首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article deals with the stratigraphic record of a climatic or tectonic perturbation of an experimental coupled catchment‐fan system. Following Bonnet & Crave's results (2003), which suggest that it is possible to differentiate between climatic or tectonic causes of surface uplift of an erosional topography from the record of sediment flux output, we design a new experimental device to test this proposition in the sedimentary signal. This device allows the study of a coupled erosion–sedimentation system at the laboratory scale for given and changing uplift and rainfall rates. On the basis of experimental results, we propose a methodology to study alluvial fan architecture from large‐scale geometries to stacking pattern and sequence analysis. In these experiments, the erosional perturbation resulting from climate or tectonic forcing induces a typical dynamic in terms of both sediment supply and the ratio between the sediment and water supply, which controls the transport capacity. The four possible forcings (rainfall rate and uplift rate increase or decrease, respectively) then result in unique dynamics of the combined parameters such as the fan slope, apex aggradation, mean sedimentation rate, grain size distribution, bed thickness and frequency and facies stacking. We first analyse large‐scale geometries (onlap, toplap, downlap or truncation) and then fine‐scale sedimentological features (fining, thinning, coarsening, thickening) in order to discriminate the nature of the forcing. This conceptual model could be adapted to real world alluvial fans in order to recognize and separate the driving mechanisms from each other.  相似文献   

2.
The sediment flux from a mountainous catchment can be expressed as a function of a landslide rate constant κ which accounts for the vigour of hillslope erosion. Since the incising drainage network flushes all or a portion of the products of hillslope erosion to a range front where fan deposition takes place, a conservation of solid sediment volume allows the fan area and progradation distance to be calculated. These parameters are related primarily to the discharge of sediment from the catchment and to local tectonic subsidence.
A survey of modern alluvial fans in a wide range of climatic and tectonic settings shows that the effects of climate and bedrock lithology cannot be discriminated in the scatter of data of catchment area vs. fan area. However, by focusing on over 100 fans in the arid and semiarid zone of SW USA, the impact of tectonic subsidence rate is unambiguous. Although further quantitative data on local tectonic subsidence rates are urgently required, our preliminary analysis suggests considerable potential for reconstructing palaeocatchments where basin tectonic subsidence rates can be estimated. The progradation distances of fans from the northern and southern margins of the Middle Devonian Hornelen Basin of Norway, and the western and north-eastern margins of the Mio-Pliocene Ridge Basin, California, allow catchment sizes and denudation rates to be approximated. Although unique solution sets are not possible, an iteration of parameter values allows plausible parameter combinations to be calculated which shed light on the tectonic and sedimentary history of the proximal basin and upland source regions. Model results suggest significant asymmetry in basin subsidence rates, catchment slopes and transport mechanics between the two margins.  相似文献   

3.
We study the geophysical controls on the size of alluvial fans. Simple relationships between catchment characteristics, sediment yield, subsidence patterns and fan size are developed. As predicting fan size is essentially a conservation of mass problem, our analysis is general, applying to all types of fan landform. The importance of spatially variable subsidence rates has gone largely unrecognized in previous studies of modern fans. Here we stress that the distribution of subsidence rates in the depositional basin is a primary control on relative fan size. Both free coefficients in the oft-cited power-law correlation of fan area and catchment area can be shown to be set primarily by the tectonic setting, taken to include source area uplift rate and the subsidence distribution in the depositional basin. In the case of a steady-state landscape, relative fan size is shown to be independent of both climate and source lithology; only during times of significant departure from steady state can relative fan size be expected to vary with either climate or source lithology. Transients associated with (1) a sudden increase in rock uplift rate, (2) a sudden change in climate and (3) the unroofing of strata with greatly differing erodibilities may produce variation of relative fan areas with both climate and source lithology. Variation of relative fan size with climate or lithology, however, requires that catchment–fan system response to perturbations away from steady state is sensitive to climate and lithology. Neither the strength of transient system responses nor their sensitivity to climate or lithology are known at present. Furthermore, internal feedbacks can significantly dampen any climatic or lithological effect. Thus theoretical considerations of the importance of climatic and lithological variables are inconclusive, but suggest that climatic and lithological effects are probably of secondary importance to tectonic effects. Field data from an unsteady landscape in Owens Valley, California, support and illustrate theoretical predictions regarding tectonic control of fan size. Field data from Owens Valley allow, but do not prove, a secondary dependence on source lithology. In addition, the Owens Valley field data indicate no relationship between relative fan size and climate. Headward catchment growth and enhanced sediment bypassing of fans during times of increased sediment yield (glacial) are put forward as plausible explanations.  相似文献   

