首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A simulation of suspended sediment movement relating to tidal and wave forcing during a winter monsoon in November 1983 in the Huanghai and East China Seas continental shelf is attempted by using the model describing the cohesive/non-cohesive sediment resuspension generated by interactions between currents and waves.model simulation showed that sediment concentration was increased by resuspension at shallow depths during the strong storm conditions due to high bottom stress interacted between currents and waves. This result is in general agreement with observations in horizontal distribution of suspended sediment distribution.At three current meter mooring positions off the southern Shandong Peninsula resuspension occurred only at a depth of 22m,nearest coastal position and at deeper parts at depths of 51 and 80m wave-current interaction effects were not significant. It has shown that the present model simulation demonstrated the capability of reproduction of suspended sediment movement under wintertime extreme event reasonably well.  相似文献   

2.
Based on the characteristics of waves, tidal currents, sediment and seabed evolution in the Caofeidian sea area in the Bohai Bay, a 2D sediment mathematical model of waves and tidal currents is employed to study the development schemes of the harbor. Verification of spring and neap tidal currents and sediment in the winter and summer of 2006 shows that the calculated values of tidal stages as well as flow velocities, flow directions and sediment concentration of 15 synchronous vertical lines are in good agreement with the measured data. Also, deposition and erosion of the sea area in front of Caofeidian ore terminal induced by suspended load under tidal currents and waves are verified; it shows that the calculated values of depth of deposition and erosion as well as their distribution are close to the measured data. Furthermore, effects of reclamation scheme of island in front of the land behind Caofeidian harbor on the hydrodynamic environment are studied, including changes of flow velocities in the deep channels at the south side of Caofeidian foreland and Laolonggou and in various harbor basins, as well as changes of deposition and erosion of seabed induced by the project.  相似文献   

3.
Multi-beam,sub-bottom and multichannel seismic data acquired from the western Nigerian continental margin are analysed and interpreted to examine the architectural characteristics of the lower parts of the submarine canyons on the margin.The presence of four canyons: Avon,Mahin,Benin,and Escravos,are confirmed from the multi-beam data map and identified as cutting across the shelf and slope areas,with morphological features ranging from axial channels,moderate to high sinuosity indices,scarps,terraces and nickpoints which are interpreted as resulting from erosional and depositional activities within and around the canyons.The Avon Canyon,in particular,is characterised by various branches and sub-branches with complex morphologies.The canyons are mostly U-shaped in these lower parts with occasional V-shapes down their courses.Their typical orientation is NE–SW.Sedimentary processes are proposed as being a major controlling factor in these canyons.Sediments appear to have been discharged directly into the canyons by rivers during the late Quaternary low sea level which allows river mouths to extend as far as the shelf edge.The current sediment supply is still primarily sourced from these rivers in the case of the Benin and Escravos Canyons,but indirectly in the case of the Avon and Mahin Canyons where the rivers discharge sediments into the lagoons and the lagoons bring the sediments on to the continental shelf before they are dispersed into the canyon heads.Ancient canyons that have long been buried underneath the Avon Canyon are identified in the multichannel seismic profile across the head of the Avon Canyon,while a number of normal faults around the walls of the Avon and Mahin Canyons are observed in the selected sub-bottom profiles.The occurrence of these faults,especially in the irregular portions of the canyon walls,suggests that they also have some effect on the canyon architecture.The formation of the canyons is attributed to the exposure of the upper marginal area to incisions from erosion during the sea level lowstand of the glacial period.The incisions are widened and lengthened by contouric currents,turbidity currents and slope failures resulting in the canyons.  相似文献   

4.
A well-established 3D phase-averaged beach morphodynamic model was applied to investigate the morphodynamics of a typical artificial beach,and a series of discussions were made on the surfzone hydro-sedimentological processes under calm and storm events.Model results revealed that the nearshore wave-induced current presents a significant 3D structure under stormy waves,where the undertow and longshore currents exist simultaneously,forming a spirallike circulation system in the surfzone.Continuous longshore sediment transport would shorten the sediment supply in the cross-shore direction,subsequently suppress the formation of sandbars,showing that a typical recovery profile under calm waves does not necessarily develop,but with a competing process of onshore drift,undertow and longshore currents.Sediment transport rate during storms reaches several hundreds of times as those under calm waves,and two storm events contribute approximately 60%to the beach erosion.Sediment transport pattern under calm waves is mainly bed load,but as the fine sands underneath begin to expose,the contribution of suspended load becomes significant.  相似文献   

