gentle synformal structure while the western part of the belt cooled through 40Ar–39Ar hornblende closure. The results of this study illustrate the important influence of contrasting rock properties on the thermal evolution of orogenic belts and on the temporal record of this evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号