4.
Distinguishing tectonic from climatic controls on range-front sedimentation   总被引:3,自引:0,他引:3  
Geologic and chronometric studies of alluvial fan sequences in south-central Australia provide insights into the roles of tectonics and climate in continental landscape evolution. The most voluminous alluvial fans in the Flinders Ranges region have developed adjacent to catchments uplifted by Plio-Quaternary reverse faults, implying that young tectonic activity has exerted a first-order control on long-term sediment accumulation rates along the range front. However, optically stimulated luminescence (OSL) dating of alluvial fan sequences indicates that late Quaternary facies changes and intervals of sediment aggradation and dissection are not directly correlated with individual faulting events. Fan sequences record a transition from debris flow deposition and soil formation to clast-supported conglomeritic sedimentation by ∼30 ka. This transition is interpreted to reflect a landscape response to increasing climatic aridity, coupled with large flood events that episodically stripped previously weathered regolith from the landscape. Late Pleistocene to Holocene cycles of fan incision and aggradation post-date the youngest-dated surface ruptures and are interpreted to reflect changes in the frequency and magnitude of large floods. These datasets indicate that tectonic activity controlled long-term sediment supply but climate governed the spatial and temporal patterns of range-front sedimentation. Mild intraplate tectonism appears to have influenced Plio-Quaternary sedimentation patterns across much of the southern Australian continent, including the geometry and extent of alluvial fans and sea-level incursions.  相似文献   

5.
Sediment flux from an uplifting fault block   总被引:5,自引:1,他引:4  
The stratigraphy of rift basins is a direct result of sediment liberation and transport through catchment–fan systems whose dynamics are controlled by both external and internal factors. We investigate the response of catchment–fan systems established across an active normal fault to variations in both tectonic and climatic boundary conditions. Numerical experiments show that the ratio of fan area to catchment area provides a sensitive indicator of tectonic activity. A step decrease in fault slip rate results in a delayed response by the catchment–fan systems; the response time is ∼50 kyr for a variety of parameter values. Decreased slip rate also gives rise to an abrupt but transient pulse in sediment discharge from the fans due to a drop in the hangingwall subsidence rate. In contrast, variations in climatic activity, using precipitation rate as a proxy, produce extremely rapid responses throughout the catchment–fan system. Thus, high-frequency climatic changes will overprint lower frequency tectonic variations in the stratigraphic record of fan deposits. Finally, we map out possible combinations of fault geometry, fault slip rate and precipitation rate that allow fan progradation and high rates of sediment discharge from the system.  相似文献   

6.
Three alluvial fans in the Ribera de Biescas, upper Gállego Valley, and central Spanish Pyrenees, have been studied in order to explain the most recent changes and to identify the spatial organization of the sediment. In the alluvial fans surveyed, the proximal area is dominated by debris flows, which pass downslope into transitional and fluvial deposits. The relative importance of each type of sediment is closely related to the size and gradient of the alluvial fan, as well as to the gradient in the final stretch of the stream. In general, the size of the sediment decreases from the proximal to the distal area, while the roundness increases. Nevertheless, there are noticeable irregularities in the trend both in longitudinal and transverse transects, due mainly to the sedimentary dynamics of the debris flows, as they advance towards the inner part of each alluvial fan during the most intense peak flows. A sudden shrinkage of the most active area and incision along the fan channels has been assessed and related to land-use changes in the catchments.  相似文献   