5.
Sediment transport in the Hangzhou Bay is extremely complicated due to its bathymetry and hydrodynamic conditions. The ECOMSED model is employed to simulate three-dimensional (3-D) cohesive sediment transport in Hangzhou Bay. Dynamical factors such as Coriolis force, tides, salinity, river discharges, and waves are considered in the model. The wave parameters, including the significant wave height, period, and direction, are calculated with the SWAN model. The Grant-Madsen model is introduced for the bed shear stress due to the combined effect of waves and currents. The formulation of bed shear stress used to calculate the sink/source terms is modified based on previous research that sufficiently validated the formulation with measurement data. The integrated model of the above-mentioned models is applied to simulate sediment transport in Hangzhou Bay. The results of the simulation agree well with field observations concerning the distribution of suspended sediment, indicating that the sediments are remarkably suspended in Hangzhou Bay under the action of waves and currents.  相似文献   

6.
On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating bottom shear stresses (BSS) and their effect on a sediment resuspension. Swell induced BSS have been found to be the most important part of the BSS. In this study, the correlation coefficient between a wavecurrent shear stress and SSC is 0.86, and that between current shear stresses and SSC is only 0.40. The peaks of the SSC are consistent with the height and the BSS of the swell. The swell is the main mechanism for the sediment re-suspension, and the tidal current effect on sediment re-suspension is small. The peaks of the SSC are centered on the high tidal level, and the flood tide enhances the wave shear stresses and the SSC near the bottom. The critical shear stress for sediment re-suspension at the observation station is between 0.20 and 0.30 N/m2. Tidal currents are too weak to stir up the bottom sediment into the flow, but a WCI (wave-current interaction) is strong enough to re-suspend the coarse sediment.  相似文献   

7.
Analysis of 3 D seismic data and well log data from the Rovuma Basin in East Africa reveals the presence of a late Eocene channel-lobe complex on its slope. The first two channels, denoted as channel-1 and channel-2, are initiated within a topographic low on the slope but come to a premature end when they are blocked by a topographic high in the northwest region of the basin. New channels migrate southeastward from channel-1 to channel-6 due to the region's sufficient sediment supply and stripping caused by bottom currents. The primary factors controlling the development of the channel complex include its initial paleo-topographic of seafloor, the property of gravity flows, the direction of the bottom current, and the stacking and expansion of its levees. The transition zone from channel to lobe can also be clearly identified from seismic sections by its pond-shaped structure. At a certain point, thest systems record a transiton from erosive features to sedimentary features, and record a transition from a confined environment to an open environment. Channels and lobes can be differentiated by their morphologies: thick slump-debris flows are partly developed under channel sand sheets,whereas these slump-debris flows are not very well developed in lobes. Well log responses also record different characteristics between channels and lobes. The interpreted shale volume throughout the main channel records a box-shaped curve, thereby implying that confined channel complexes record high energy currents and abundant sand supply, whereas the interpreted shale volume throughout the lobe records an upward-fining shape curve,thereby indicating the presence of a reduced-energy current in a relatively open environment. Within the Rovuma Basin of East Africa, the average width of the Rovuma shelf is less than 10 km, the width of the slope is only approximately 40 km, and the slope gradient is 2°–4°. Due to this steep slope gradient, the sand-rich top sheet within the channel also likely contributes to the straight feature of the channel system. It is currently unclear whether the bottom current has any effect on its sinuosity.  相似文献   

8.
The Bedload Movement in the Changjiang Estuary   总被引:6,自引:0,他引:6  
- Sandwaves in the Changjiang estuary were measured with a shallow sediment profiler and an echosounder from 1978 to 1988. The data, together with grain size and bedform of sediment indicates that the bedload movement by rolling and saltation is of great significance to sediment transport and is the principal factor responsible for sandwave and sandbody development in the estuary. The sandwaves were found well-developed, which is related to the tidal range and the velocity of ebb current. However, the further growth is restricted by strong flood current prevailing in the estuary. Because of the significant bedload, the sandbodies shift obviously and frequently, and sometimes the exchange of position occurs between the sandbodies and tidal channels. As a result, ships are regularly forced to change their navigation course.  相似文献   

9.
A 2-D mathematical model of tidal current and sediment has been developed for the Oujiang Estuary and the Wenzhou Bay. This model accomodates complicated features including multiple islands, existence of turbidity, and significant differ-ence in size distribution of bed material. The governing equations for non-uniform suspended load and bed load transport are presented in a boundary-fitted orthogonal curvilinear coordinate system. The numerical solution procedures along with their initial conditions, boundary conditions, and movable boundary technique are presented. Strategies for computation of the critical condition of deposition or erosion, sediment transport capacity, non-uniform bed load discharge, etc. are suggested. The model verification computation shows that, the tidal levels computed from the model are in good agreement with the field data at the 18 tidal gauge stations. The computed velocities and flow directions also agree well with the values measured along the totally 52 synchronously ob  相似文献   