7.
Models to explain alluvial system development in rift settings commonly depict fans that are sourced directly from catchments formed in newly uplifted footwalls, which leads to the development of steep-sided talus-cone fans in the actively subsiding basin depocentre. The impact of basin evolution on antecedent drainage networks orientated close to perpendicular to a rift axis, and flowing over the developing hangingwall dip slope, remains relatively poorly understood. The aim of this study is to better understand the responses to rift margin uplift and subsequent intrabasinal fault development in determining sedimentation patterns in alluvial deposits of a major antecedent drainage system. Field-acquired data from a coarse-grained alluvial syn-rift succession in the western Gulf of Corinth, Greece (sedimentological logging and mapping) has allowed analysis of the spatial distribution of facies associations, stratigraphic architectural elements and patterns of palaeoflow. During the earliest rifting phase, newly uplifted footwalls redirected a previously established fluvial system with predominantly southward drainage. Footwall uplift on the southern basin margin at an initially relatively slow rate led to the development of an overfilled basin, within which an alluvial fan prograded to the south-west, south and south-east over a hangingwall dip slope. Deposition of the alluvial system sourced from the north coincided with the establishment of small-scale alluvial fans sourced from the newly uplifted footwall in the south. Deposits of non-cohesive debris flows close to the proposed hangingwall fan apex pass gradationally downstream into predominantly bedload conglomerate deposits indicative of sedimentation via hyperconcentrated flows laden with sand- and silt-grade sediment. Subsequent normal faulting in the hangingwall resulted in the establishment of further barriers to stream drainage, blocking flow routes to the south. This culminated in the termination of sediment supply to the basin depocentre from the north, and the onset of underfilled basin conditions as signified by an associated lacustrine transgression. The evolution of the fluvial system described in this study records transitions between three possible end-member types of interaction between active rifting and antecedent drainage systems: (a) erosion through an uplifted footwall, (b) drainage diversion away from an uplifted footwall and (c) deposition over the hangingwall dip slope. The orientation of antecedent drainage pathways at a high angle to the trend of a developing rift axis, replete with intrabasinal faulting, exerts a primary control on the timing and location of development of overfilled and underfilled basin states in evolving depocentres.  相似文献   

8.
Accurate magnetostratigraphic dating of Plio-Pleistocene alluvium in the Palomas half-graben permits correlation of transverse and axial deposits, thus enabling analysis of the movement of alluvial facies belts in time and space for the first time. Northern areas show evidence for basinward progradation of footwall-sourced Matuyama-age alluvial fan deposits over axial channel belt deposits of the ancestral Rio Grande, despite both deposits having similar deposition rates. This gradual ‘forced’ westward migration of the axial belt was in opposition to ongoing eastward growth of hangingwall-sourced fans and tectonic tilt imposed by the bounding Caballo normal fault. Fan growth was coincident with a recently proposed gradual climatic shift that may have increased sediment flux out of transverse catchments. It is also possible that continuing tectonic footwall uplift and divided retreat caused catchment areas to increase, contributing to these trends. Southern areas of the Palomas half-graben feature late Gilbert/early Gauss deposits indicative of rapid westwards progradation of large low-gradient, footwall-sourced fans over axial deposits. This ‘forced’ migration of the ancestral Rio Grande may have occurred due to footwall catchment and fan growth consequent upon initiation and growth of the Red Hills Fault. Subsequent eastward movement of the axial channel belt in late Gauss and Matuyama times overwhelmed these large fans. We attribute this to continued tilting on the Red Hills Fault and to development of the Jornada Fault to the south-east, the axial river belt avulsing north and eastwards through a developing Red Hills/Jornada crossover transfer zone. We conclude generally that facies architecture of axial and transverse elements in half-graben must reflect both climatic influences and the effects of fault development. Careful field mapping, accurate dating and palaeoclimatic studies are all necessary to determine the relative importance of these controls. Although adequate as broad guides, previous purely ‘fixist’ tectonosedimentary models allow for no fault growth, decay or climatic modulation of facies trends and are thus generally inadequate to explain important aspects rift basin stratigraphy.  相似文献   

9.
Changes to the tectonic boundary conditions governing erosional dynamics in upland catchments have a significant effect on the nature and magnitude of sediment supply to neighbouring basins. While these links have been explored in detail by numerical models of landscape evolution, there has been relatively little work to quantify the timing, characteristics and locus of sediment release from upland catchments in response to changing tectonic boundary conditions that are well‐constrained independently. We address this challenge by quantifying the volume and granulometric characteristics of sediment exported from modern rivers draining across active normal faults in the Central Apennines in Italy. We demonstrate that catchments undergoing a transient response to tectonics are associated with significant volumetric export of material derived primarily from the zone upstream of the fault, producing bi‐modal grain‐size distributions with elevated D84 values within the transient reach. This is in direct contrast to the headwaters, where the fluvial capacity to transport sediment is low and the grain‐size distribution of material in transit is fine and uni‐modal. The grain‐size response is driven by landslides feeding coarse material directly into the channel, and we show the amplitude of the signal is modulated by the degree of tectonic perturbation, once the threshold for bedrock landsliding is exceeded. Additionally, we evaluate the length‐scale over which this transient grain‐size signal propagates downstream into the basin. We show that the coarse‐fraction sediment released is retained in the proximal hanging‐wall if rates of tectonic subsidence are high and if the axial river system is small or far from the fault‐bounded mountain front. Our results therefore provide some of the first quantitative data to evaluate how transient landscape responses affect the locus, magnitude and calibre of sediment supply to basins.  相似文献   

10.
《Basin Research》2018,30(3):522-543
We present a source‐to‐sink analysis to explain sediment supply variations and depositional patterns over the Holocene within an active rift setting. We integrate a range of modelling approaches and data types with field observations from the Sperchios rift basin, Central Greece that allow us to analyse and quantify (1) the size and characteristics of sediment source areas, (2) the dynamics of the sediment routing system from upstream fluvial processes to downstream deposition at the coastline, and (3) the depositional architecture and volumes of the Holocene basin fill. We demonstrate that the Sperchios rift comprises a ‘closed’ system over the Holocene and that erosional and depositional volumes are thus balanced. Furthermore, we evaluate key controls in the development of this source‐to‐sink system, including the role of pre‐existing topography, bedrock erodibility and lateral variations in the rate of tectonic uplift/subsidence. We show that tectonic subsidence alone can explain the observed grain size fining along the rift axis resulting in the downstream transition from a braided channel to an extensive meander belt (>15 km long) that feeds the fine‐grained Sperchios delta. Additionally, we quantify the ratios of sediment storage to bypass for the two main footwall‐sourced alluvial fan systems and relate the fan characteristics to the pattern and rates of fault slip. Finally, we show that ≥40% of the sediment that builds the Sperchios delta is supplied by ≤22% of the entire source area and that this can be primarily attributed to a longer‐term (~106 years) transient landscape response to fault segment linkage. Our multidisciplinary approach allows us to quantify the relative importance of multiple factors that control a complex source‐to‐sink system and thus improve our understanding of landscape evolution and stratigraphic development in active extensional tectonic settings.  相似文献   