10.
Researches on breaking-induced currents by waves are summarized firstly in this paper. Then, a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with curved boundary or irregular coastline. The proposed wave-induced current model includes a nearshore current module established through orthogonal curvilinear transformation form of shallow water equations and a wave module based on the curvilinear parabolic approximation wave equation. The wave module actually serves as the driving force to provide the current module with required radiation stresses. The Crank-Nicolson finite difference scheme and the alternating directions implicit method are used to solve the wave and current module, respectively. The established surf zone currents model is validated by two numerical experiments about longshore currents and rip currents in basins with rip channel and breakwater. The numerical results are compared with the measured data and published numerical results.  相似文献   

11.
Over the past several years, a number of hydrocarbon reservoirs have been discovered in the deepwater area of Qiongdongnan Basin, northwestern South China Sea. These oil/gas fields demonstrate that the...  相似文献   

12.
Sediment waves have been documented around the world for several decades, and their origins are still debated because of their various characteristics in different settings. Based on numerous high-resolution seismic profiles and two boreholes, sediment waves are identified in deepwater areas of the eastern Qiongdongnan Basin, and their distribution and seismic features are illustrated. Combined with the bathymetry, the potential origins of these sediment waves are discussed. Drilling in the central canyon revealed that the channel infill comprises some along-slope fine-grained turbidites, which are good reservoir for gas plays. The sediment waves are distributed on the banks of the central canyon and their seismic features indicate that most of them are caused by turbidity current overflows along the canyon. Although previous researches on these sediment waves suggested that they were of westward-flowing contourite origin, detailed topographic map derived from the seafloor reflector on seismic data shows that there is a N–S trending ridge at the east part of sediment wave zones, which could block and divert the bottom current. According to the geometry of sediment waves, the flow thicknesses across the entire wave field are calculated as 280–560 m, and the current velocity falls in the range of 30–130 cm/s, which would favor a fine-grained composition and could be a good reservoir because of the better sorting of turbidites than contourites or other gravity flow deposits.  相似文献   

13.
琼东南盆地深水区新近系海底扇沉积特征与资源潜力   总被引:1,自引:1,他引:0  
综合利用钻井、岩心、薄片及分析化验资料研究了琼东南盆地深水区新近系海底扇沉积特征,并利用最新的三维地震资料,通过井震精细标定、多属性融合技术、方差体切片、三维地貌砂体镂空等综合技术手段,精细刻画了海底扇砂体的空间分布特征。研究结果表明,深水区新近系海底扇是由陆架区的砂体滑塌并二次搬运形成,形成过程具有多期次性。受不同物源的影响,海底扇岩性和物性存在较大的差异。海底扇岩性及沉积构造具有砂质滑塌、碎屑流、浊流和深水底流改造的特征。海底扇的沉积微相、厚度、砂泥比和砂泥岩空间配置关系直接控制了地震振幅反射强度和频率的变化。砂体纵向叠置,横向连片,并被后期泥质水道切割分块形成多个岩性圈闭。综合分析认为,深水区海底扇砂体发育区烃源条件优越,储盖配置关系和圈闭条件良好,具备形成大中型岩性油气藏的有利条件,具有较大的油气勘探潜力。  相似文献   

14.
等深流影响的水道沉积体系的沉积特征及其沉积过程是当前深水沉积学研究的热点、难点和前沿科学问题,但研究程度较为薄弱。该文以北礁凹陷上新统(地震反射T20?T30)为研究对象,利用覆盖北礁凹陷局部的三维地震资料,采用均方根属性、相干属性、时间域构造,再结合地震切片等方法,研究北礁凹陷深水区上新统斜交斜坡(走向)的特殊水道沉积体系特征及其沉积过程。研究发现,该水道沉积体系分为早、晚两期,早期发育水道和片状、扇状溢堤沉积,晚期仅发育水道和片状溢堤沉积,其中扇状溢堤沉积仅发育在水道右侧弯曲处,片状溢堤沉积仅分布在水道左侧,水道始终与区域斜坡斜交,水道对称分布且无明显迁移现象。结合该时期北礁凸起发育等深流相关的丘状漂积体和环槽,认为该水道沉积体系特殊的形态主要受控于等深流与浊流交互作用的沉积结果:浊流流经水道,其上覆浊流溢出水道,形成溢岸浊流,在水道左侧,该溢岸浊流与等深流发生相向运动,被等深流“吹拂”到单侧,大面积分布,延伸千米,形成片状溢堤沉积;而在水道弯曲处(右侧),溢岸浊流与等深流发生相对运动,抑制溢岸浊流进一步扩展,形成相对小范围扇状溢堤沉积,该沉积结果与前人水槽实验结果相一致。  相似文献   