11.
At the geological time scale, the way in which the erosion of drainage catchments responds to tectonic uplift and climate changes depends on boundary conditions. In particular, sediment accumulation and erosion occurring at the edge of mountain ranges should influence the base level of mountain catchments, as well as sediment and water discharges. In this paper, we use a landform evolution model (LEM) to investigate how the presence of alluvial sedimentation at range fronts affects catchment responses to climatic or tectonic changes. This approach is applied to a 25 km × 50 km domain, in which the central part is uplifted progressively to simulate the growth of a small mountain range. The LEM includes different slope and river processes that can compete with each other. This competition leads to ‘transport‐limited’, ‘detachment‐limited’ or ‘mixed’ transport conditions in mountains at dynamic equilibrium. In addition, two end‐member algorithms (the channellized‐flow and the sheet‐flow regimes) have been included for the alluvial fan‐flow regime. The three transport conditions and the two flow algorithms represent six different models for which the responses to increase of rock uplift rate and/or cyclic variation of the precipitation rate are investigated. Our results indicate that addition of an alluvial apron increases the long‐term mountain denudation. In response to uplift, mountain rivers adapt their profile in two successive stages; first by propagation of an erosion wave and then by slowly increasing their channel gradients. During the second stage, the erosion rate is almost uniform across the catchment area at any one time, which suggests that dynamic equilibrium has been reached, although the balance between erosion and rock uplift rates has not yet been achieved. This second stage is initiated by the uplift of the mountain river outlets because of sedimentation aggradation at the mountain front. The response time depends on the type of water flow imposed on the alluvial fans domains (× by 1.5 for channelized flow regime and by 10 for the sheet flow one). Cyclic variations of precipitation rate generate cyclic incisions in the alluvial apron. These incision pulses create knick‐points in the river profile in the case of ‘detachment‐limited’ and ‘mixed’ river conditions, which could be mistaken for tectonically induced knick‐points. ‘Transport‐limited’ conditions do not create such knick‐points, but nevertheless trigger erosion in catchments. The feedbacks linked to sedimentation and erosion at range front can therefore control catchment incision or aggradation. In addition, random river captures in the range front trigger auto‐cyclic erosion pulses in the catchment, capable of generating incision–aggradation cycles.  相似文献   

12.
A magnetostratigraphy‐based chronological framework has been constructed in the Eocene sediments of the Montserrat alluvial fan/fan‐delta complex (southeast Ebro Basin), in order to unravel forcing controls on their sequential arrangement and to revise the tectonosedimentary history of the region. The palaeomagnetic study is based on 403 sites distributed along an 1880‐m‐thick composite section, and provides improved temporal constraints based on an independent correlation to the geomagnetic polarity time scale. The new chronological framework together with sequence stratigraphy and geohistory analysis allow us to investigate the interplay between factors controlling the sequential arrangement of the Montserrat complex at the different temporal scales and to test for orbitally driven climate forcing. The results suggest that the internal stacking pattern in transgressive and regressive sequences sets within the more than 1000‐m‐thick Milany Composite Megasequence can be explained as the result of subsidence‐driven accommodation changes under a general increase of sediment supply. Composite sequences (tens to hundreds of metres thick) likely reflect orbitally forced cyclicity related to the 400‐kyr eccentricity cycle, possibly controlled by climatically induced sea‐level fluctuations. This study also provides new insights on the deformational history of the area, and shows a correlation between (tectonic) subsidence and forelimb rotation measured on basin‐margin deformed strata. Integration of subsidence curves from different sectors of the eastern Ebro Basin allows us to estimate the variable contribution of tectonic loads from the two active basin margins: the Catalan Coastal Ranges and the Pyrenees. The results support the presence of a double flexure from Late Lutetian to Late Bartonian, associated with the two tectonically active margins. From Late Bartonian to Early Priabonian the homogenization of subsidence values is interpreted as the result of the coupling of the two sources of tectonic load.  相似文献   