15.
Scaling analysis of deposition from turbidity currents   总被引:3,自引:0,他引:3  
Many oil-bearing sedimentary deposits are formed by the settling of particles from turbidity currents. Modeling sedimentary processes that form these turbidites enables the calculation of properties such as extent, depth, porosity and permeability of hydrocarbon-bearing reservoirs. This paper estimates the extent and thickness of turbidites from the initial conditions of the turbidity flow. This is achieved by the application of scaling analysis of the partial differential equations that govern the dynamics of and deposition from turbidity currents. We apply the results of scaling analysis to five modern submarine fans. The predicted and actual values of the dimensions of the fan deposits match well. We then compare the derived results against tabulated sizes of ancient turbidites. The comparisons are good as long as we correctly identify the flow regimes in which the deposition took place. The good agreements observed in the two cases show that the estimates obtained using scaling analysis can provide useful first-guess values for the dimensions of the deposits.  相似文献   

16.
The deep lacustrine gravity-flow deposits are widely developed in the lower Triassic Yanchang Formation, southeast Ordos Basin, central China. Three lithofacies include massive fine-grained sandstone, banded sandstone, and massive oil shale and mudstone. The massive fine-grained sandstones have sharp upper contacts, mud clasts, boxed-shaped Gamma Ray (GR) log, but no grading and Bouma sequences. In contrast, the banded sandstones display different bedding characteristics, gradational upper contacts, and fine-upward. The massive, fine-grained sandstones recognized in this study are sandy debrites deposited by sandy debris flows, while the banded sandstones are turbidites deposited by turbidity currents not bottom currents. The sediment source for these deep gravity-flow sediments is a sand-rich delta system prograding at the basin margin. Fabric of the debrites in the sandy debris fields indicates initial formation from slope failure caused by the tectonic movement. As the sandy debris flows became diluted by water and clay, they became turbidity currents. The deep lacustrine depositional model is different from the traditional marine fan or turbidite fan models. There are no channels or wide lobate sand bodies. In the lower Triassic Yanchang Formation, layers within the sandy debrites have higher porosity (8–14%) and permeability (0.1–4 mD) than the turbidites with lower porosity (3–8%) and permeability (0.04–1 mD). Consequently, only the sandy debrites constitute potential petroleum reservoir intervals. Results of this study may serve as a model for hydrocarbon exploration and production for deep-lacustrine reservoirs from gravity-flow systems in similar lacustrine depositional environments.  相似文献   

17.
The deepwater of the northwestern South China Sea is located in the central to southern parts of the Qiongdongnan Basin(QDN Basin),which is a key site for hydrocarbon exploration in recent years.In this study,the authors did a comprehensive analysis of gravity-magnetic data,extensive 3D seismic survey,cores and cuttings,paleontology and geochemical indexes,proposed the mechanism of natural gas origin,identified different oil and gas systems,and established the model of hydrocarbon accumulations in the deep-water region.Our basin tectonic simulation indicates that the evolution of QDN Basin was controlled by multiple-phased tectonic movements,such as Indochina-Eurasian Plate collision,Tibetan Uplift,Red River faulting and the expansion of the South China Sea which is characterized by Paleogene rifting,Neogene depression,and Eocene intensive faulting and lacustrine deposits.The drilling results show that this region is dominated by marineterrestrial transitional and neritic-bathyal facies from the early Oligocene.The Yacheng Formation of the early Oligocene is rich in organic matter and a main gas-source rock.According to the geological-geochemical data from the latest drilling wells,Lingshui,Baodao,Changchang Sags have good hydrocarbon-generating potentials,where two plays from the Paleogene and Neogene reservoirs were developed.Those reservoirs occur in central canyon structural-lithologic trap zone,Changchang marginal trap zone and southern fault terrace of Baodao Sag.Among them,the central canyon trap zone has a great potential for exploration because the various reservoirforming elements are well developed,i.e.,good coal-measure source rocks,sufficient reservoirs from the Neogene turbidity sandstone and submarine fan,faults connecting source rock and reservoirs,effective vertical migration,late stage aggregation and favorable structural–lithological composite trapping.These study results provide an important scientific basis for hydrocarbon exploration in this region,evidenced by the recent discovery of the significant commercial LS-A gas field in the central canyon of the Lingshui Sag.  相似文献   