13.
The role of spatiotemporally varying tectonic forcing in the development of stratigraphic patterns along passive margins and continental rift basins has been recognized for decades, but the exact nature of the stratigraphic response is still debated. This study develops a coupled tectonic‐stratigraphic numerical model with a fixed absolute lake level and constant climate conditions to quantify the signatures of spatiotemporally varying tectonic forcing on the stratigraphic record. This model consists of a three‐dimensional rift basin with a range of geomorphic features and produces a number of well‐recognized stratigraphic patterns, which are commonly interpreted to be caused by lake‐/sea‐level or climate fluctuations. This study demonstrates that the shoreline and grain‐size front are decoupled through the adjustment of the depositional slope and sediment dispersal under spatiotemporally varying tectonic forcing, especially in underfilled basins. Under such a decoupled situation, the pathway of the migrating subsidence centre correlates with the pathway of the grain‐size front, a result of competition between spatiotemporally varying tectonic forcing and autogenic sediment transport. The model results also highlight the significance of three‐dimensional variability in the stratigraphic response to tectonic forcing, which may be overlooked or misinterpreted and suggests a high degree of uncertainty in re‐establishing the base‐level cycles from the stratigraphic record alone. Moreover, spectral analysis of the modelled stratigraphy and tectonic forcing suggests that low‐frequency tectonic signals are more likely to be recorded in the stratigraphy with a lag time, whereas high‐frequency tectonic signals are likely to be shredded, mixed with autogenic signals, or buffered through sediment‐routing systems. Finally, quantitative measurements of the stratigraphic architecture of the Nanpu sag in the Bohai Bay Basin, China are used to tune the numerical model of this study to illustrate how to evaluate the role of tectonic forcing on the development of characteristic stratigraphic sequences.  相似文献   

14.
The concept of‘syntectonic’ conglomerate is based on the idea that gravel progradation is mainly generated by an increase in tectonic uplift and erosion of a source area with attendant increase in sediment flux supplied to a basin. However, other mechanisms, such as changes in basin subsidence rates, sorting of supplied sediment, and capability of transporting streams, can also lead to progradation and be difficult to distinguish from a syntectonic origin. Here we use our previously developed model to help understand the origin of gravel progradation in three Neogene alluvial basins - the Bermejo Basin of Argentina, the Himalayan Foreland Basin, and the San Pedro Basin of southern Arizona - all of which have available high-resolution magnetostratigraphy. Interpretation of the origin of gravel progradation in these basins begins with calculation of basin equilibrium time, which is the time-scale required for the streams to reach a steady-state profile, assuming constant conditions. We then compare the time-scale of the observed changes in the basin with the equilibrium time to determine if and how the model can be applied to the stratigraphic record. Most of the changes we have studied occur on time scales longer than the equilibrium time (‘slow variations’), in which case the key to interpretation is the relationship between overall grain-size change and sedimentation rate in vertical sections. Of the three examples studied only one, the Bermejo Basin, is consistent with the traditional model of syntectonic progradation. Overall progradation in the two other basins is most consistent with a long-term reduction in basin subsidence rates. In addition, short-term variation in diffusivity or sediment flux, probably climatically driven, is the most likely control of small-scale progradation of gravel tongues in the San Pedro Basin. These results, along with observations from other basins, suggest that subsidence is clearly an important control on clastic progradation on ‘slow’ time scales (i.e. generally a million years or more). If subsidence rates are directly linked to tectonic events, then subsidence-driven progradation marks times of tectonic quiescence and is clearly not syntectonic in the traditional sense. These examples show that the model can be useful in interpreting the rock record, particularly when combined with other traditional basin-analysis techniques. In particular, our results can be used to help discriminate between clastic progradation due to tectonic origin and progradation resulting from other mechanisms in alluvial basins.  相似文献   

15.
The Nova Basin contains an upper Miocene to Pliocene supradetachment sedimentary succession that records the unroofing of the Panamint metamorphic core complex, west of Death Valley, California. Basin stratigraphy reflects the evolution of sedimentation processes from landslide emplacement during basin initiation to the development of alluvial fans composed of reworked, uplifted sections of the basin fill. 40Ar/39Ar geochronology of volcanic units in middle and lower parts of the sequence provide age control on the tectonic and depositional evolution of the basin and, more generally, insights regarding the rate of change of depositional environments in supradetachment basins. Our work, along with earlier research, indicate basin deposition from 11.38 Ma to 3.35 Ma. The data imply sedimentation rates, uncorrected for compaction, of ~100 m Myr−1 in the lower, high-energy part to ~1000 m Myr−1 in the middle part characterized by debris-flow fan deposition. The observed variation in sediment flux rate during basin evolution suggests that supradetachment basins have complex depositional histories involving rapid transitions in both the style and rate of sedimentation.  相似文献   

16.
The composition, volume and stratigraphic organisation of submarine fan systems deposited along continental margins are expected to reflect the landscape from which the sediment was derived. During the Late Cretaceous, the Møre‐Trøndelag margin, Norwegian North Sea was dominated by the deposition of deep‐marine fines; the emplacement of 11 sand‐rich submarine fan systems occurred only during a c. 3 Myr period in the Turonian‐Coniacian. The systems were fed by sediment that was routed through submarine canyons incised into the basin margin; the canyons are underlain by angular unconformities and are interpreted to have resulted from tectonically induced changes in slope physiography and erosion by gravity flows. The areal extent of the onshore drainage catchments that supplied sediment to the fans has been estimated based on scaling relationships derived from modern source‐to‐sink systems. The results of our study suggest that the Turonian fans were sourced by drainage catchments that were up to ca.3600 km2, extending more than ca.100 km inland from the palaeo‐shoreline. The estimated inboard catchment extent correlates with the innermost structures of a large, long‐lived, basement‐involved, normal fault complex. On the basis of our analysis, we conclude that increased sediment supply to the Turonian fan systems reflects tectonic rejuvenation of the landscape, rather than eustatic sea‐level or climate fluctuations. The duration of fan deposition is thus interpreted to reflect the ‘relaxation time’ of the landscape following tectonic perturbation, and fan system retrogradation and abandonment is interpreted to reflect the eventual depletion of the onshore sediment source. We demonstrate that a better understanding of the stratigraphic variability in deepwater depositional systems can be gained by taking a complete source‐to‐sink view of ancient sediment dispersal systems.  相似文献   

17.
Radical grain size changes between two main units of a sedimentary megacycle in a foreland basin are commonly interpreted to result from changes in tectonic activity or climate in the adjacent mountain range. In central Nepal, the Cenozoic Siwalik molasse deposits exposed in the frontal Himalayan folds are characterized by such a radical grain size transition. Locally gravel deposits completely replace sands in vertical succession over approximately a hundred metres, the median grain size (D50) displaying a sharp increase by a factor of ca. 100. Such a rapid gravel‐sand transition (GST) is also observed in present‐day river channels about 8–20 km downstream from the outlet of the Siwalik Range. The passage from gravel‐bed channel reaches (proximal alluvial fans) to sand‐bed channel reaches (distal alluvial fans) occurs within a few kilometres on the Gangetic Plain in central Nepal, and the D50 ratio between the two types of channels equals ca. 100. We propose that the dramatic and remarkably similar increase in grain size observed in the Neogene Siwalik series and along modern rivers in the Gangetic foreland basin, results from a similar hydraulic process, i.e. a grain sorting process during the selective deposition of the sediment load. The sudden appearance of gravels in the upper Siwalik series would be related to the crossing of this sorting transition during progressive southward migration of the gravel front, in response to continuous Himalayan orogen construction. And as a consequence, the GST would be diachronous by nature. This study demonstrates that an abrupt change in grain size does not necessarily relate to a change in tectonic or climatic forcing, but can simply arise from internal adjustment of the piedmont rivers to the deposition and run out of coarse bedload. It illustrates, in addition, the genesis of quartz‐rich conglomerates in the Himalayan foreland through gravel selective deposition associated with differential weathering, abrasion processes and sediment recycling during thrust wedge advance and shortening of the foreland basin.  相似文献   