18.
Bonanza Canyon is a complex canyon system on the slope from the intermittently glaciated Grand Bank on the south side of Orphan Basin. A 3D seismic reflection volume, 2D high-resolution seismic reflection profiles and ten piston cores were acquired to study the evolution of this canyon system in relation to glacial processes on the continental shelf and the effects of different types of turbidity currents on the development of deep water channels. Mapped reflector surfaces from the 3D seismic volume show that the Bonanza Canyons developed in a depression created by a large submarine slide of middle Pleistocene age, coincident with the onset of glacigenic debris flows entering western Orphan Basin. Two 3–5 km wide, flat-floored channels were cut into the resulting mass-transport deposit and resemble catastrophic glacial meltwater channels elsewhere on the margin. Both channels subsequently aggraded. The eastern channel A became narrower but maintained a sandy channel floor. The western channel, B, heads at a spur on the continental slope and appears to have been rather passively draped by muds and minor sands that have built 1500-m wave length sediment waves.Muddy turbidites recorded by piston cores in the channel and on the inter-channel ridges are restricted to marine isotope stage (MIS) 2 and were deposited from thick, sheet-like, and sluggish turbidity current derived from western Orphan Basin that resulted in aggradation of the channels and inter-channel ridges. Sandy turbidites in channels and on inner levees were deposited throughout MIS 2–3 and were restricted to the channels, locally causing erosion. Some coincide with Heinrich events. Channels with well-developed distributaries on the upper slope more readily trap the sediments on Grand Bank to form sandy turbidity currents. Channel B dominated by muddy turbidity currents has wide and relatively smooth floor whereas channel A dominated by sandy turbidity currents has a sharp geometry.  相似文献   

19.
裂隙是油气藏和天然气水合物成藏成矿的有利疏导体系, 但是受地震分辨率的影响, 微裂隙不易用常规手段识别。为研发一套实用的裂隙识别技术, 文章分析了裂隙的地震波运动学和动力学特征, 结合相关技术功能原理, 融合三维可视化技术、相干技术等方法, 在莺歌海盆地的底辟构造中成功刻画出裂隙通道, 并据此技术发现大气田。经实践及分析, 该技术亦可应用于琼东南盆地天然气水合物的疏导体系研究, 是一套行之有效的裂隙识别技术。  相似文献   

20.
琼东南盆地井震地层对比分析及区域地层格架的建立   总被引:3,自引:3,他引:0  
琼东南盆地历经断陷、断坳、裂后热沉降和裂后加速沉降等一系列的构造变动,沉积环境由始新世的滨海环境发展为现今的深水环境,形成了一套包括滨岸沉积、滨浅海沉积、陆架和陆坡沉积、以及半深海沉积的地层组合,具有良好的油气资源的生储盖条件,已成为当前油气资源勘探开发的重点区域。本文首先对盆地区域内钻井和地震剖面进行了主要地层界面(T20、T30、T40、T50、T60和T70)的识别和提取(点),继而结合连井地震剖面(线)和盆地区域过井地震剖面(面)对主要地层界面做了追踪对比分析,再依据古生物年代,建立了适用于琼东南盆地的区域地层年代格架。在琼东南盆地浅水区主要沉积了新近系地层(T60-T20),断裂基本不发育,地层厚度变化不大,极少有明显的上超和削截,局部地区发育有利于油气储集的三角洲沉积体系,表明琼东南盆地新近纪时期受构造作用影响较小。在深水区,新近系地层(T60-T20)和浅水区特征相似,仅反射特征有所不同;古近系地层(T100-T60)内部层序结构主要为楔状或近平行状,具有明显的上超和削截,地层厚度较大,断裂明显并导致地层错断,表明琼东南盆地深水区在古近纪时期主要受构造作用控制,并伴随着强烈的拉张和快速沉降作用,沉积环境主要为浅海。在近东西向的中央峡谷内存在有三期砂体:第一期砂体(井深3 528~3 336m,厚约192m)形成于距今11.6~5.5Ma(T40-T30),分布范围跨越中央峡谷的陵水-松南-宝岛段,沉积物构成包括浊积水道沉积、浊积席状砂、块体流沉积、深海泥质沉积、天然堤及漫溢沉积等;第二期砂体(井深4 100~3 900m,厚约200m)形成于距今5.5~4.2Ma(T30-T29),分布范围跨越中央峡谷的乐东-陵水段,以重力流沉积为主;第三期砂体(深度3 630~3 400m,厚约230m)发育于距今4.2~3.6Ma(T29-T28),分布于峡谷的乐东-莺东段,以浊积水道沉积为主。三期砂体在琼东南盆地中央坳陷带自东向西、由老到新依次展布,构成了良好的油气储层体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号