18.
ABSTRACT The Alkyonides half‐graben is separated from the Gerania Range to the south by active faults whose offshore traces are mapped in detail. The East Alkyonides and Psatha Faults have well‐defined, Holocene‐active tip zones and cannot be extrapolated from the onshore Skinos Fault into a single continuous surface trace. During the late Quaternary, catchments draining the step‐faulted range front have supplied sediment to alluvial fans along a subsiding marine ramp margin in the hangingwall of the Skinos Fault, to shelf ledge fans on the uplifting footwall to the East Alkyonides Fault and to the Alepochori submarine fan in the hangingwall of the latter. During late Pleistocene lowstand times (c. 70–12 ka), sediment was deposited in Lake Corinth as fan deltas on the subsiding Skinos shelf ramp which acted as a sediment trap for the adjacent 360 m deep submarine basin plain. At the same time, the uplifting eastern shelf ledge was exposed, eroded and bypassed in favour of deposition on the Alepochori submarine fan. During Holocene times, the Skinos bajada was first the site of stability and soil formation, and then of substantial deposition before modern marine erosion cut a prominent cliffline. The uplifting eastern shelf ledge has developed substantial Holocene fan lobe depositional sequences as sediment‐laden underflows have traversed it via outlet channels. We estimate mean Holocene displacement rates towards the tip of the Psatha Fault in the range 0.7–0.8 mm year?1. Raised Holocene coastal notches indicate that this may be further partitioned into about 0.2 mm year?1 of footwall uplift and hence 0.5–0.6 mm year?1 of hangingwall subsidence. Holocene displacement rates towards the tip of the active East Alkyonides Fault are in the range 0.2–0.3 mm year?1. Any uplift of the West Alkyonides Fault footwall is not keeping pace with subsidence of the Skinos Fault hangingwall, as revealed by lowstand shelf fan deltas which show internal clinoforms indicative of aggradational deposition in response to relative base‐level rise due to active hangingwall subsidence along the Skinos Fault. Total subsidence here during the last 58 kyr lowstand interval of Lake Corinth was some 20 m, indicating a reduced net displacement rate compared to estimates of late Holocene (< 2000 bp ) activity from onshore palaeoseismology. This discrepancy may be due to the competition between uplift on the West Alkyonides Fault and subsidence on the onshore Skinos Fault, or may reflect unsteady rates of Skinos Fault displacement over tens of thousands of years.  相似文献   

19.
侯马盆地冲积扇及其流域地貌发育规律   总被引:4,自引:0,他引:4  
根据从DEM数据中提取的侯马盆地冲积扇及其流域的多项地貌指标,分析了各地貌指标的空间分布规律,并通过地貌指标的空间分布曲线与山前地形高程曲线形态的对比以及地貌指标相关性分析来揭示冲积扇及其流域地貌的发育规律。结果表明,在侯马盆地相对隆起部位的冲积扇及其流域的地貌指标与在盆地凹陷部位的冲积扇及其流域的地貌指标有较大差异;流域地貌指标的空间分布受到盆地边界断层构造活动性的影响;冲积扇的发育主要受到流域规模、山前构造活动以及盆地基准面等多种因素共同的影响;流域内岩性的差异不是造成研究区域内冲积扇地貌差异的主要因素。  相似文献   

20.
《自然地理学》2013,34(5):343-365
Soils buried by alluvial fan deposits in southwest Nebraska record several intervals of increased sediment yield from small watersheds during the Holocene. These intervals, which began at ca. 9000, 5800, 4000, 3000, and 1000 14C yrs. B.P., were probably caused by some sort of change in regional climatic conditions. Existing evidence of Holocene climate change suggests that increased sediment yields were caused by periodic shifts toward drier climatic conditions, except for the intervals that began at 5800 and 4000 14C yrs. B.P. The cause of increased sediment yields at those times is unclear, although an increased frequency of large intense storms may have been a contributing factor. The record of soil burial exhibits considerable spatial variability both within individual fans and between fans. This is partly due to practical limitations on the number of buried soils that could be sampled on each fan. But it is also due to the inherent spatial variability of depositional processes and to differences in the geomorphic development of the four fans. Thus, researchers who use data from fans to reconstruct sediment-yield histories need to investigate several sites on several fans in order to obtain as complete a record as possible of changing sediment yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号